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1. Introduction and Summary 
Information and communication technology (ICT) is transforming our world, including 
healthcare, education, science, commerce, government, defense, and entertainment. It is hard 
to remember that 20 years ago the first step in information search involved a trip to the library, 
10 years ago social networks were mostly physical, and 5 years ago “tweets” came from 
cartoon characters. 

Importantly, much evidence suggests that ICT innovation is accelerating with many compelling 
visions moving from science fiction toward reality1. Appendix A both touches upon these visions 
and seeks to distill their attributes. Future visions include personalized medicine to target care 
and drugs to an individual, sophisticated social network analysis of potential terrorist threats to 
aid homeland security, and telepresence to reduce the greenhouse gases spent on commuting. 
Future applications will increasingly require processing on large, heterogeneous data sets (“Big 
Data”2), using distributed designs, working within form-factor constraints, and reconciling rapid 
deployment with efficient operation. 

Two key—but often invisible—enablers for past ICT innovation have been semiconductor 
technology and computer architecture. Semiconductor innovation has repeatedly provided more 
transistors (Moore’s Law) for roughly constant power and cost per chip (Dennard Scaling). 
Computer architects took these rapid transistor budget increases and discovered innovative 
techniques to scale processor performance and mitigate memory system losses. The combined 
effect of technology and architecture has provided ICT innovators with exponential performance 
growth at near constant cost.  

Because most technology and computer architecture innovations were (intentionally) invisible to 
higher layers, application and other software developers could reap the benefits of this progress 
without engaging in it. Higher performance has both made more computationally demanding 
applications feasible (e.g., virtual assistants, computer vision) and made less demanding 
applications easier to develop by enabling higher-level programming abstractions (e.g., scripting 
languages and reusable components). Improvements in computer system cost-effectiveness 
enabled value creation that could never have been imagined by the field’s founders (e.g., 
distributed web search sufficiently inexpensive so as to be covered by advertising links). 

                                                
1 PCAST, “Designing a Digital Future: Federally Funded Research and Development Networking and Information 
Technology, Dec. 2010 (http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf). 
2 CCC, “Challenges and Opportunities with Big Data," Feb. 2012 (http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf). 
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The wide benefits of computer performance growth are clear. Recently, Danowitz et al.3 
apportioned computer performance growth roughly equally between technology and 
architecture, with architecture credited with ~80× improvement since 1985. As semiconductor 
technology approaches its “end-of-the-road” (see below), computer architecture will need to play 
an increasing role in enabling future ICT innovation.  But instead of asking, “How can I make my 
chip run faster?,” architects must now ask, “How can I enable the 21st century infrastructure, 
from sensors to clouds, adding value from performance to privacy, but without the 
benefit of near-perfect technology scaling?”. The challenges are many, but with appropriate 
investment, opportunities abound.  Underlying these opportunities is a common theme that 
future architecture innovations will require the engagement of and investments from innovators 
in other ICT layers. 

1.1 The Challenges: An Inflection Point 
The semiconductor technology enabler to ICT is facing serious challenges that are outlined in 
Table 1 below. First, although technologists can make more and smaller transistors (Moore’s 
Law), these transistors are not altogether “better” as has been true for four decades. Second, 
the power per transistor is no longer scaling well (Dennard Scaling has ended). Since most 
products—sensors, mobile, client, and data center—cannot tolerate (repeated) power 
increases, we must consider ways to mitigate these increases. Third, fabrication variations of 
nano-scale features (e.g., gate oxides only atoms thick) reduce transistors’ long-term reliability 
significantly compared to larger feature sizes. Fourth, communication among computation 
elements must be managed through locality to achieve goals at acceptable cost and energy with 
new opportunities (e.g., chip stacking) and new challenges (e.g., data centers). Fifth, one-time 
costs to design, verify, fabricate, and test are growing, making them harder to amortize, 
especially when seeking high efficiency through platform specialization (e.g., handhelds, 
laptops, or servers). 

Table 1: Technology's Challenges to Computer Architecture 
Late 20th Century The New Reality 

Moore’s Law — 2× transistors/chip every 
18-24 months 

Transistor count still 2× every 18-24 months, 
but see below 

Dennard Scaling — near-constant 
power/chip 

Gone. Not viable for power/chip to double (with 2× 
transistors/chip growth) 

The modest levels of transistor 
unreliability easily hidden (e.g., via ECC) 

Transistor reliability worsening, no longer easy to hide 

Focus on computation over 
communication   

Restricted inter-chip, inter-device, inter-machine 
communication (e.g. Rent's Rule, 3G, GigE); 
communication more expensive than computation 

One-time (non-recurring engineering) 
costs growing, but amortizable for mass-
market parts 

Expensive to design, verify, fabricate, and test, especially 
for specialized-market platforms 

 
                                                
3 Danowitz, et al., “CPU DB: Recording Microprocessor History”, CACM 04/2012. 
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1.2 The Opportunities: 21st Century Computer Architecture 
With CMOS technology scaling weakening as an enabler of ICT innovation, computer architects 
must step up their role even further. 21st century computer architecture, however, needs to be 
different from its 20th century predecessor to embrace this new role. We see three fundamental 
differences, highlighted in Table 2 below. These differences form the basis of the future 
research agenda described in Section 2. 

