
1

21st Century Computer Architecture
A community white paper

May 25, 2012

1. Introduction and Summary
Information and communication technology (ICT) is transforming our world, including
healthcare, education, science, commerce, government, defense, and entertainment. It is hard
to remember that 20 years ago the first step in information search involved a trip to the library,
10 years ago social networks were mostly physical, and 5 years ago “tweets” came from
cartoon characters.

Importantly, much evidence suggests that ICT innovation is accelerating with many compelling
visions moving from science fiction toward reality1. Appendix A both touches upon these visions
and seeks to distill their attributes. Future visions include personalized medicine to target care
and drugs to an individual, sophisticated social network analysis of potential terrorist threats to
aid homeland security, and telepresence to reduce the greenhouse gases spent on commuting.
Future applications will increasingly require processing on large, heterogeneous data sets (“Big
Data”2), using distributed designs, working within form-factor constraints, and reconciling rapid
deployment with efficient operation.

Two key—but often invisible—enablers for past ICT innovation have been semiconductor
technology and computer architecture. Semiconductor innovation has repeatedly provided more
transistors (Moore’s Law) for roughly constant power and cost per chip (Dennard Scaling).
Computer architects took these rapid transistor budget increases and discovered innovative
techniques to scale processor performance and mitigate memory system losses. The combined
effect of technology and architecture has provided ICT innovators with exponential performance
growth at near constant cost.

Because most technology and computer architecture innovations were (intentionally) invisible to
higher layers, application and other software developers could reap the benefits of this progress
without engaging in it. Higher performance has both made more computationally demanding
applications feasible (e.g., virtual assistants, computer vision) and made less demanding
applications easier to develop by enabling higher-level programming abstractions (e.g., scripting
languages and reusable components). Improvements in computer system cost-effectiveness
enabled value creation that could never have been imagined by the field’s founders (e.g.,
distributed web search sufficiently inexpensive so as to be covered by advertising links).

1 PCAST, “Designing a Digital Future: Federally Funded Research and Development Networking and Information
Technology, Dec. 2010 (http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf).
2 CCC, “Challenges and Opportunities with Big Data," Feb. 2012 (http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf).

www.cra.org/ccc

2

The wide benefits of computer performance growth are clear. Recently, Danowitz et al.3
apportioned computer performance growth roughly equally between technology and
architecture, with architecture credited with ~80× improvement since 1985. As semiconductor
technology approaches its “end-of-the-road” (see below), computer architecture will need to play
an increasing role in enabling future ICT innovation. But instead of asking, “How can I make my
chip run faster?,” architects must now ask, “How can I enable the 21st century infrastructure,
from sensors to clouds, adding value from performance to privacy, but without the
benefit of near-perfect technology scaling?”. The challenges are many, but with appropriate
investment, opportunities abound. Underlying these opportunities is a common theme that
future architecture innovations will require the engagement of and investments from innovators
in other ICT layers.

1.1 The Challenges: An Inflection Point
The semiconductor technology enabler to ICT is facing serious challenges that are outlined in
Table 1 below. First, although technologists can make more and smaller transistors (Moore’s
Law), these transistors are not altogether “better” as has been true for four decades. Second,
the power per transistor is no longer scaling well (Dennard Scaling has ended). Since most
products—sensors, mobile, client, and data center—cannot tolerate (repeated) power
increases, we must consider ways to mitigate these increases. Third, fabrication variations of
nano-scale features (e.g., gate oxides only atoms thick) reduce transistors’ long-term reliability
significantly compared to larger feature sizes. Fourth, communication among computation
elements must be managed through locality to achieve goals at acceptable cost and energy with
new opportunities (e.g., chip stacking) and new challenges (e.g., data centers). Fifth, one-time
costs to design, verify, fabricate, and test are growing, making them harder to amortize,
especially when seeking high efficiency through platform specialization (e.g., handhelds,
laptops, or servers).

Table 1: Technology's Challenges to Computer Architecture
Late 20th Century The New Reality

Moore’s Law — 2× transistors/chip every
18-24 months

Transistor count still 2× every 18-24 months,
but see below

Dennard Scaling — near-constant
power/chip

Gone. Not viable for power/chip to double (with 2×
transistors/chip growth)

The modest levels of transistor
unreliability easily hidden (e.g., via ECC)

Transistor reliability worsening, no longer easy to hide

Focus on computation over
communication

Restricted inter-chip, inter-device, inter-machine
communication (e.g. Rent's Rule, 3G, GigE);
communication more expensive than computation

One-time (non-recurring engineering)
costs growing, but amortizable for mass-
market parts

Expensive to design, verify, fabricate, and test, especially
for specialized-market platforms

3 Danowitz, et al., “CPU DB: Recording Microprocessor History”, CACM 04/2012.

www.cra.org/ccc

3

1.2 The Opportunities: 21st Century Computer Architecture
With CMOS technology scaling weakening as an enabler of ICT innovation, computer architects
must step up their role even further. 21st century computer architecture, however, needs to be
different from its 20th century predecessor to embrace this new role. We see three fundamental
differences, highlighted in Table 2 below. These differences form the basis of the future
research agenda described in Section 2.

