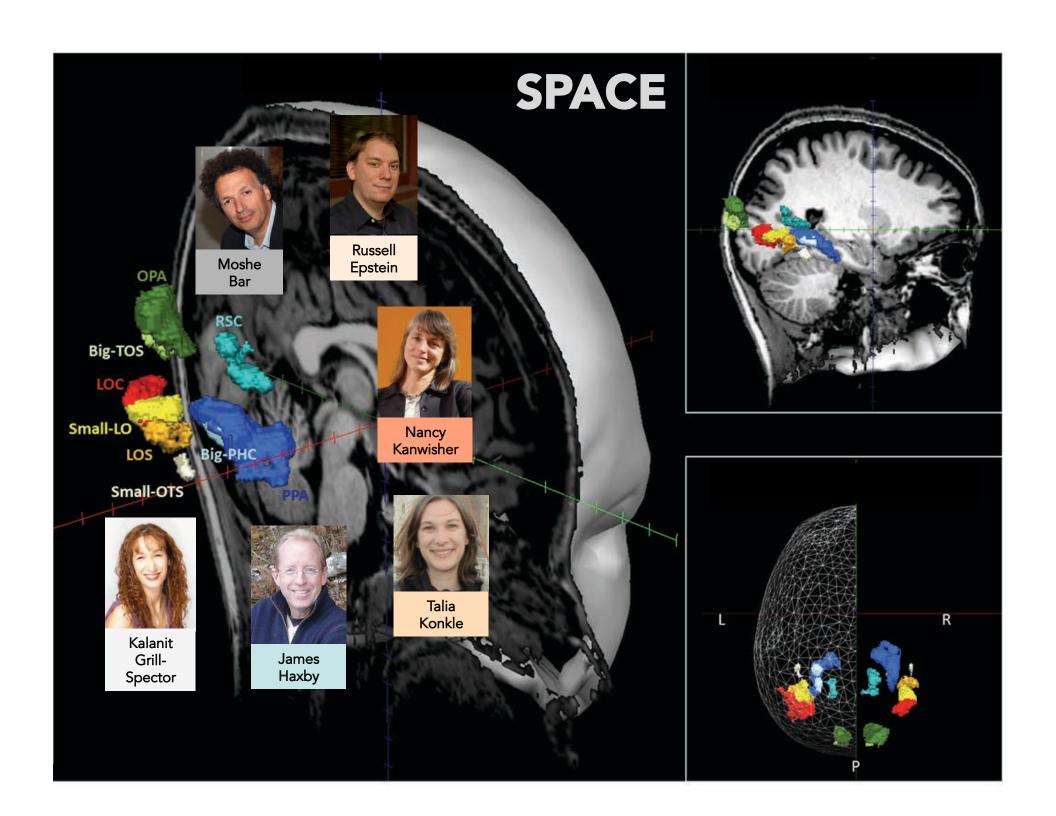


Time, Space and Computation:

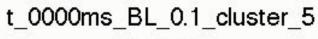
Converging Human Neuroscience & Computer Science

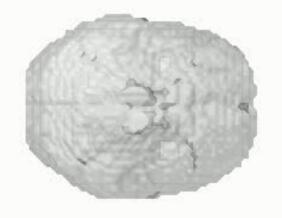
Aude Oliva

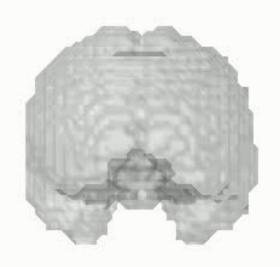
Computer Science and Artificial Intelligence Lab Massachusetts Institute of Technology