Table 2: Computer Architecture’s Past and Future 
20th Century Architecture 21st Century Architecture  

Single-chip performance Architecture as infrastructure:  

from sensors to clouds 
● Chips to systems 
● Performance plus security, privacy, 

availability, programmability, … 

 

 

 

 
 

Cross-cutting 

implication: 

 
Break current 
layers with new 
interfaces 

Performance through software-
invisible instruction level parallelism 
(ILP) 

Energy first 
● Parallelism 
● Specialization 
● Cross-layer design 

Tried and tested technologies: 
CMOS, DRAM, disks with rapid but 
predictable improvements 

New technologies: non-volatile memory, 
near-threshold voltage operation, 3D chips, 
photonics, … 
Rethink 

● Memory+storage 
● Reliability 
● Communication 
● … 

Architecture as Infrastructure: From Sensors to Clouds: Past architecture research often 
focused on a chip (microprocessor) or stand-alone computer with performance as its main 
optimization goal. Moving forward, computers will be a key pillar of the 21st century societal 
infrastructure. To address this change, computer architecture research must expand to 
recognize that generic computers have been replaced by computation in context (e.g., sensor, 
mobile, client, data center) and many computer systems are large and geographically 
distributed.4 This shift requires more emphasis on the system (e.g., communication becomes a 
full-fledged partner of computation), the driver application (e.g., dealing with big data), and 
human-centric design goals beyond performance (e.g., programmability, privacy, security, 
availability, battery life, form factor).  

Energy First:  Past computer architecture optimized performance, largely through software 
invisible changes. 21st century architecture confronts power and energy as the dominant 
constraints, and can no longer sustain the luxury of software invisible innovation. We see 
parallelism, specialization, and cross-layer design as key principles in an energy-first era, but all 
three require addressing significant challenges. For example, while parallelism will abound in 
future applications (big data = big parallelism), communication energy will outgrow computation 
                                                
4 Luiz André Barroso and Urs Hölzle, “The Datacenter as a Computer”, Morgan-Claypool, 2009 
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energy and will require rethinking how we design for 1,000-way parallelism. Specialization can 
give 100× higher energy efficiency than a general-purpose compute or memory unit, but no 
known solutions exist today for harnessing its benefits for broad classes of applications cost-
effectively. Cross-layer design (from circuit to architecture to run-time system to compiler to 
application) can wring out waste in the different layers for energy efficiency, but needs a far 
more concerted effort among many layers to be practical. 

New Technologies: Past computer architecture has relied on the predictable performance 
improvements of stable technologies such as CMOS, DRAM, and disks. For the first time in the 
careers of many ICT professionals, new technologies are emerging to challenge the dominance 
of the “tried-and-tested,” but sorely need architectural innovation to realize their full potential. 
For example, non-volatile memory technologies (e.g., Flash and phase change memory) drive a 
rethinking of the relationship between memory and storage. Near-threshold voltage operation 
has tremendous potential to reduce power but at the cost of reliability, driving a new discipline of 
resiliency-centered design. Photonics and 3D chip stacking change communication costs 
radically enough to affect the entire system design.  

Underlying all of the above is a cross-cutting theme of innovations that are exposed to and 
require interaction with other ICT layers. This change is dramatic in that it will impact ICT 
innovators in other layers, similar to, but potentially greater than, the recent shift to multicore 
processors. Collaboration with other-layer innovators will empower architects to make bolder 
innovations with commensurate benefits, but it will also require significant investment and strong 
leadership to provide the richer inter-layer interfaces necessary for the 21st century.  

2. Research Directions 
This section discusses important research directions for computer architecture and related 
communities, but begins with two comments. First, the ideas below represent good ideas from 
those who contributed to this document and complement other recent documents.5 6 7 They do 
not represent an exhaustive list nor a consensus opinion of the whole community, which are 
infeasible to gather in the process of creating this white paper. 

Second, if we have been convincing that the directions presented have value to society, there is 
a need for pre-competitive research funding to develop them. Even highly-successful computer 
companies lack the incentive to do this work for several reasons. First, the technologies 
required will take years to a decade to develop. Few companies have such staying power. 
Second, successful work will benefit many companies, disincentivizing any one to pay for it. 
Third, many of the approaches we advocate cross layers of the system stack, transcending 
industry-standard interfaces (e.g., x86) and the expertise of individual companies. Finally, we 
need to educate the next generation of technical contributors, which is perhaps academia’s 
most important form of technology transfer.  

                                                
5 ACAR-1, "Failure is not an Option: Popular Parallel Programming," Workshop on Advancing Computer 
Architecture Research, August 2010 (http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf). 
6 ACAR-2, "Laying a New Foundation for IT: Computer Architecture for 2025 and Beyond," Workshop on Advancing 
Computer Architecture Research, September 2010 (http://www.cra.org/ccc/docs/ACAR2-Report.pdf). 
7 Fuller and Millett, "The Future of Computing Performance: Game Over or Next Level?," The National Academy 
Press, 2011 (http://books.nap.edu/openbook.php?record_id=12980&page=R1). 
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2.1. Architecture as Infrastructure: Spanning Sensors to Clouds 
Until recently, computer systems were largely beige boxes nestled under a desk or hidden in a 
machine room, and computer architecture research focused primarily on the design of desktop, 
workstation and server CPUs. The new reality of 21st-century applications calls for a broader 
computer architecture agenda beyond the beige box. The emerging applications described in 
Appendix A demand a rich ecosystem that enables ubiquitous embedded sensing/compute 
devices that feed data to “cloud servers” and warehouse-scale facilities, which can process and 
supply information to edge devices, such as tablets and smartphones.  Each class of computing 
device represents a unique computing environment with a specific set of challenges and 
opportunities, yet all three share a driving need for improved energy efficiency (performance per 
watt) as an engine for innovation. Moreover, future architecture research must go beyond 
optimizing devices in isolation, and embrace the challenges of cross-environment co-design to 
address the needs of emerging applications.  

