Measurement
- Physical/sensors (studied)
- Nonconventional (e.g. categorical)
 - E.g. relationship models
 - Some models exists
 - Extensive statistical theory
 - Computational theory needs development
- Data quality process (automation, computation)
 - Understand the pipeline
 - Provenance
 - Code that generates

Simulation data
- Indirect data
 - algorithms infer things
 - a model that transforms measurements
 - E.g. reflectance converted to cloud cover

Errors that you are not aware of
- Training bias
- Provenance of scientific data
 - Particularly shared data
 - Computationally derived error
 - Process or best practices

Systematic error

Representation
- Data products
 - Include "interpretation" error
 - E.g. interpolation of geospatial data (e.g. NASA)
 - Need models of error
 - Algorithms have errors
- Dislocation of data
 - Not produced where it is consumed
 - Purposes and uses change
 - Describing limitations becomes more challenges

Examples
- NASA
 - Atmospheric sciences (cloud cover, radiances, interpolation, CFD model)
 - Drift in a satellite (Charles)
- Medical records
 - New Item
- Annotations of kinase sub families (Vasant)
 - Downstream subfamilies
- Data deep dive
 - Automatically generated Paleo data

Documentation
- How to incentivize
- Citations
- Funding

Representations are important
- Producing realizations
 - E.g. from a generative model
 - E.g. clouds

Experimental work
- Formalizing the description experiments
- Provenance for experimental data

Infrastructure to support big data
- + uncertainty

Inherently stochastic models
E.g. stochastic PDEs

Modeling
- Uncertainty in parameter values
- Handles as distributions
- Error from processing
 - Numerics
 - Compression
 - Truncation

Refinements of models
- Uncertainty is a disincentive
- Models can make a difference
- Compounding errors vs compensation

Interacting components
- Some components we don't have data
- How to quantify confidence

Perturbations in components
- Change behavior of system

Interactions are complex
- Things are not additive
- Feedbacks may be disguised
- Emergent properties
- Multimodal distributions

Reduced order models?
- How do you gain confidence
 - Error bounds
 - Knowing that you have covered the set of possibilities

Tools to support this
- E.g. languages with built in distributions

Uncertainty/statistical models
- Complex
- Heterogeneous
- Rare events
 - Study the thresholds where things break

Perception of rare events
- communication
- understanding their frequency
- evolving boundary conditions change notion of rare events