TIME







Radoslaw Cichy

Dimitrios Pantazis

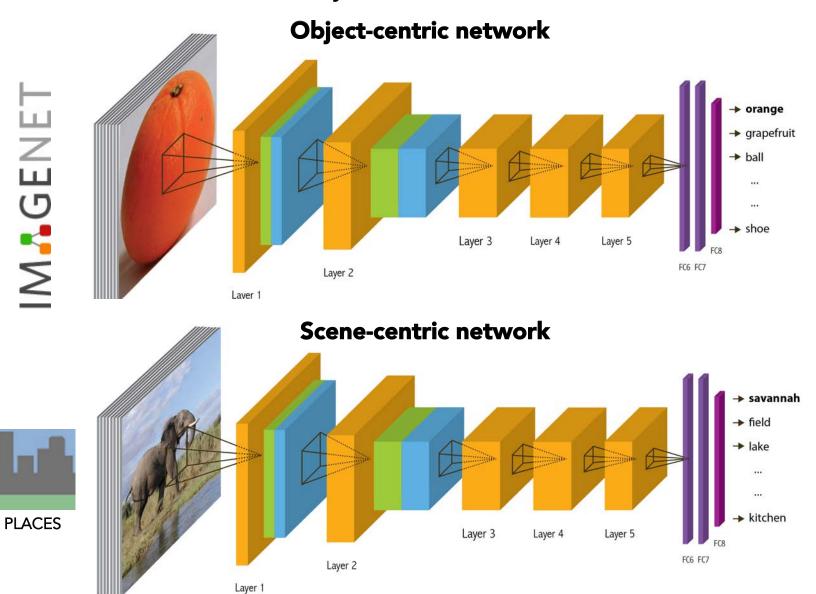
Aude Oliva

Nikolaus Kriegeskorte

Computation with millions of instances

Deep architectures

Geoffrey Hinton, Yann LeCun



Object-centric deep architectures

R-CNN: Regions with CNN features

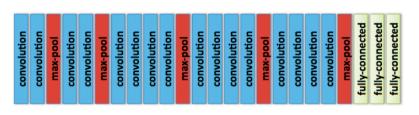
aeroplane? no.

person? yes.

tvmonitor? no.

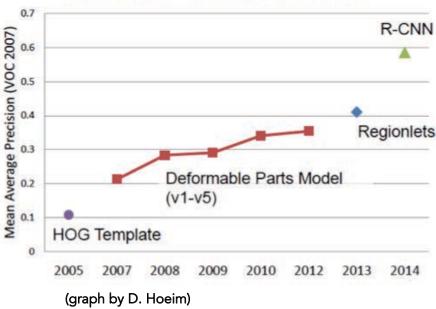
Girshick, Donahue, Darrell & Malik (CVPR 2014)

VGGNet: Very deep ConvNet

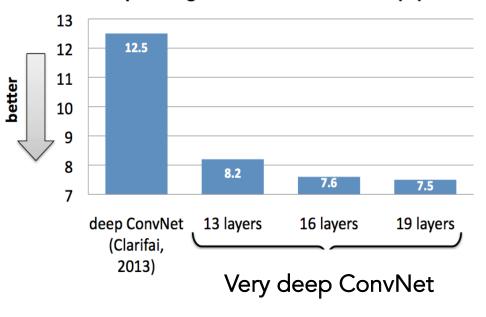


Simonyan & Zisserman (2014)

Improvements in Object Detection



Top-5 ImageNet Classification Error (%)

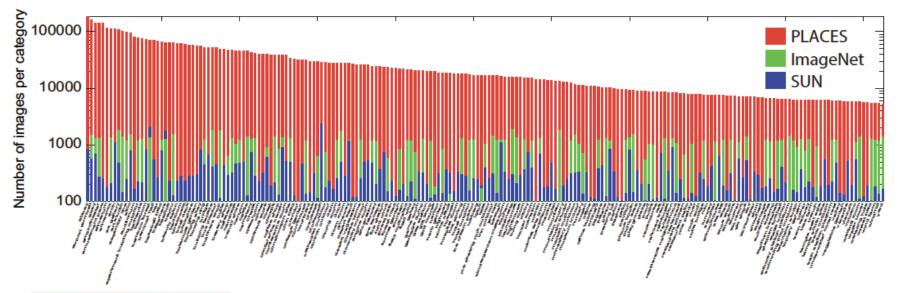


Torralba Lapedriza

Places Model

places.csail.mit.edu

Zhou Xiao



Predictions:

- · type: indoor
- · semantic categories: coffee_shop:0.47, restaurant:0.17, cafeteria:0.08, food_court:0.06,

Predictions:

- type: indoor
- · semantic categories: supermarket:0.96,

Predictions:

- · type: indoor
- · semantic categories: conference_center:0.51, auditorium:0.12, office:0.08,

Predictions:

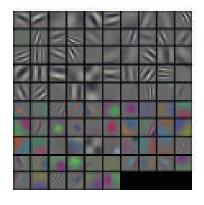
- · type: indoor
- · semantic categories: bus_interior:0.91,

Deep architectures

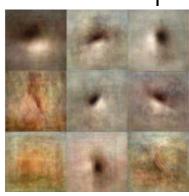
A Visualization of the learned representation for each unit