Smart Sensing and Computing. In the smart sensors space, the central requirement is to 
compute within very tight energy, form-factor, and cost constraints.  The need for greater 
computational capability is driven by the importance of filtering and processing data where it is 
generated/collected (e.g., distinguishing a nominal biometric signal from an anomaly), because 
the energy required to communicate data often outweighs that of computation. This environment 
brings exciting new opportunities like designing systems that can leverage intermittent power 
(e.g., from harvested energy), extreme low-voltage (near-threshold and analog) design, new 
communication modalities (e.g., broadcast communication from building lighting), and new 
storage technologies (e.g., NVRAM).  As sensors become critical to health and safety, their 
security and reliability must also be assured (e.g., consider recent demonstrations of remote 
hacking of pacemakers), including design correctness of hardware and software components. 
Additionally, given that sensor data is inherently approximate, it opens the potential to effectively 
apply approximate computing techniques, which can lead to significant energy savings (and 
complexity reduction). 

Portable Edge Devices. The portable computing market has seen explosive growth, with 
smartphone sales recently eclipsing the PC market.8  And yet, current devices still fall far short 
of the futuristic capabilities society has envisioned, from the augmented reality recently 
suggested by “Google Glasses,” to the medical tricorder posited by Star Trek nearly 50 years 
ago and recently resurrected in the form of an X Prize challenge competition9. Enriching 
applications in this environment will need orders of magnitude improvement in operations/watt 
(from today’s ~10 giga-operations/watt), since user interfaces seem to have a significant 
appetite for computation (e.g., multi-touch interfaces, voice recognition, graphics, holography, 
and 3D environment reconstruction) and even mobile applications are becoming data and 
compute intensive. As discussed in later sections, such systems clearly need both parallelism 
and specialization (the latest generation iPad’s key chip has multiple cores and dedicates half of 
its chip area for specialized units). Given the proximity with the user, such devices motivate 
ideas that bring human factors to computer design, such as using user feedback to adjust 
voltage/frequency to save energy, focusing computation on where the user is looking, reducing 
the image to salient features only, or predicting and prefetching for what the user is likely to do. 
This environment also motivates features beyond raw performance, such as security/privacy.  

                                                
8 e.g., http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/ and 
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011  
9 http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize 
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The Infrastructure—Cloud Servers. Many of the most exciting emerging applications, such as 
simulation-driven drug discovery, or interactive analysis of massive human networks, can only 
be achieved with reasonable response times through the combined efforts of tens of thousands 
of processors acting as a single warehouse-scale computer.  Internet search has demonstrated 
the societal importance of this computing paradigm.  However, today’s production search 
systems require massive engineering effort to create, program, and maintain, and they only 
scratch the surface of what might be possible (e.g., consider the potential of IBM’s Watson).  
Systems architects must devise programming abstractions, storage systems, middleware, 
operating system, and virtualization layers to make it possible for conventionally trained 
software engineers to program warehouse-scale computers.  

While many computing disciplines—operating systems, networking, and others—play a role in 
data center innovations, it is crucial for computer architects to consider the interface designs 
and hardware support that can best enable higher-level innovations.   In addition, a key 
challenge lies in reasoning about locality and enforcing efficient locality properties in data center 
systems, a burden which coordination of smart tools, middleware and the architecture might 
alleviate. A further challenge lies in making performance predictable; as requests are 
parallelized over more systems, infrequent tail latencies become performance critical (if 100 
systems must jointly respond to a request, 63% of requests will incur the 99-percentile delay of 
the individual systems due to waiting for stragglers10); architectural innovations can guarantee 
strict worst-case latency requirements. Memory and storage systems consume an increasing 
fraction of the total data center power budget, which one might combat with new interfaces 
(beyond the JEDEC standards), novel storage technologies, and 3D stacking of processors and 
memories. 

Putting It All Together—Eco-System Architecture.  There is a need for runtime platforms and 
virtualization tools that allow programs to divide effort between the portable platform and the 
cloud while responding dynamically to changes in the reliability and energy efficiency of the 
cloud uplink. How should computation be split between the nodes and cloud infrastructure? How 
can security properties be enforced efficiently across all environments? How can system 
architecture help preserve privacy by giving users more control over their data? Should we co-
design compute engines and memory systems? 

The research directions outlined above will push architecture research far beyond the beige 
box. The basic research challenges that relate all of these opportunities are improving energy 
efficiency dramatically and embracing new requirements such as programmability, security, 
privacy and resiliency from the ground up. Given the momentum in other areas (e.g., HCI, 
machine learning, and ubiquitous computing) now is the moment to explore them. Success will 
require significant investment in academic research because of the need for community-scale 
effort and significant infrastructure. While mobile and data centers are relatively new to the 
menagerie of computing devices,  the research challenges we discuss will likely also apply to 
other devices yet to emerge.  

