Software-Defined Networks

Jennifer Rexford
Princeton University
Traditional Networks

control plane: distributed algorithms
data plane: packet processing
Software Defined Networks

decouple control and data planes
Software Defined Networks

decouple control and data planes by providing open standard API
Simple Data-Plane API

• Prioritized list of rules
 – Pattern: match packet header bits
 – Actions: drop, forward, modify, send to controller
 – Priority: disambiguate overlapping patterns
 – Counters: #bytes and #packets

1. srcip=1.2.*.*, dstip=3.4.5.* → drop
2. srcip=.*.*.*, dstip=3.4.*.* → forward(2)
3. srcip=10.1.2.3, dstip=.*.*.*.* → send to controller
(Logically) Centralized Controller
Protocols ➔ Applications

Controller Application
Controller Platform
Seamless Mobility

• See host sending traffic at new location
• Modify rules to reroute the traffic
Server Load Balancing

- Pre-install load-balancing policy
- Split traffic based on source IP

```plaintext
src=0*,
dst=1.2.3.4
src=1*,
dst=1.2.3.4
```
Middlebox Traffic Steering

• Direct selected traffic (e.g., port 80)
• … through a chain of middleboxes

\[
\text{dstip} = 1.2.3.4 \\
\text{dstport} = 80 \\
\text{dstip}=1.2.3.4
\]
Example SDN Applications

- Seamless mobility and migration
- Server load balancing
- Steering traffic through middleboxes
- Dynamic access control
- Using multiple wireless access points
- Energy-efficient networking
- Blocking denial-of-service attacks
- Adaptive traffic monitoring
- Network virtualization
- <Your app here!>
A Major Trend in Networking

• SDN components
 – Switches: Open vSwitch, hardware switches, etc.
 – Controllers: ONOS, Floodlight, Ryu, Frenetic, ⋯

• Commercial successes
 – Google’s private backbone
 – Nicira’s network virtualization platform

• Industry consortia
 – Open Networking Foundation (ONF)
 – Open DayLight (ODL)
 – Open Compute Project (OCP)
Example Research Areas
Languages and Verification

- **Languages**
 - Abstractions for apps
 - Compilation to switches

- **Verification**
 - Data-plane invariants
 - Control-plane correctness
Distributed Controllers

- Scalability, reliability, and performance
- Managing controller state or replicas
- Aggregating information about the network
More Sophisticated Switches

- OpenFlow 1.0
 - Single rule table and twelve header fields
- OpenFlow 1.3/1.4
 - Multiple match-action stages on different headers
- OpenFlow 2.0 (?)
 - Reconfigurable parsing and match-action tables
- White-box/bare-metal switches
 - Program the switch directly
Network Function Virtualization

- Network functions
 - Firewall, intrusion detection, NAT, transcoder, compression, proxy cache, monitoring, ...
- Virtualized
 - Virtual machines that can run anywhere
- Challenges
 - Optimization (placement, steering, routing)
 - Platforms for hosting virtualized functions
 - Control protocols for managing the functions
SDN Security

• Securing the entire stack
 – Switches
 – Control protocol
 – Controller platform
 – Controller apps

• Example attacks/vulnerabilities
 – Worst-case traffic to DoS the controller
 – Rogue apps that violate user privacy
 – Compromising the controller platform
New Applications of SDN

- Cloud
 - Data centers
 - Private backbones
- Other networks
 - Enterprise
 - Cellular
 - Home
 - Exchange points
 - Optical networks
- Hybrid deployments
 - Overlay (SDN edge, legacy core)
 - Mix of SDN and legacy devices
- Beyond networking
 - Software Defined Infrastructure
 - Network, middleboxes, storage, compute, …
Conclusions

• SDN is two main ideas
 – Logically centralized controller
 – Standard APIs to the data plane
• SDN is happening in practice
 – Protocol standards and white-box networking
 – Wide variety of switch and controller platforms
 – Real operational deployments
• Clean-slate research opportunity
 – … while still influencing the practice