Table 2: Computer Architecture’s Past and Future
20th Century Architecture 21st Century Architecture

Single-chip performance Architecture as infrastructure:

from sensors to clouds
● Chips to systems
● Performance plus security, privacy,

availability, programmability, …

Cross-cutting

implication:

Break current
layers with new
interfaces

Performance through software-
invisible instruction level parallelism
(ILP)

Energy first
● Parallelism
● Specialization
● Cross-layer design

Tried and tested technologies:
CMOS, DRAM, disks with rapid but
predictable improvements

New technologies: non-volatile memory,
near-threshold voltage operation, 3D chips,
photonics, …
Rethink

● Memory+storage
● Reliability
● Communication
● …

Architecture as Infrastructure: From Sensors to Clouds: Past architecture research often
focused on a chip (microprocessor) or stand-alone computer with performance as its main
optimization goal. Moving forward, computers will be a key pillar of the 21st century societal
infrastructure. To address this change, computer architecture research must expand to
recognize that generic computers have been replaced by computation in context (e.g., sensor,
mobile, client, data center) and many computer systems are large and geographically
distributed.4 This shift requires more emphasis on the system (e.g., communication becomes a
full-fledged partner of computation), the driver application (e.g., dealing with big data), and
human-centric design goals beyond performance (e.g., programmability, privacy, security,
availability, battery life, form factor).

Energy First: Past computer architecture optimized performance, largely through software
invisible changes. 21st century architecture confronts power and energy as the dominant
constraints, and can no longer sustain the luxury of software invisible innovation. We see
parallelism, specialization, and cross-layer design as key principles in an energy-first era, but all
three require addressing significant challenges. For example, while parallelism will abound in
future applications (big data = big parallelism), communication energy will outgrow computation

4 Luiz André Barroso and Urs Hölzle, “The Datacenter as a Computer”, Morgan-Claypool, 2009

www.cra.org/ccc

4

energy and will require rethinking how we design for 1,000-way parallelism. Specialization can
give 100× higher energy efficiency than a general-purpose compute or memory unit, but no
known solutions exist today for harnessing its benefits for broad classes of applications cost-
effectively. Cross-layer design (from circuit to architecture to run-time system to compiler to
application) can wring out waste in the different layers for energy efficiency, but needs a far
more concerted effort among many layers to be practical.

New Technologies: Past computer architecture has relied on the predictable performance
improvements of stable technologies such as CMOS, DRAM, and disks. For the first time in the
careers of many ICT professionals, new technologies are emerging to challenge the dominance
of the “tried-and-tested,” but sorely need architectural innovation to realize their full potential.
For example, non-volatile memory technologies (e.g., Flash and phase change memory) drive a
rethinking of the relationship between memory and storage. Near-threshold voltage operation
has tremendous potential to reduce power but at the cost of reliability, driving a new discipline of
resiliency-centered design. Photonics and 3D chip stacking change communication costs
radically enough to affect the entire system design.

Underlying all of the above is a cross-cutting theme of innovations that are exposed to and
require interaction with other ICT layers. This change is dramatic in that it will impact ICT
innovators in other layers, similar to, but potentially greater than, the recent shift to multicore
processors. Collaboration with other-layer innovators will empower architects to make bolder
innovations with commensurate benefits, but it will also require significant investment and strong
leadership to provide the richer inter-layer interfaces necessary for the 21st century.

2. Research Directions
This section discusses important research directions for computer architecture and related
communities, but begins with two comments. First, the ideas below represent good ideas from
those who contributed to this document and complement other recent documents.5 6 7 They do
not represent an exhaustive list nor a consensus opinion of the whole community, which are
infeasible to gather in the process of creating this white paper.

Second, if we have been convincing that the directions presented have value to society, there is
a need for pre-competitive research funding to develop them. Even highly-successful computer
companies lack the incentive to do this work for several reasons. First, the technologies
required will take years to a decade to develop. Few companies have such staying power.
Second, successful work will benefit many companies, disincentivizing any one to pay for it.
Third, many of the approaches we advocate cross layers of the system stack, transcending
industry-standard interfaces (e.g., x86) and the expertise of individual companies. Finally, we
need to educate the next generation of technical contributors, which is perhaps academia’s
most important form of technology transfer.

5 ACAR-1, "Failure is not an Option: Popular Parallel Programming," Workshop on Advancing Computer
Architecture Research, August 2010 (http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf).
6 ACAR-2, "Laying a New Foundation for IT: Computer Architecture for 2025 and Beyond," Workshop on Advancing
Computer Architecture Research, September 2010 (http://www.cra.org/ccc/docs/ACAR2-Report.pdf).
7 Fuller and Millett, "The Future of Computing Performance: Game Over or Next Level?," The National Academy
Press, 2011 (http://books.nap.edu/openbook.php?record_id=12980&page=R1).

www.cra.org/ccc

http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR_Report_Popular-Parallel-Programming.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://www.cra.org/ccc/docs/ACAR2-Report.pdf
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1
http://books.nap.edu/openbook.php?record_id=12980&page=R1

5

2.1. Architecture as Infrastructure: Spanning Sensors to Clouds
Until recently, computer systems were largely beige boxes nestled under a desk or hidden in a
machine room, and computer architecture research focused primarily on the design of desktop,
workstation and server CPUs. The new reality of 21st-century applications calls for a broader
computer architecture agenda beyond the beige box. The emerging applications described in
Appendix A demand a rich ecosystem that enables ubiquitous embedded sensing/compute
devices that feed data to “cloud servers” and warehouse-scale facilities, which can process and
supply information to edge devices, such as tablets and smartphones. Each class of computing
device represents a unique computing environment with a specific set of challenges and
opportunities, yet all three share a driving need for improved energy efficiency (performance per
watt) as an engine for innovation. Moreover, future architecture research must go beyond
optimizing devices in isolation, and embrace the challenges of cross-environment co-design to
address the needs of emerging applications.