2.2. Energy First 
The shift from sequential to parallel (multicore) systems has helped increase performance while 
keeping the power dissipated per chip largely constant. Yet many current parallel computing 
systems are already power or energy constrained. At one extreme, high-end supercomputers 
and data centers require expensive many-megawatt power budgets; at the other, high-
                                                
10 J. Dean. “Achieving Rapid Response Times in Large Online Services.” Talk in Berkeley, CA, Mar. 2012. 
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functionality sensors and portable devices are often limited by their battery’s energy capacity. 
Portable and sensor devices typically require high performance for short periods followed by 
relatively long idle periods.  Such bimodal usage is not typical in high-end servers, which are 
rarely completely idle and seldom need to operate at their maximum rate.  Thus, power and 
energy solutions in the server space are likely to differ from those that work best in the portable 
device space.  However, as we demand more from our computing systems—both servers and 
sensors—more of them will be limited by power, energy, and thermal constraints. Without new 
approaches to power- and energy-efficient designs and new packaging and cooling approaches, 
producing ICT systems capable of meeting the computing, storage and communication 
demands of the emerging applications described in Appendix A will likely be impossible. It is 
therefore urgent to invest in research to make computer systems much more energy efficient. 

As the next subsections describe, energy must be reduced by attacking it across many layers, 
rethinking parallelism, and with effective use of specialization. 

Energy Across the Layers 

Electronic devices consume energy as they do work (and, in the case of CMOS, just by being 
powered on). Consequently, all of the layers of the computing stack play a role to improve 
energy and power efficiency: device technologies, architectures, software systems (including 
compilers), and applications. Therefore, we believe that a major interdisciplinary research effort 
will be needed to substantially improve ICT system energy efficiency. We suggest as a goal to 
improve the energy efficiency of computers by two-to-three orders of magnitude, to obtain, by 
the end of this decade, an exa-op data center that consumes no more than 10 megawatts 
(MW), a peta-op departmental server that consumes no more than 10 kilowatts (KW), a tera-op 
portable device that consumes no more than 10 watts (W), and a giga-op sensor system that 
consumes no more than 10 milliwatts (mW). Such an ambitious plan can only be attained with 
aggressive changes in all layers of the computing stack.  

At the Circuit/Technology Level, we need research in new devices that are fundamentally 
more energy efficient, both in CMOS and in emerging device technologies. Research is also 
needed on new technologies that can improve the energy efficiency of certain functions, such as 
photonics for communication, 3D-stacking for integration, non-resistive memories for storage, 
and efficient voltage conversion. Novel circuit designs are also needed: circuits that work at 
ultra-low supply voltages, circuits that carry out efficient power distribution, circuits that perform 
aggressive power management, and circuits that are able to support multiple voltage and 
frequency domains on chip. 

At the Architecture Level, we need to find more efficient, streamlined many-core architectures. 
We need chip organizations that are structured in heterogeneous clusters, with simple 
computational cores and custom, high-performance functional units that work together in 
concert. We need research on how to minimize communication, since energy is largely spent 
moving data. Especially in portable and sensor systems, it is often worth doing the computation 
locally to reduce the energy-expensive communication load. As a result, we also need more 
research on synchronization support, energy-efficient communication, and in-place computation. 

At the Software Level, we need research that minimizes unnecessary communication. We 
require runtimes that manage the memory hierarchy and orchestrate fine-grain multitasking. We 
also need research on compilation systems and tools that manage and enhance locality. At the 
programming-model level, we need environments that allow expert programmers to exercise full 
machine control, while presenting a simple model of localities to low-skilled programmers. At the 
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application level, we need algorithmic approaches that are energy-efficient via reduced 
operation count, precision, memory accesses, and interprocessor communication, and that can 
take advantage of heterogeneous systems.  At the compiler level, we need to find ways to trade 
off power efficiency and performance, while also considering the reliability of the resulting 
binary. Overall, it is only through a fully-integrated effort that cuts across all layers that we can 
make revolutionary progress. 

Exploiting Parallelism to Enable Future Applications 
Throughout the 20th century, the growth in computing performance was driven primarily by 
single-processor improvements. But by 2004, diminishing returns from faster clock speeds and 
increased transistor counts resulted in serious power (and related thermal) problems. By shifting 
to multiple cores per chip, our industry continued to improve aggregate performance and 
performance per watt. But just replicating cores does not adequately address the energy and 
scaling challenges on chip, nor does it take advantage of the unique features and constraints of 
being on chip.  Future growth in computer performance must come from massive on-chip 
parallelism with simpler, low-power cores, architected to match the kinds of fine-grained 
parallelism available in emerging applications. 

Unfortunately, we are far from making parallel architectures and programming usable for the 
large majority of users. Much of the prior research has focused on coarse-grained parallelism 
using standard processor cores as the building block.  Placing massive parallelism on a single 
chip offers new opportunities for parallel architecture and associated programming techniques. 
To unlock the potential of parallel computing in a widely-applicable form, we may need at least a 
decade of concerted, broad-based research to address emerging application problems at all 
levels of parallelism. To ensure that computing performance growth will continue to fuel new 
innovations, and given the magnitude of the technical challenges and the stakes involved, we 
need major funding investments in this area. 

Reinventing Computing Stack for Parallelism: We recommend an ambitious, interdisciplinary 
effort to re-invent the classical computing stack for parallelism—programming language, 
compiler and programming tools, runtime, virtual machine, operating system, and architecture. 
Along with performance goals, energy considerations must be a first-class design constraint to 
forge a viable path to scalable future systems. The current layers have been optimized for uni-
processor systems and act as barriers to change. Since a single, universal programming model 
may not exist, we recommend exploring multiple models and architectures. Moreover, different 
solutions are clearly needed for experts, who may interact with the innards of the machine, and 
the large majority of programmers, who should use simple, sequential-like models perhaps 
enabled by domain-specific languages.  