Object-centric CNN

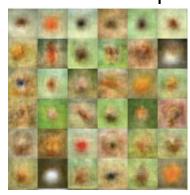
C1 filters



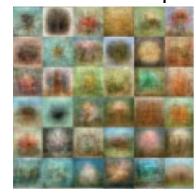
C2 feature maps



C5 feature maps



C7 feature maps

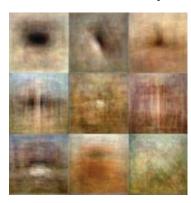


Object like shapes

Scene-centric CNN

C1 filters

C2 feature maps



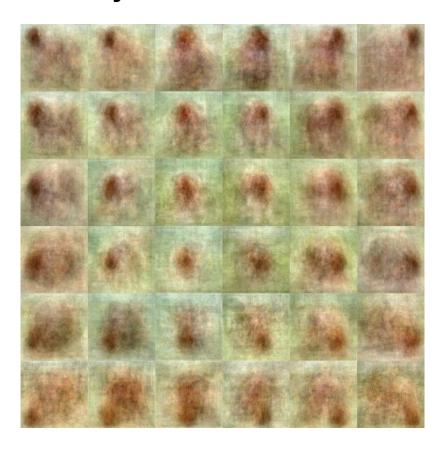
C5 feature maps

C7 feature maps

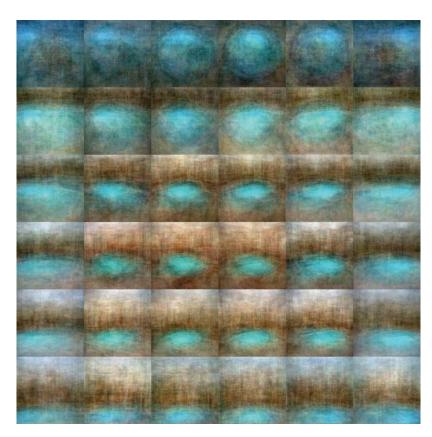
Space like shapes

Layer 5: Artificial Receptive fields

Object-centric units



Scene-centric units



Dimitrios Pantazis

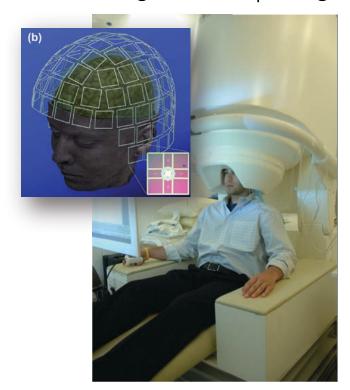
Non invasive neuro-imaging techniques

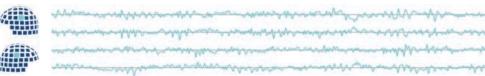
Magneto encephalography

MEG

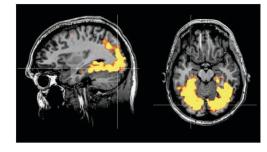
(msec-resolution)

Functional Magnetic Resonance Imaging





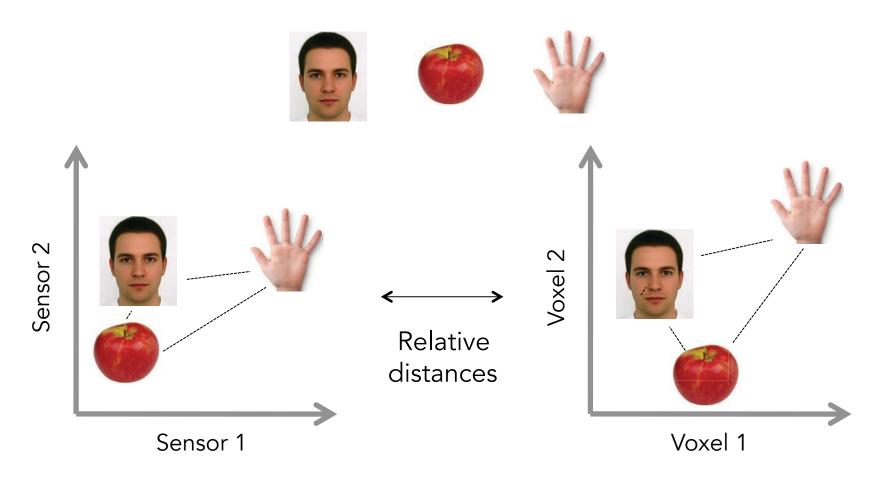
Sensors (time)



Voxels (space)