Smart Sensing and Computing. In the smart sensors space, the central requirement is to
compute within very tight energy, form-factor, and cost constraints. The need for greater
computational capability is driven by the importance of filtering and processing data where it is
generated/collected (e.g., distinguishing a nominal biometric signal from an anomaly), because
the energy required to communicate data often outweighs that of computation. This environment
brings exciting new opportunities like designing systems that can leverage intermittent power
(e.g., from harvested energy), extreme low-voltage (near-threshold and analog) design, new
communication modalities (e.g., broadcast communication from building lighting), and new
storage technologies (e.g., NVRAM). As sensors become critical to health and safety, their
security and reliability must also be assured (e.g., consider recent demonstrations of remote
hacking of pacemakers), including design correctness of hardware and software components.
Additionally, given that sensor data is inherently approximate, it opens the potential to effectively
apply approximate computing techniques, which can lead to significant energy savings (and
complexity reduction).

Portable Edge Devices. The portable computing market has seen explosive growth, with
smartphone sales recently eclipsing the PC market.8 And yet, current devices still fall far short
of the futuristic capabilities society has envisioned, from the augmented reality recently
suggested by “Google Glasses,” to the medical tricorder posited by Star Trek nearly 50 years
ago and recently resurrected in the form of an X Prize challenge competition9. Enriching
applications in this environment will need orders of magnitude improvement in operations/watt
(from today’s ~10 giga-operations/watt), since user interfaces seem to have a significant
appetite for computation (e.g., multi-touch interfaces, voice recognition, graphics, holography,
and 3D environment reconstruction) and even mobile applications are becoming data and
compute intensive. As discussed in later sections, such systems clearly need both parallelism
and specialization (the latest generation iPad’s key chip has multiple cores and dedicates half of
its chip area for specialized units). Given the proximity with the user, such devices motivate
ideas that bring human factors to computer design, such as using user feedback to adjust
voltage/frequency to save energy, focusing computation on where the user is looking, reducing
the image to salient features only, or predicting and prefetching for what the user is likely to do.
This environment also motivates features beyond raw performance, such as security/privacy.

8 e.g., http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/ and
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
9 http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize

www.cra.org/ccc

http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/,
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize
http://www.xprize.org/x-prize-and-qualcomm-announce-10-million-tricorder-prize

6

The Infrastructure—Cloud Servers. Many of the most exciting emerging applications, such as
simulation-driven drug discovery, or interactive analysis of massive human networks, can only
be achieved with reasonable response times through the combined efforts of tens of thousands
of processors acting as a single warehouse-scale computer. Internet search has demonstrated
the societal importance of this computing paradigm. However, today’s production search
systems require massive engineering effort to create, program, and maintain, and they only
scratch the surface of what might be possible (e.g., consider the potential of IBM’s Watson).
Systems architects must devise programming abstractions, storage systems, middleware,
operating system, and virtualization layers to make it possible for conventionally trained
software engineers to program warehouse-scale computers.

While many computing disciplines—operating systems, networking, and others—play a role in
data center innovations, it is crucial for computer architects to consider the interface designs
and hardware support that can best enable higher-level innovations. In addition, a key
challenge lies in reasoning about locality and enforcing efficient locality properties in data center
systems, a burden which coordination of smart tools, middleware and the architecture might
alleviate. A further challenge lies in making performance predictable; as requests are
parallelized over more systems, infrequent tail latencies become performance critical (if 100
systems must jointly respond to a request, 63% of requests will incur the 99-percentile delay of
the individual systems due to waiting for stragglers10); architectural innovations can guarantee
strict worst-case latency requirements. Memory and storage systems consume an increasing
fraction of the total data center power budget, which one might combat with new interfaces
(beyond the JEDEC standards), novel storage technologies, and 3D stacking of processors and
memories.

Putting It All Together—Eco-System Architecture. There is a need for runtime platforms and
virtualization tools that allow programs to divide effort between the portable platform and the
cloud while responding dynamically to changes in the reliability and energy efficiency of the
cloud uplink. How should computation be split between the nodes and cloud infrastructure? How
can security properties be enforced efficiently across all environments? How can system
architecture help preserve privacy by giving users more control over their data? Should we co-
design compute engines and memory systems?

The research directions outlined above will push architecture research far beyond the beige
box. The basic research challenges that relate all of these opportunities are improving energy
efficiency dramatically and embracing new requirements such as programmability, security,
privacy and resiliency from the ground up. Given the momentum in other areas (e.g., HCI,
machine learning, and ubiquitous computing) now is the moment to explore them. Success will
require significant investment in academic research because of the need for community-scale
effort and significant infrastructure. While mobile and data centers are relatively new to the
menagerie of computing devices, the research challenges we discuss will likely also apply to
other devices yet to emerge.