Applications-Focused Architecture Research: We recommend an application-focused 
approach to parallel architecture research, starting from chips with few to potentially hundreds of 
cores, to distributed systems, networking structures at different scales, parallel memory 
systems, and I/O solutions. The challenge is to consider application characteristics, but without 
overfitting to particular specifics; we must leverage mechanisms (including programming 
languages) that will perform well and are power efficient on a variety of parallel systems. 
Fundamental architecture questions include the types of parallelism (e.g., data or task), how 
units should be organized (e.g., independent cores or co-processors), and how to synchronize 
and communicate.  Solutions may differ depending on the inherent application parallelism and 
constraints on power, performance, or system size. 
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Hardware/Software Co-Design: Current challenges call for integrative research on parallelism 
that spans both software and hardware, from applications and algorithms through systems 
software and hardware. As discussed below, we see a need to break through existing 
abstractions to find novel mechanisms and policies to exploit locality and enable concurrency, 
effectively support synchronization, communication and scheduling, provide platforms that are 
programmable, high-performance, and energy efficient, and invent parallel programming 
models, frameworks, and systems that are truly easy to use. Given the large range of issues, 
we recommend a broad and inclusive research agenda. 

Enabling Specialization for Performance and Energy Efficiency 

For the past two or more decades, general-purpose computers have driven the rapid advances 
in and society’s adoption of computing. Yet the same flexibility that makes general-purpose 
computers applicable to most problems causes them to be energy inefficient for many emerging 
tasks. Special-purpose hardware accelerators, customized to a single or narrow-class of 
functions, can be orders of magnitude more energy-efficient by stripping out the layers of 
mechanisms and abstractions that provide flexibility and generality. But current success stories, 
from medical devices and sensor arrays to graphics processing units (GPUs), are limited to 
accelerating narrow classes of problems. Research is needed to (1) develop architectures that 
exploit both the performance and energy-efficiency of specialization while broadening the class 
of applicable problems and (2) reduce the non-recurring engineering (NRE) costs for software 
and hardware that limit the utility of customized solutions. 

Higher-level Abstractions to Enable Specialization. General-purpose computers can be 
programmed in a range of higher-level languages with sophisticated tool chains that translate to 
fixed ISAs, providing functional and performance portability across a wide range of 
architectures.  Special-purpose accelerators, in contrast, are frequently programmed using 
much lower-level languages that often directly map to hardware (e.g., Verilog), providing limited 
functional or performance portability and high NRE costs for software. As further discussed 
below, research is needed to develop new layers and abstractions that capture enough of a 
computation’s structure to enable efficient creation of or mapping to special-purpose hardware, 
without placing undue burden on the programmer. Such systems will enable rapid development 
of accelerators by reducing or eliminating the need to retarget applications to every new 
hardware platform. 

Energy-Efficient Memory Hierarchies. Memory hierarchies can both improve performance 
and reduce memory system energy demands, but are usually optimized for performance first. 
But fetching the operands for a floating-point multiply-add can consume one to two orders of 
magnitude more energy than performing the operation.11 Moreover, current designs frequently 
either seek to minimize worst-case performance to maximize generality or sacrifice 
programmability to maximize best-case performance. Future memory-systems must seek 
energy efficiency through specialization (e.g., through compression and support for streaming 
data) while simplifying programmability (e.g., by extending coherence and virtual memory to 
accelerators when needed). Such mechanisms have the potential to reduce energy demands 
for a broad range of systems, from always-on smart sensors to data centers processing big 
data. 

Exploiting (Re-)configurable Logic Structures. The increasing complexity of silicon process 
technologies has driven NRE costs to prohibitive levels, making full-custom accelerators 

                                                
11 Steve Keckler, "Life After Dennard and How I Learned to Love the Picojoule,” Keynote at Micro 2011. 
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infeasible for all but the highest-volume applications. Current reconfigurable logic platforms 
(e.g., FPGAs) drive down these fixed costs, but incur undesirable energy and performance 
overheads due to their fine-grain reconfigurability (e.g., lookup tables and switch boxes). 
Research in future accelerators will improve energy efficiency using coarser-grain semi-
programmable building blocks (reducing internal inefficiencies) and packet-based 
interconnection (making more efficient use of expensive wires). Additional efficiencies will come 
from emerging 3D technologies such as silicon interposers, which allow limited customization 
(e.g., top-level interconnect) to configure systems at moderate cost. Such techniques coupled 
with better synthesis tools can reduce NRE costs, thereby enabling rapid development and 
deployment of accelerators in a broad range of critical applications. 
 
The past scaling of processor performance has driven advances both within computing and in 
society at large. Continued scaling of performance will be largely limited by the improvements in 
energy efficiency made possible by reconfigurable and specialized hardware. Research that 
facilitates the design of reconfigurable and special-purpose processors will enable corporations, 
researchers, and governments to quickly and affordably focus enormous computing power on 
critical problems. 

2.3. Technology Impacts on Architecture 
Application demands for improved performance, power and energy efficiency, and reliability 
drive continued investment in technology development. As standard CMOS reaches 
fundamental scaling limits, the search continues for replacement circuit technologies (e.g., 
sub/near-threshold CMOS, QWFETs, TFETs, and QCAs) that have a winning combination of 
density, speed, power consumption, and reliability.   Non-volatile storage (i.e., flash memory) 
has already starting to replace rotating disks in many ICT systems, but comes with its own 
design challenges (e.g., limited write endurance).  Other emerging non-volatile storage 
technologies (e.g., STT-RAM, PCRAM, and memristor) promise to disrupt the current design 
dichotomy between volatile memory and non-volatile, long-term storage.  3D integration uses 
die stacking to permit scaling in a new dimension, but substantial technology and electronic 
design automation (EDA) challenges remain. Photonic interconnects can be exploited among or 
even on chips. 

