Connectomics in Medicine: Pathways, Networks and Beyond

Ragini Verma

Center for Biomedical Image Computing and Analytics Radiology University of Pennsylvania

Traffic in the Brain

DTI: Diffusion Tensor Imaging

Bo (image without diffusion weighting) and atleast 6 gradient directions/slice

Streamline Tractography

Starting criterion: Region of Interest

Stopping criteria: ROI, curvature of fiber, diffusion measure of anisotropy

Probabilistic tractography

Start point

At every step, draw a step direction from the pdf of the underlying fiber orientation.

Courtesy C-F Westin

Putting Things in Perspective

The Structural Connectome

1: Parcellation of T1 structural scan into 95 cortical and sub-cortical regions

2: Transfer of region labels to diffusion space and computing the GM-WM boundary.

3: Probabilistic fiber tracking from each seed ROI *i* to target ROI *j*.

6: Statistics on networks (binarized/weighted)

Edge-wise t-test

Topological measures/ Lobe/node-specific measures

Clustering / pattern classification

5: Construction of weighted structural connectivity network **W**

4: Connectivity quantification between each ROI pair (i,j) computed from P_{ij} * active surface area of the seed

The Functional connectome

Likelihood.

Connectome Based Morphometry

Data: Raquel & Ruben Gur, Neuropsychiatry

Gender Sub-networks

MEG-based connectivity in population with ASD

DTI-based connectivity in a healthy population 8-23 years of age

Sub-Networks in Autism

37 ASD 40 TDC male children aged 6-14 years (age difference p>0.6)

Temporal Dynamics

TD Subject 1 - time instance # 1

Left - Right

ASD Subject 1 - fulltime - δ band

Left - Right

TD Subject 1 - fulltime - δ band

Left - Right

What parcellation to use?

- Resolution of parcellation
- Functional / structural connectivity should be the basis
- Validation?

Finding the "one"

How do we know this is the "one"?

- Validating in humans not animal models
- What should be the measure of connection strength
- How to validate the connectivity matrix

Putting things back in perspective

What is best method for analysis?

- High dimensionality multiple comparison correction
- Small sample size
- Posthoc interpretation of graph theory numbers
- Subject-wise variability is not quantified
- Results not always interpretable

So what do we do?

Hypothesis: Ask the question

Validation: Question the answer

Get the neuroscientist and clinician involved!