2.2. Energy First
The shift from sequential to parallel (multicore) systems has helped increase performance while
keeping the power dissipated per chip largely constant. Yet many current parallel computing
systems are already power or energy constrained. At one extreme, high-end supercomputers
and data centers require expensive many-megawatt power budgets; at the other, high-

10 J. Dean. “Achieving Rapid Response Times in Large Online Services.” Talk in Berkeley, CA, Mar. 2012.

www.cra.org/ccc

7

functionality sensors and portable devices are often limited by their battery’s energy capacity.
Portable and sensor devices typically require high performance for short periods followed by
relatively long idle periods. Such bimodal usage is not typical in high-end servers, which are
rarely completely idle and seldom need to operate at their maximum rate. Thus, power and
energy solutions in the server space are likely to differ from those that work best in the portable
device space. However, as we demand more from our computing systems—both servers and
sensors—more of them will be limited by power, energy, and thermal constraints. Without new
approaches to power- and energy-efficient designs and new packaging and cooling approaches,
producing ICT systems capable of meeting the computing, storage and communication
demands of the emerging applications described in Appendix A will likely be impossible. It is
therefore urgent to invest in research to make computer systems much more energy efficient.

As the next subsections describe, energy must be reduced by attacking it across many layers,
rethinking parallelism, and with effective use of specialization.

Energy Across the Layers

Electronic devices consume energy as they do work (and, in the case of CMOS, just by being
powered on). Consequently, all of the layers of the computing stack play a role to improve
energy and power efficiency: device technologies, architectures, software systems (including
compilers), and applications. Therefore, we believe that a major interdisciplinary research effort
will be needed to substantially improve ICT system energy efficiency. We suggest as a goal to
improve the energy efficiency of computers by two-to-three orders of magnitude, to obtain, by
the end of this decade, an exa-op data center that consumes no more than 10 megawatts
(MW), a peta-op departmental server that consumes no more than 10 kilowatts (KW), a tera-op
portable device that consumes no more than 10 watts (W), and a giga-op sensor system that
consumes no more than 10 milliwatts (mW). Such an ambitious plan can only be attained with
aggressive changes in all layers of the computing stack.

At the Circuit/Technology Level, we need research in new devices that are fundamentally
more energy efficient, both in CMOS and in emerging device technologies. Research is also
needed on new technologies that can improve the energy efficiency of certain functions, such as
photonics for communication, 3D-stacking for integration, non-resistive memories for storage,
and efficient voltage conversion. Novel circuit designs are also needed: circuits that work at
ultra-low supply voltages, circuits that carry out efficient power distribution, circuits that perform
aggressive power management, and circuits that are able to support multiple voltage and
frequency domains on chip.

At the Architecture Level, we need to find more efficient, streamlined many-core architectures.
We need chip organizations that are structured in heterogeneous clusters, with simple
computational cores and custom, high-performance functional units that work together in
concert. We need research on how to minimize communication, since energy is largely spent
moving data. Especially in portable and sensor systems, it is often worth doing the computation
locally to reduce the energy-expensive communication load. As a result, we also need more
research on synchronization support, energy-efficient communication, and in-place computation.

At the Software Level, we need research that minimizes unnecessary communication. We
require runtimes that manage the memory hierarchy and orchestrate fine-grain multitasking. We
also need research on compilation systems and tools that manage and enhance locality. At the
programming-model level, we need environments that allow expert programmers to exercise full
machine control, while presenting a simple model of localities to low-skilled programmers. At the

www.cra.org/ccc

8

application level, we need algorithmic approaches that are energy-efficient via reduced
operation count, precision, memory accesses, and interprocessor communication, and that can
take advantage of heterogeneous systems. At the compiler level, we need to find ways to trade
off power efficiency and performance, while also considering the reliability of the resulting
binary. Overall, it is only through a fully-integrated effort that cuts across all layers that we can
make revolutionary progress.

Exploiting Parallelism to Enable Future Applications
Throughout the 20th century, the growth in computing performance was driven primarily by
single-processor improvements. But by 2004, diminishing returns from faster clock speeds and
increased transistor counts resulted in serious power (and related thermal) problems. By shifting
to multiple cores per chip, our industry continued to improve aggregate performance and
performance per watt. But just replicating cores does not adequately address the energy and
scaling challenges on chip, nor does it take advantage of the unique features and constraints of
being on chip. Future growth in computer performance must come from massive on-chip
parallelism with simpler, low-power cores, architected to match the kinds of fine-grained
parallelism available in emerging applications.

Unfortunately, we are far from making parallel architectures and programming usable for the
large majority of users. Much of the prior research has focused on coarse-grained parallelism
using standard processor cores as the building block. Placing massive parallelism on a single
chip offers new opportunities for parallel architecture and associated programming techniques.
To unlock the potential of parallel computing in a widely-applicable form, we may need at least a
decade of concerted, broad-based research to address emerging application problems at all
levels of parallelism. To ensure that computing performance growth will continue to fuel new
innovations, and given the magnitude of the technical challenges and the stakes involved, we
need major funding investments in this area.

Reinventing Computing Stack for Parallelism: We recommend an ambitious, interdisciplinary
effort to re-invent the classical computing stack for parallelism—programming language,
compiler and programming tools, runtime, virtual machine, operating system, and architecture.
Along with performance goals, energy considerations must be a first-class design constraint to
forge a viable path to scalable future systems. The current layers have been optimized for uni-
processor systems and act as barriers to change. Since a single, universal programming model
may not exist, we recommend exploring multiple models and architectures. Moreover, different
solutions are clearly needed for experts, who may interact with the innards of the machine, and
the large majority of programmers, who should use simple, sequential-like models perhaps
enabled by domain-specific languages.