In addition to existing efforts to develop new ICT technologies (e.g., through NSF’s MRSECs), 
significant architectural advancements—and thus significant investments—are needed to exploit 
these technologies.  

Rethinking the Memory/Storage Stack. Emerging technologies provide new opportunities to 
address the massive online storage and processing requirements of “big data” applications. 
Emerging non-volatile memory technologies promise much greater storage density and power 
efficiency, yet require re-architecting memory and storage systems to address the device 
capabilities (e.g., longer, asymmetric, or variable latency, as well as device wear out).  

Design Automation Challenges.  New technologies drive new designs in circuits, functional 
units, microarchitectures, and systems.  Such new approaches also require investment in new 
EDA tools, particularly for mixed-signal and 3D designs.  New design tools must be tailored to 
the new technologies:  functional synthesis, logic synthesis, layout tools, and so on.  
Furthermore, heterogeneous computing greatly taxes our ability to perform pre-RTL system 
modeling, particularly as the diversity of architectures and accelerators explodes. Hence, new 
verification, analysis and simulation tools will be needed:  tools for verifying correct operation, 
performance, power and energy consumption, reliability (e.g., susceptibility to soft error and 

www.cra.org/ccc



11 

aging effects), and security (avoiding power “footprints,” providing architectural support for 
information flow tracking).   

3D Integration. Die stacking promises lower latency, higher bandwidth, and other benefits, but 
brings many new EDA, design, and technology challenges.  Computer architects have started 
this investigation with the stacking of DRAM memories on top of cores, but future designs will go 
much further to encompass stacking of nonvolatile memories, of custom computational 
components realized with a non-compatible technology, of new interconnection technologies 
(e.g., photonics), of sensors and the analog components that go with them, of RF and other 
analog components, of energy providers and cooling systems (e.g., MEMs energy harvesting 
devices, solar cells, and microfluidic cooling).  To realize the promise of the new technologies 
being developed by nano-materials and nano-structures researchers, further investment is 
needed so that computer architects can turn these nanotechnology circuits into ICT systems. 

2.4. Cross-Cutting Issues and Interfaces 
As computers permeate more aspects of everyday life, making a computer system better means 
much more than being faster or more energy efficient. Applications need architectural support to 
ensure data security and privacy, to tolerate faults from increasingly unreliable transistors, and 
to enhance programmability, verifiability and portability. Achieving these cross-cutting design 
goals—nicknamed the “Ilities”—requires a fundamental rethinking of long-stable interfaces that 
were defined under extremely different application requirements and technological constraints. 

Security, Programmability, Reliability, Verifiability and Beyond.  

Applications increasingly demand a richer set of design “Ilities” at the same time that energy 
constraints make them more expensive to provide. Fortunately, the confluence of new system 
architectures and new technologies creates a rare inflection point, opening the door to allow 
architects to develop fundamentally more energy-efficient support for these design goals. 

Verifiability and Reliability. Ensuring that hardware and software operate reliably is more 
important than ever; for implantable medical devices, it is (literally) vital. At the same time, 
CMOS scaling trends lead to less-reliable circuits and complex, heterogeneous architectures 
threaten to create a “Verification Wall”.  Future system architectures must be designed to 
facilitate hardware and software verification; for example, using co-processors to check end-to-
end software invariants.  Current highly-redundant approaches are not energy efficient; we 
recommend research in lower-overhead approaches that employ dynamic (hardware) checking 
of invariants supplied by software.  In general, we must architect ways of continuously 
monitoring system health—both hardware and software—and applying contingency actions. 
Finally, for mission-critical scenarios (including medical devices), architects must rethink 
designs to allow for failsafe operation. 

Security and Privacy. Architectural support for security dates back decades, to paging, 
segmentation and protection rings.  Recent extensions help to prevent buffer overflow attacks, 
accelerate cryptographic operations, and isolate virtual machines. However, it is time to rethink 
security and privacy from the ground up and define architectural interfaces that enable hardware 
to act as the “root of trust”, efficiently supporting secure services. Such services include 
information flow tracking (reducing side-channel attacks) and efficient enforcement of richer 
information access rules (increasing privacy). Support for tamper-proof memory and copy-
protection are likewise crucial topics.  Finally, since security and privacy are intrinsically 
connected to reliable/correct operation, research in these areas dovetails well. 
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Improving Programmability. Programmability refers to all aspects of producing software that 
reaches targets for performance, power, reliability, and security, with reasonable levels of 
design and maintenance effort. The past decades have largely focused on software engineering 
techniques—such as modularity and information hiding—to improve programmer productivity at 
the expense of performance and power.12 As energy efficiency and other goals become more 
important, we need new techniques that cut across the layers of abstraction to eliminate 
unnecessary inefficiencies.  

Existing efforts to improve programmability, including domain-specific languages, dynamic 
scripting languages, such as Python and Javascript, and others, are pieces of the puzzle.  
Facebook’s HipHop, which dynamically compiles programs written in scripting language, shows 
how efficiency can be reclaimed despite such abstraction layers. In addition to software that 
cuts through abstraction layers,  we recommend cross-cutting research in hardware support to 
improve programmability. Transactional memory (TM) is a recent example that seeks to 
significantly simplify parallelization and synchronization in multithreaded code. TM research has 
spanned all levels of the system stack, and is now entering the commercial mainstream. 
Additional research is required on topics like software debugging, performance bottleneck 
analysis, resource management and profiling, communication management, and so on.   