Representational Geometry

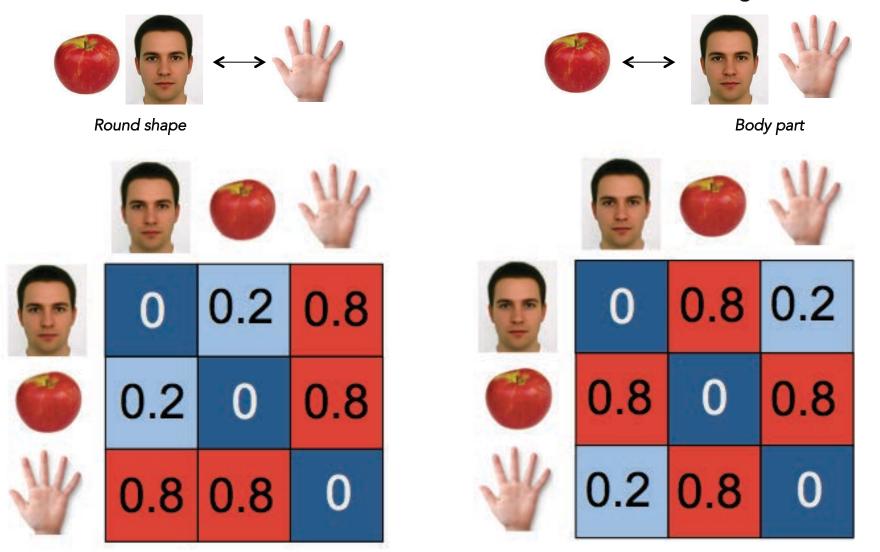
Nikolaus Kriegeskorte (2008)



Shepard et al., 1980; Kruskal and Wish., 1978; Edelman et al. 1998; Kriegeskorte et al., 2008; Mur et al., 2009; Liu et al., 2013

Representational Geometry

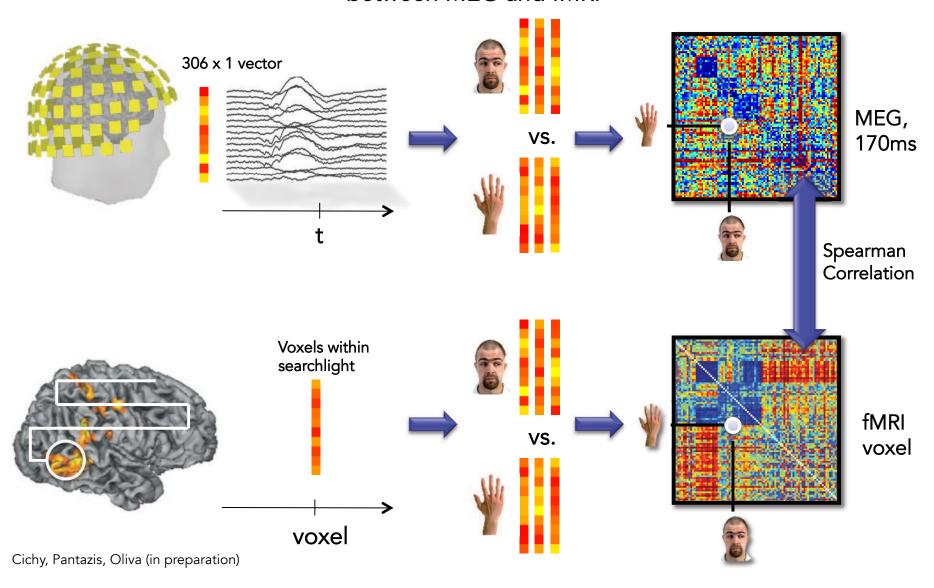
Nikolaus Kriegeskorte (2008)



[&]quot;RDMs as a hub to relate different representations across sensors and models"