Applications-Focused Architecture Research: We recommend an application-focused
approach to parallel architecture research, starting from chips with few to potentially hundreds of
cores, to distributed systems, networking structures at different scales, parallel memory
systems, and I/O solutions. The challenge is to consider application characteristics, but without
overfitting to particular specifics; we must leverage mechanisms (including programming
languages) that will perform well and are power efficient on a variety of parallel systems.
Fundamental architecture questions include the types of parallelism (e.g., data or task), how
units should be organized (e.g., independent cores or co-processors), and how to synchronize
and communicate. Solutions may differ depending on the inherent application parallelism and
constraints on power, performance, or system size.

www.cra.org/ccc

9

Hardware/Software Co-Design: Current challenges call for integrative research on parallelism
that spans both software and hardware, from applications and algorithms through systems
software and hardware. As discussed below, we see a need to break through existing
abstractions to find novel mechanisms and policies to exploit locality and enable concurrency,
effectively support synchronization, communication and scheduling, provide platforms that are
programmable, high-performance, and energy efficient, and invent parallel programming
models, frameworks, and systems that are truly easy to use. Given the large range of issues,
we recommend a broad and inclusive research agenda.

Enabling Specialization for Performance and Energy Efficiency

For the past two or more decades, general-purpose computers have driven the rapid advances
in and society’s adoption of computing. Yet the same flexibility that makes general-purpose
computers applicable to most problems causes them to be energy inefficient for many emerging
tasks. Special-purpose hardware accelerators, customized to a single or narrow-class of
functions, can be orders of magnitude more energy-efficient by stripping out the layers of
mechanisms and abstractions that provide flexibility and generality. But current success stories,
from medical devices and sensor arrays to graphics processing units (GPUs), are limited to
accelerating narrow classes of problems. Research is needed to (1) develop architectures that
exploit both the performance and energy-efficiency of specialization while broadening the class
of applicable problems and (2) reduce the non-recurring engineering (NRE) costs for software
and hardware that limit the utility of customized solutions.

Higher-level Abstractions to Enable Specialization. General-purpose computers can be
programmed in a range of higher-level languages with sophisticated tool chains that translate to
fixed ISAs, providing functional and performance portability across a wide range of
architectures. Special-purpose accelerators, in contrast, are frequently programmed using
much lower-level languages that often directly map to hardware (e.g., Verilog), providing limited
functional or performance portability and high NRE costs for software. As further discussed
below, research is needed to develop new layers and abstractions that capture enough of a
computation’s structure to enable efficient creation of or mapping to special-purpose hardware,
without placing undue burden on the programmer. Such systems will enable rapid development
of accelerators by reducing or eliminating the need to retarget applications to every new
hardware platform.

Energy-Efficient Memory Hierarchies. Memory hierarchies can both improve performance
and reduce memory system energy demands, but are usually optimized for performance first.
But fetching the operands for a floating-point multiply-add can consume one to two orders of
magnitude more energy than performing the operation.11 Moreover, current designs frequently
either seek to minimize worst-case performance to maximize generality or sacrifice
programmability to maximize best-case performance. Future memory-systems must seek
energy efficiency through specialization (e.g., through compression and support for streaming
data) while simplifying programmability (e.g., by extending coherence and virtual memory to
accelerators when needed). Such mechanisms have the potential to reduce energy demands
for a broad range of systems, from always-on smart sensors to data centers processing big
data.

Exploiting (Re-)configurable Logic Structures. The increasing complexity of silicon process
technologies has driven NRE costs to prohibitive levels, making full-custom accelerators

11 Steve Keckler, "Life After Dennard and How I Learned to Love the Picojoule,” Keynote at Micro 2011.

www.cra.org/ccc

10

infeasible for all but the highest-volume applications. Current reconfigurable logic platforms
(e.g., FPGAs) drive down these fixed costs, but incur undesirable energy and performance
overheads due to their fine-grain reconfigurability (e.g., lookup tables and switch boxes).
Research in future accelerators will improve energy efficiency using coarser-grain semi-
programmable building blocks (reducing internal inefficiencies) and packet-based
interconnection (making more efficient use of expensive wires). Additional efficiencies will come
from emerging 3D technologies such as silicon interposers, which allow limited customization
(e.g., top-level interconnect) to configure systems at moderate cost. Such techniques coupled
with better synthesis tools can reduce NRE costs, thereby enabling rapid development and
deployment of accelerators in a broad range of critical applications.

The past scaling of processor performance has driven advances both within computing and in
society at large. Continued scaling of performance will be largely limited by the improvements in
energy efficiency made possible by reconfigurable and specialized hardware. Research that
facilitates the design of reconfigurable and special-purpose processors will enable corporations,
researchers, and governments to quickly and affordably focus enormous computing power on
critical problems.

2.3. Technology Impacts on Architecture
Application demands for improved performance, power and energy efficiency, and reliability
drive continued investment in technology development. As standard CMOS reaches
fundamental scaling limits, the search continues for replacement circuit technologies (e.g.,
sub/near-threshold CMOS, QWFETs, TFETs, and QCAs) that have a winning combination of
density, speed, power consumption, and reliability. Non-volatile storage (i.e., flash memory)
has already starting to replace rotating disks in many ICT systems, but comes with its own
design challenges (e.g., limited write endurance). Other emerging non-volatile storage
technologies (e.g., STT-RAM, PCRAM, and memristor) promise to disrupt the current design
dichotomy between volatile memory and non-volatile, long-term storage. 3D integration uses
die stacking to permit scaling in a new dimension, but substantial technology and electronic
design automation (EDA) challenges remain. Photonic interconnects can be exploited among or
even on chips.