Managing the interactions between applications also present challenges.  For example, how can 
applications express Quality-of-Service targets and have the underlying hardware, the operating 
system and the virtualization layers work together to ensure them?  Increasing virtualization and 
introspection support requires coordinated resource management across all aspects of the 
hardware and software stack, including computational resources, interconnect, and memory 
bandwidth. 

Crosscutting Interfaces 
Current computer architectures define a set of interfaces that have evolved slowly for several 
decades. These interfaces—e.g., the Instruction Set Architecture and virtual memory—were 
defined when memory was at a premium, power was abundant, software infrastructures were 
limited, and there was little concern for security.  Having stable interfaces has helped foster 
decades of evolutionary architectural innovations. We are now, however, at a technology 
crossroads, and these stable interfaces are a hindrance to many of the innovations discussed in 
this document.  
  
Better Interfaces for High-Level Information. Current ISAs fail to provide an efficient means 
of capturing software-intent or conveying critical high-level information to the hardware. For 
example, they have no way of specifying when a program requires energy efficiency, robust 
security, or a desired Quality of Service (QoS) level. Instead, current hardware must try to glean 
some of this information on its own—such as instruction-level parallelism or repeated branch 
outcome sequences—at great energy expense. New, higher-level interfaces are needed to 
encapsulate and convey programmer and compiler knowledge to the hardware, resulting in 
major efficiency gains and valuable new functionality. 
  
Better Interfaces for Parallelism. Developing and supporting parallel codes is a difficult task. 
Programmers are plagued by synchronization subtleties, deadlocks, arbitrary side effects, load 
imbalance and unpredictable communication, unnecessary non-determinism, confusing memory 
models, and performance opaqueness. We need interfaces that allow the programmer to 
                                                
12 James Larus, Spending Moore’s Dividend, Communications of the ACM, May 2009 5(52). 
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express parallelism at a higher level, expressing localities, computation dependences and side 
effects, and the key sharing and communication patterns. Such an interface could enable 
simpler and more efficient hardware, with efficient communication and synchronization 
primitives that minimize data movement. 
  
Better Interfaces for Abstracting Heterogeneity. Supporting heterogeneous parallelism 
demands new interfaces. From a software perspective, applications must be programmed for 
several different parallelism and memory usage models; and they must be portable across 
different combinations of heterogeneous hardware. From a hardware perspective, we need to 
design specialized compute and memory subsystems. We therefore need hardware interfaces 
that can abstract the key computation and communication elements of these hardware 
possibilities. Such interfaces need to be at a high enough level to serve as a target for portable 
software and at a low-enough level to efficiently translate to a variety of hardware innovations. 
  
Better Interfaces for Orchestrating Communication. Traditional computers and programming 
models have focused heavily on orchestrating computation, but increasingly it is data 
communication that must be orchestrated and optimized. We need interfaces that more clearly 
identify long-term data and program dependence relationships, allowing hardware and software 
schedulers to dynamically identify critical paths through the code.  Without the ability to analyze, 
orchestrate, and optimize communication, one cannot adhere to performance, energy or QoS 
targets. Data management becomes even more complex when considering big-data scenarios 
involving data orchestration between many large systems.  Current systems lack appropriate 
hardware-software abstractions for describing communication relationships. 
  
Better Interfaces for Security and Reliability.  Existing protection and reliability models do not 
address current application needs. We need interfaces to specify fine-grain protection 
boundaries among modules within a single application, to treat security as a first class property, 
and to specify application resilience needs or expectations. Some parts of the application may 
tolerate hardware faults, or may be willing to risk them to operate more power-efficiently. All 
these interfaces can benefit from appropriate hardware mechanisms, such as information-flow 
tracking, invariants generation and checking, transactional recovery blocks, reconfiguration, and 
approximate data types. The result will be significant efficiencies. 

3. Closing 
This white paper surveys the challenges and some promising directions for investment in 
computer architecture research to continue to provide better computer systems as a key enabler 
of the information and communication innovations that are transforming our world.  

 

www.cra.org/ccc



14 

4. About this Document 
This document was created through a distributed process during April and May 2012.  
Collaborative writing was supported by a distributed editor.  We thank the Computing 
Community Consortium13 (CCC), including Erwin Gianchandani and Ed Lazowska, for guidance, 
as well as Jim Larus and Jeannette Wing for valuable feedback. Researchers marked with “*” 
contributed prose while “**” denotes effort coordinator. 

 
Sarita Adve, University of Illinois at Urbana-Champaign * 
David H. Albonesi, Cornell University 
David Brooks, Harvard 
Luis Ceze, University of Washington * 
Sandhya Dwarkadas, University of Rochester 
Joel Emer, Intel/MIT 
Babak Falsafi, EPFL 
Antonio Gonzalez, Intel and UPC 
Mark D. Hill, University of Wisconsin-Madison *,** 
Mary Jane Irwin, Penn State University * 
David Kaeli, Northeastern University * 
Stephen W. Keckler, NVIDIA and The University of Texas at Austin 
Christos Kozyrakis, Stanford University 
Alvin Lebeck, Duke University 
Milo Martin, University of Pennsylvania 
José F. Martínez, Cornell University 
Margaret Martonosi, Princeton University * 
Kunle Olukotun, Stanford University 
Mark Oskin, University of Washington 
Li-Shiuan Peh, M.I.T. 
Milos Prvulovic, Georgia Institute of Technology 
Steven K. Reinhardt, AMD Research 
Michael Schulte, AMD Research and University of Wisconsin-Madison 
Simha Sethumadhavan, Columbia University 
Guri Sohi, University of Wisconsin-Madison 
Daniel Sorin, Duke University 
Josep Torrellas, University of Illinois at Urbana Champaign * 
Thomas F. Wenisch, University of Michigan * 
David Wood, University of Wisconsin-Madison * 
Katherine Yelick, UC Berkeley, Lawrence Berkeley National Laboratory * 