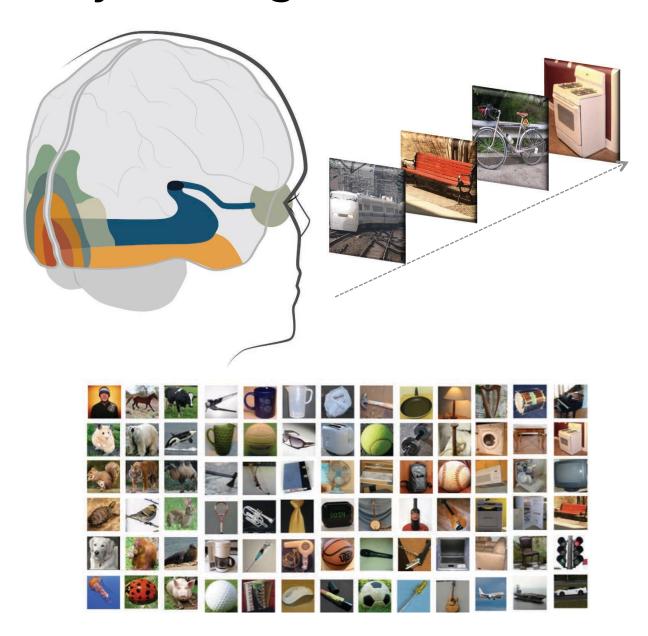
Time-specific fMRI searchlight analysis

A spatially unbiased view of the relations in similarity structure between MEG and fMRI

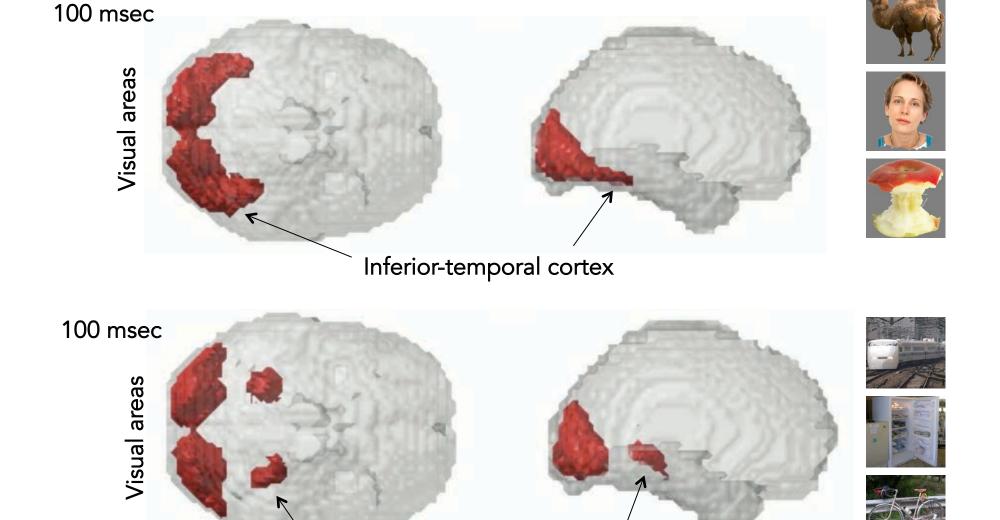


The dynamics of object recognition

Object recognition in context



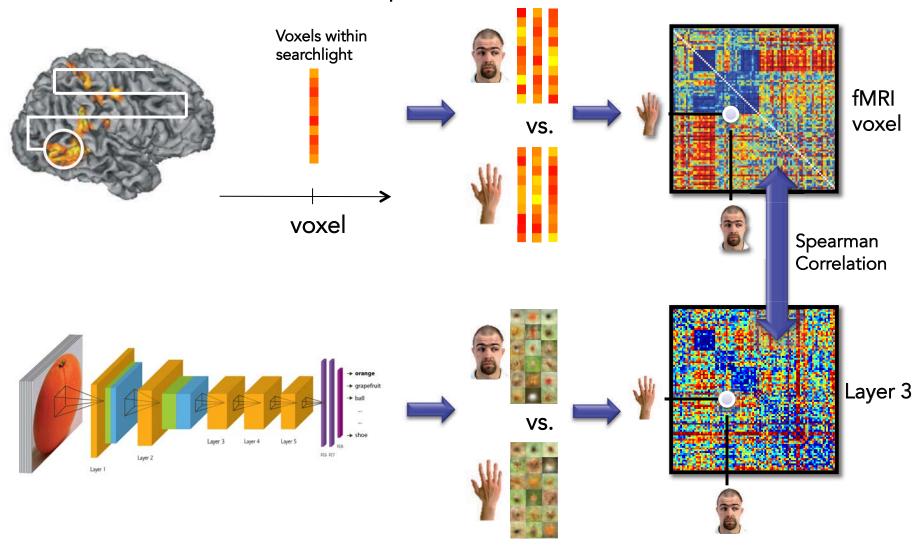
Spatiotemporal maps of correlations between MEG and fMRI