In addition to existing efforts to develop new ICT technologies (e.g., through NSF’s MRSECs),
significant architectural advancements—and thus significant investments—are needed to exploit
these technologies.

Rethinking the Memory/Storage Stack. Emerging technologies provide new opportunities to
address the massive online storage and processing requirements of “big data” applications.
Emerging non-volatile memory technologies promise much greater storage density and power
efficiency, yet require re-architecting memory and storage systems to address the device
capabilities (e.g., longer, asymmetric, or variable latency, as well as device wear out).

Design Automation Challenges. New technologies drive new designs in circuits, functional
units, microarchitectures, and systems. Such new approaches also require investment in new
EDA tools, particularly for mixed-signal and 3D designs. New design tools must be tailored to
the new technologies: functional synthesis, logic synthesis, layout tools, and so on.
Furthermore, heterogeneous computing greatly taxes our ability to perform pre-RTL system
modeling, particularly as the diversity of architectures and accelerators explodes. Hence, new
verification, analysis and simulation tools will be needed: tools for verifying correct operation,
performance, power and energy consumption, reliability (e.g., susceptibility to soft error and

www.cra.org/ccc

11

aging effects), and security (avoiding power “footprints,” providing architectural support for
information flow tracking).

3D Integration. Die stacking promises lower latency, higher bandwidth, and other benefits, but
brings many new EDA, design, and technology challenges. Computer architects have started
this investigation with the stacking of DRAM memories on top of cores, but future designs will go
much further to encompass stacking of nonvolatile memories, of custom computational
components realized with a non-compatible technology, of new interconnection technologies
(e.g., photonics), of sensors and the analog components that go with them, of RF and other
analog components, of energy providers and cooling systems (e.g., MEMs energy harvesting
devices, solar cells, and microfluidic cooling). To realize the promise of the new technologies
being developed by nano-materials and nano-structures researchers, further investment is
needed so that computer architects can turn these nanotechnology circuits into ICT systems.

2.4. Cross-Cutting Issues and Interfaces
As computers permeate more aspects of everyday life, making a computer system better means
much more than being faster or more energy efficient. Applications need architectural support to
ensure data security and privacy, to tolerate faults from increasingly unreliable transistors, and
to enhance programmability, verifiability and portability. Achieving these cross-cutting design
goals—nicknamed the “Ilities”—requires a fundamental rethinking of long-stable interfaces that
were defined under extremely different application requirements and technological constraints.

Security, Programmability, Reliability, Verifiability and Beyond.

Applications increasingly demand a richer set of design “Ilities” at the same time that energy
constraints make them more expensive to provide. Fortunately, the confluence of new system
architectures and new technologies creates a rare inflection point, opening the door to allow
architects to develop fundamentally more energy-efficient support for these design goals.

Verifiability and Reliability. Ensuring that hardware and software operate reliably is more
important than ever; for implantable medical devices, it is (literally) vital. At the same time,
CMOS scaling trends lead to less-reliable circuits and complex, heterogeneous architectures
threaten to create a “Verification Wall”. Future system architectures must be designed to
facilitate hardware and software verification; for example, using co-processors to check end-to-
end software invariants. Current highly-redundant approaches are not energy efficient; we
recommend research in lower-overhead approaches that employ dynamic (hardware) checking
of invariants supplied by software. In general, we must architect ways of continuously
monitoring system health—both hardware and software—and applying contingency actions.
Finally, for mission-critical scenarios (including medical devices), architects must rethink
designs to allow for failsafe operation.

Security and Privacy. Architectural support for security dates back decades, to paging,
segmentation and protection rings. Recent extensions help to prevent buffer overflow attacks,
accelerate cryptographic operations, and isolate virtual machines. However, it is time to rethink
security and privacy from the ground up and define architectural interfaces that enable hardware
to act as the “root of trust”, efficiently supporting secure services. Such services include
information flow tracking (reducing side-channel attacks) and efficient enforcement of richer
information access rules (increasing privacy). Support for tamper-proof memory and copy-
protection are likewise crucial topics. Finally, since security and privacy are intrinsically
connected to reliable/correct operation, research in these areas dovetails well.

www.cra.org/ccc

12

Improving Programmability. Programmability refers to all aspects of producing software that
reaches targets for performance, power, reliability, and security, with reasonable levels of
design and maintenance effort. The past decades have largely focused on software engineering
techniques—such as modularity and information hiding—to improve programmer productivity at
the expense of performance and power.12 As energy efficiency and other goals become more
important, we need new techniques that cut across the layers of abstraction to eliminate
unnecessary inefficiencies.

Existing efforts to improve programmability, including domain-specific languages, dynamic
scripting languages, such as Python and Javascript, and others, are pieces of the puzzle.
Facebook’s HipHop, which dynamically compiles programs written in scripting language, shows
how efficiency can be reclaimed despite such abstraction layers. In addition to software that
cuts through abstraction layers, we recommend cross-cutting research in hardware support to
improve programmability. Transactional memory (TM) is a recent example that seeks to
significantly simplify parallelization and synchronization in multithreaded code. TM research has
spanned all levels of the system stack, and is now entering the commercial mainstream.
Additional research is required on topics like software debugging, performance bottleneck
analysis, resource management and profiling, communication management, and so on.