                                                
13 http://www.cra.org/ccc/ 

www.cra.org/ccc



15 

Appendix A. Emerging Application Attributes 
Much evidence suggests that ICT innovation is accelerating with many compelling visions 
moving from science fiction toward reality. Table A.1 below lists some of these visions, which 
include personalized medicine to target care and drugs to an individual, sophisticated social 
network analysis of potential terrorist threats to aid homeland security, and telepresence to 
reduce the greenhouse gases spent on commuting and travel. Furthermore, it is likely that many 
important applications have yet to emerge. How many of us predicted social networking even a 
few years before it became ubiquitous? 
 
While predicted and unpredicted future applications will have varied requirements, it appears 
that many share features that were less common in earlier applications.  Rather than center on 
the desktop, today the centers of innovation lie in sensors, smartphones/tablets, and the data-
centers to which they connect.  Emerging applications share challenging attributes, many of 
which arise because the applications produce data faster than can be processed within current, 
limited capabilities (in terms of performance, power, reliability, or their combination). Table A.2 
lists some of these attributes, which include processing of vast data sets, using distributed 
designs, working within form-factor constraints, and reconciling rapid deployment with efficient 
operation. 

Table A.1: Example Emerging Applications  
Data-centric Personalized Healthcare - Future health systems will monitor our health 24/7, employing 
implantable, wearable, and ambient smart sensors. Local on-sensor analysis can improve functionality 
and reduce device power by reducing communication, while remote (i.e., cloud-based) systems can 
aggregate across time and patient populations.  Such systems will allow us to query our own health data 
while enabling medical providers to continuously monitor patients and devise personalized therapies. 
New challenges will emerge in devising computing fabrics that meet performance, power, and energy 
constraints, in devising appropriate divisions between on-device and in-cloud functionality, as well as 
protecting this distributed medical information in the cloud. 

Computation-driven Scientific Discovery - Today’s advanced computational and visualization 
capabilities are increasingly enabling scientists and engineers to carry out simulation-driven 
experimentation and mine enormous data sets as the primary drivers of scientific discovery. Key areas 
that have already begun to leverage these advances are bio-simulation, proteomics, nanomaterials, and 
high-energy physics.  Just as the scientific research community begins to leverage real data, issues with 
security and reproducibility become critical challenges. 

Human Network Analytics - Given the advances in the Internet and personal communication 
technologies, individuals are interacting in new ways that few envisioned ten years ago.  Human 
interaction through these technologies has generated significant volumes of data that can allow us to 
identify behaviors and new classes of connections between individuals.  Advances in Network Science 
and Machine Learning have greatly outpaced the ability of computational platforms to effectively analyze 
these massive data sets. Efficient human network analysis can have a significant impact on a range of 
key application areas including Homeland Security, Financial Markets, and Global Health. 

Many More - In addition to these three examples, numerous problems in the fields of personalized 
learning, telepresence, transportation, urban infrastructure, machine perception/inference and enhanced 
virtual reality are all pushing the limits of today’s computational infrastructure.  The computational 
demands of these problem domains span a wide range of form factors and architectures including 
embedded sensors, hand-held devices and entire data centers.   
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Table A.2: Attributes of Emerging Applications  

The three example applications in Table A.1 share at least four key attributes that present barriers that 
require additional research to overcome. 

Big Data - With the ubiquity of continuous data streams from embedded sensors and the voluminous 
multimedia content from new communication technologies, we are in the midst of a digital information 
explosion.  Processing this data for health, commerce and other purposes requires efficient balancing 
between computation, communication, and storage.  Providing sufficient on-sensor capability to filter and 
process data where it is generated/collected (e.g., distinguishing a nominal biometric signal from an 
anomaly), can be most energy-efficient, because the energy required for communication can dominate 
that for computation. Many streams produce data so rapidly that it is cost-prohibitive to store, and must be 
processed immediately. In other cases, environmental constraints and the need to aggregate data 
between sources impacts where we carry out these tasks.  The rich tradeoffs motivate the need for hybrid 
architectures that can efficiently reduce data transfer while conserving energy. 

Always Online - To protect our borders, our environments and ourselves, computational resources must 
be both available and ready to provide services efficiently.  This level of availability places considerable 
demands on the underlying hardware and software to provide reliability, security and self-managing 
features not present on most systems.  While current mainframes and medical devices strive for five 9’s 
or 99.999% availability (all but five minutes per year), achieving this goal can cost millions of dollars.  
Tomorrow’s solutions demand this same availability at the many levels, some where the cost is only a few 
dollars. 

Secure and Private - As we increase our dependence on data, we grow more dependent on balancing 
computational performance with providing for available, private, and secure transactions.  Information 
security is a national priority, and our computational systems are presently highly vulnerable to attacks. 
Cyber warfare is no longer a hypothetical, and numerous attacks across the Internet on government 
websites have already been deployed. New classes of hardware systems, architectures, firmware and 
operating systems are required to provide for the secure delivery of distributed information for the range 
of applications described above. 
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