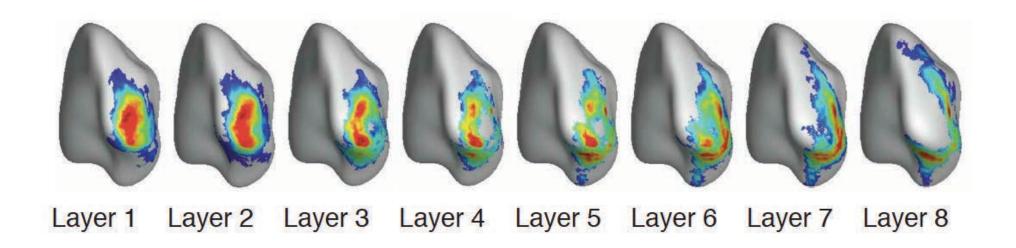
Parahippocampal cortex

Algorithmic-specific fMRI searchlight analysis

A spatially unbiased view of the relations in similarity structure between deep architectures and fMRI



Spatiotemporal map of correlations between fMRI and model layers

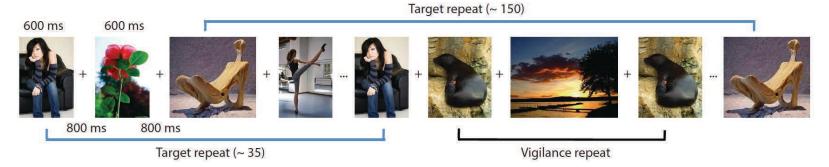


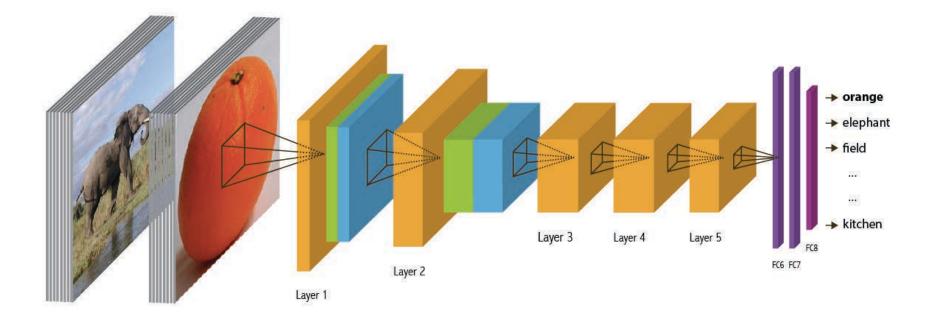
Can we predict which images are memorable?

Predicting Visual Memorability

~ 60,000 photographs with Memorability scores

Aditya Khosla

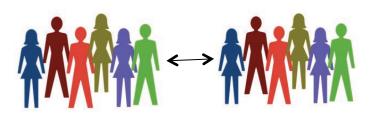


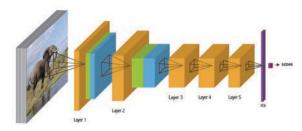


Predicting Visual Memorability

~ 60,000 photographs with Memorability scores

Most memorable Less memorable





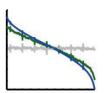
Human $\rho = 0.68$

Deep feature $\rho = 0.64$

Cognitive-level Algorithms

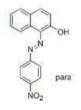
Memorability: metric of the utility of information

Understand human memory



Data Visualization

Logos Slogans - words-



Diagnose memory problems

Mobile applications

Social Networking

Face Memorability

Design mnemonic aids

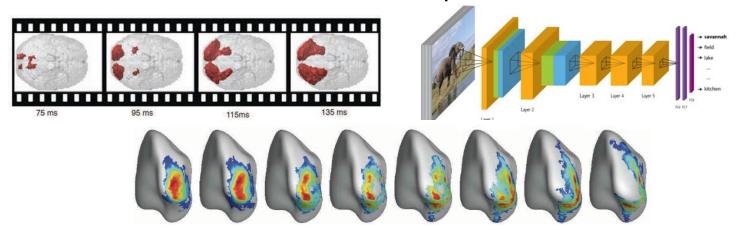
Retrieve better images from search

Computer Graphics - cognitive saliency

Summarize Bigdata – images, videos

Time, Space and Computation

A converging framework for hypothesis testing



Power of Prediction

Comparing large-scale processing between natural and artificial systems will not only allow us to understand why biological systems have implemented a certain mechanism, but will allow

- Studying the strategies that work best for performing specific tasks
- Characterizing the operations when the system is broken
- Exploring the alternatives biological systems have not taken A.I "Alien" Intelligence (Kevin Kelly, Wired magazine)