Managing the interactions between applications also present challenges. For example, how can
applications express Quality-of-Service targets and have the underlying hardware, the operating
system and the virtualization layers work together to ensure them? Increasing virtualization and
introspection support requires coordinated resource management across all aspects of the
hardware and software stack, including computational resources, interconnect, and memory
bandwidth.

Crosscutting Interfaces
Current computer architectures define a set of interfaces that have evolved slowly for several
decades. These interfaces—e.g., the Instruction Set Architecture and virtual memory—were
defined when memory was at a premium, power was abundant, software infrastructures were
limited, and there was little concern for security. Having stable interfaces has helped foster
decades of evolutionary architectural innovations. We are now, however, at a technology
crossroads, and these stable interfaces are a hindrance to many of the innovations discussed in
this document.

Better Interfaces for High-Level Information. Current ISAs fail to provide an efficient means
of capturing software-intent or conveying critical high-level information to the hardware. For
example, they have no way of specifying when a program requires energy efficiency, robust
security, or a desired Quality of Service (QoS) level. Instead, current hardware must try to glean
some of this information on its own—such as instruction-level parallelism or repeated branch
outcome sequences—at great energy expense. New, higher-level interfaces are needed to
encapsulate and convey programmer and compiler knowledge to the hardware, resulting in
major efficiency gains and valuable new functionality.

Better Interfaces for Parallelism. Developing and supporting parallel codes is a difficult task.
Programmers are plagued by synchronization subtleties, deadlocks, arbitrary side effects, load
imbalance and unpredictable communication, unnecessary non-determinism, confusing memory
models, and performance opaqueness. We need interfaces that allow the programmer to

12 James Larus, Spending Moore’s Dividend, Communications of the ACM, May 2009 5(52).

www.cra.org/ccc

13

express parallelism at a higher level, expressing localities, computation dependences and side
effects, and the key sharing and communication patterns. Such an interface could enable
simpler and more efficient hardware, with efficient communication and synchronization
primitives that minimize data movement.

Better Interfaces for Abstracting Heterogeneity. Supporting heterogeneous parallelism
demands new interfaces. From a software perspective, applications must be programmed for
several different parallelism and memory usage models; and they must be portable across
different combinations of heterogeneous hardware. From a hardware perspective, we need to
design specialized compute and memory subsystems. We therefore need hardware interfaces
that can abstract the key computation and communication elements of these hardware
possibilities. Such interfaces need to be at a high enough level to serve as a target for portable
software and at a low-enough level to efficiently translate to a variety of hardware innovations.

Better Interfaces for Orchestrating Communication. Traditional computers and programming
models have focused heavily on orchestrating computation, but increasingly it is data
communication that must be orchestrated and optimized. We need interfaces that more clearly
identify long-term data and program dependence relationships, allowing hardware and software
schedulers to dynamically identify critical paths through the code. Without the ability to analyze,
orchestrate, and optimize communication, one cannot adhere to performance, energy or QoS
targets. Data management becomes even more complex when considering big-data scenarios
involving data orchestration between many large systems. Current systems lack appropriate
hardware-software abstractions for describing communication relationships.

Better Interfaces for Security and Reliability. Existing protection and reliability models do not
address current application needs. We need interfaces to specify fine-grain protection
boundaries among modules within a single application, to treat security as a first class property,
and to specify application resilience needs or expectations. Some parts of the application may
tolerate hardware faults, or may be willing to risk them to operate more power-efficiently. All
these interfaces can benefit from appropriate hardware mechanisms, such as information-flow
tracking, invariants generation and checking, transactional recovery blocks, reconfiguration, and
approximate data types. The result will be significant efficiencies.

3. Closing
This white paper surveys the challenges and some promising directions for investment in
computer architecture research to continue to provide better computer systems as a key enabler
of the information and communication innovations that are transforming our world.

www.cra.org/ccc

14

4. About this Document
This document was created through a distributed process during April and May 2012.
Collaborative writing was supported by a distributed editor. We thank the Computing
Community Consortium13 (CCC), including Erwin Gianchandani and Ed Lazowska, for guidance,
as well as Jim Larus and Jeannette Wing for valuable feedback. Researchers marked with “*”
contributed prose while “**” denotes effort coordinator.

Sarita Adve, University of Illinois at Urbana-Champaign *
David H. Albonesi, Cornell University
David Brooks, Harvard
Luis Ceze, University of Washington *
Sandhya Dwarkadas, University of Rochester
Joel Emer, Intel/MIT
Babak Falsafi, EPFL
Antonio Gonzalez, Intel and UPC
Mark D. Hill, University of Wisconsin-Madison *,**
Mary Jane Irwin, Penn State University *
David Kaeli, Northeastern University *
Stephen W. Keckler, NVIDIA and The University of Texas at Austin
Christos Kozyrakis, Stanford University
Alvin Lebeck, Duke University
Milo Martin, University of Pennsylvania
José F. Martínez, Cornell University
Margaret Martonosi, Princeton University *
Kunle Olukotun, Stanford University
Mark Oskin, University of Washington
Li-Shiuan Peh, M.I.T.
Milos Prvulovic, Georgia Institute of Technology
Steven K. Reinhardt, AMD Research
Michael Schulte, AMD Research and University of Wisconsin-Madison
Simha Sethumadhavan, Columbia University
Guri Sohi, University of Wisconsin-Madison
Daniel Sorin, Duke University
Josep Torrellas, University of Illinois at Urbana Champaign *
Thomas F. Wenisch, University of Michigan *
David Wood, University of Wisconsin-Madison *
Katherine Yelick, UC Berkeley, Lawrence Berkeley National Laboratory *

