Uncertainty in Geospatial Data

Michael F. Goodchild
University of California
Santa Barbara
Traditional geospatial data

- Maps, atlases, globes
 - highly synthesized, compiled, abstracted
 - often rich quantitative attributes
 - no memory of observation provenance
General principles

• It is impossible to map perfectly
 – to determine position on the Earth’s surface
 – to assign locations to vaguely defined classes

• All geospatial data are therefore subject to uncertainty

• It can be as important to determine what geospatial data do not say
 – to quantify what is missing
 – to communicate uncertainty effectively

• Scientific results should be reported to a precision that reflects their accuracy
Line measurement (Geodesic)
Segment: 10,527,369.504217 Meters
Length: 10,527,369.504217 Meters
Outstanding issues

• Communicating uncertainty to the user
 – the user may not want to know
 – users expect maps to be perfect

• Spatial (and temporal) autocorrelation
 – geospatial data, errors are almost always positively autocorrelated
 – modeling, calibration, metadata difficult

• Ontological issues
 – choice of representation linked to uncertainty
 – raster > vector
Outstanding issues (2)

• Dependence on use case
 – fitness for use
 – can we address uncertainty generically?

• Importance of provenance
 – are two datasets interoperable?
 • how much provenance do they share?
 • *binary* metadata