13 http://www.cra.org/ccc/

www.cra.org/ccc

15

Appendix A. Emerging Application Attributes
Much evidence suggests that ICT innovation is accelerating with many compelling visions
moving from science fiction toward reality. Table A.1 below lists some of these visions, which
include personalized medicine to target care and drugs to an individual, sophisticated social
network analysis of potential terrorist threats to aid homeland security, and telepresence to
reduce the greenhouse gases spent on commuting and travel. Furthermore, it is likely that many
important applications have yet to emerge. How many of us predicted social networking even a
few years before it became ubiquitous?

While predicted and unpredicted future applications will have varied requirements, it appears
that many share features that were less common in earlier applications. Rather than center on
the desktop, today the centers of innovation lie in sensors, smartphones/tablets, and the data-
centers to which they connect. Emerging applications share challenging attributes, many of
which arise because the applications produce data faster than can be processed within current,
limited capabilities (in terms of performance, power, reliability, or their combination). Table A.2
lists some of these attributes, which include processing of vast data sets, using distributed
designs, working within form-factor constraints, and reconciling rapid deployment with efficient
operation.

Table A.1: Example Emerging Applications
Data-centric Personalized Healthcare - Future health systems will monitor our health 24/7, employing
implantable, wearable, and ambient smart sensors. Local on-sensor analysis can improve functionality
and reduce device power by reducing communication, while remote (i.e., cloud-based) systems can
aggregate across time and patient populations. Such systems will allow us to query our own health data
while enabling medical providers to continuously monitor patients and devise personalized therapies.
New challenges will emerge in devising computing fabrics that meet performance, power, and energy
constraints, in devising appropriate divisions between on-device and in-cloud functionality, as well as
protecting this distributed medical information in the cloud.

Computation-driven Scientific Discovery - Today’s advanced computational and visualization
capabilities are increasingly enabling scientists and engineers to carry out simulation-driven
experimentation and mine enormous data sets as the primary drivers of scientific discovery. Key areas
that have already begun to leverage these advances are bio-simulation, proteomics, nanomaterials, and
high-energy physics. Just as the scientific research community begins to leverage real data, issues with
security and reproducibility become critical challenges.

Human Network Analytics - Given the advances in the Internet and personal communication
technologies, individuals are interacting in new ways that few envisioned ten years ago. Human
interaction through these technologies has generated significant volumes of data that can allow us to
identify behaviors and new classes of connections between individuals. Advances in Network Science
and Machine Learning have greatly outpaced the ability of computational platforms to effectively analyze
these massive data sets. Efficient human network analysis can have a significant impact on a range of
key application areas including Homeland Security, Financial Markets, and Global Health.

Many More - In addition to these three examples, numerous problems in the fields of personalized
learning, telepresence, transportation, urban infrastructure, machine perception/inference and enhanced
virtual reality are all pushing the limits of today’s computational infrastructure. The computational
demands of these problem domains span a wide range of form factors and architectures including
embedded sensors, hand-held devices and entire data centers.

www.cra.org/ccc

16

Table A.2: Attributes of Emerging Applications

The three example applications in Table A.1 share at least four key attributes that present barriers that
require additional research to overcome.

Big Data - With the ubiquity of continuous data streams from embedded sensors and the voluminous
multimedia content from new communication technologies, we are in the midst of a digital information
explosion. Processing this data for health, commerce and other purposes requires efficient balancing
between computation, communication, and storage. Providing sufficient on-sensor capability to filter and
process data where it is generated/collected (e.g., distinguishing a nominal biometric signal from an
anomaly), can be most energy-efficient, because the energy required for communication can dominate
that for computation. Many streams produce data so rapidly that it is cost-prohibitive to store, and must be
processed immediately. In other cases, environmental constraints and the need to aggregate data
between sources impacts where we carry out these tasks. The rich tradeoffs motivate the need for hybrid
architectures that can efficiently reduce data transfer while conserving energy.

Always Online - To protect our borders, our environments and ourselves, computational resources must
be both available and ready to provide services efficiently. This level of availability places considerable
demands on the underlying hardware and software to provide reliability, security and self-managing
features not present on most systems. While current mainframes and medical devices strive for five 9’s
or 99.999% availability (all but five minutes per year), achieving this goal can cost millions of dollars.
Tomorrow’s solutions demand this same availability at the many levels, some where the cost is only a few
dollars.

Secure and Private - As we increase our dependence on data, we grow more dependent on balancing
computational performance with providing for available, private, and secure transactions. Information
security is a national priority, and our computational systems are presently highly vulnerable to attacks.
Cyber warfare is no longer a hypothetical, and numerous attacks across the Internet on government
websites have already been deployed. New classes of hardware systems, architectures, firmware and
operating systems are required to provide for the secure delivery of distributed information for the range
of applications described above.

www.cra.org/ccc

