Computer-Aided Personalized Education (CAPE) Workshop
Panel on Modes of Learning

Gautam Biswas
Dept. of EECS/ISIS
Vanderbilt University, Nashville, TN. USA.

Collaborators: Pratim Sengupta, Doug Clark, Andy Gokhale
John Kinnebrew, James Segedy, Satabdi Basu, Brian Gauch
Computer-Based Learning Environments

• **Traditional Emphasis**
 – One on One Learning (Tutoring)
 – Personalization
 – Problem Solving
 – Feedback to support Learning & Problem solving
 – Stand-alone systems linked to one or more curricular units
Computer-Based Learning Environments

• Needs for the next generation
 – Integrated Environments
 • Fundamentals, Problem solving, Provide anchoring contexts
 • Project-based components; use of standardized tools
 – Combine Personalized + Collaborative Learning and work
 – Ubiquitous
 – Notion of Preparation for Future Learning (Bransford & Schwartz)
 very important
 • Support development of 21st century skills
 • Develop abilities to “learn how to learn”
STEM learning in Open-Ended Learning Environments
Supports multiple modes of learning

- Present a authentic, complex, open-ended task
 - Build a cause-effect model to demonstrate the effect of human activities on global climate change
 - Build simulation models of traffic flow in city streets

- Set of tools to scaffold learning and problem-solving process
 - Hyper-text resources; causal map-building editor; quizzes to check correctness of evolving causal model
 - Visual, block-structured, domain-specific modeling language to build simulation model

- Learner-centered
 - Promote thinking-intensive interactions with limited external support

(Clarebout & Elen, 2008; Land, 2000; 2012)
OELEs: Student Learning and Problem Solving

• Thinking-oriented interactions with limited external support
 – Students have to develop cognitive skills to use the tools provided in an effective manner
 – Students have to develop metacognition and self-regulation processes (how to combine use of the tools) to become effective learners and problem solvers
 – Students have to make choices, evaluate their choices
 • Responsible for managing, coordinating, monitoring, evaluating, and reflecting on relevant cognitive processes and metacognitive strategies

• OELEs support Preparation for Future Learning (Bransford & Schwartz, 1999)
Example: Integrated Environment

- C³STEM – a community-situated, challenge-based, collaborative learning environment for STEM
 - Involves working on real-world traffic problems, both individually and collaboratively
 - Comprises two core learning environments
 - CTSiM (Computational Thinking using Simulation and Modeling)
 - Students use a visual interface to build computational models of vehicle dynamics and driver behaviors using an agent-based paradigm, and compare their traffic simulations against expert traffic simulations
 - C²SuMo (Cloud-based, Collaborative, Scaled-up Modeling)
 - Students visualize and analyze traffic flow using a Google Maps interface along with the high-fidelity Simulation of Urban MObility (SUMO) to solve a variety of traffic flow problems
Modeling traffic scenarios using CTSiM

- Conceptualize
- Construct
- Test
- Verify
- Experiment

Construction interface
Test interface
Compare interface

11/12/2015
Studying traffic simulations using C^2SuMo

- Allows students to control various traffic related parameters
 - Run experiments on a scaled-up simulator called SUMO – Simulation of Urban Mobility
- Observe corresponding simulations of traffic flow
 - Simulation results are projected onto a Google Maps interface – depicts real city streets
 - Students perform experiments, analyze results, document their conclusions
C³STEM Characteristics

• Brings together multiple modes of learning
 – Learning of fundamental concepts and principles linked to authentic problem solving environments
 • Domain concepts and principles
 • Simultaneously, learning of Computational Thinking and Computational Modeling Skills
 – Problem- or Project-Based Learning
 • Scaled up problem solving
 – Collaborative Problem Solving
OELEs: Challenges to the Novice Learner

• Lack proficiency in cognitive skills
 – Lack fundamental knowledge
 – Application of this knowledge to problem solving situations
• Lack proficiency in mapping skills to the tools provided
• Lack of metacognitive strategies
 – Awareness
 – How to combine skills and actions in an effective manner
• Lack of monitoring and self-regulation skills
 – Monitoring one own learning
 – Reflection and Revision
OELEs: How do we scaffold & support student learning?

• Challenges
 – Interpreting learner behavior in a choice-rich environment
 • Choices, e.g., acquire information, construct solution, assess and test solution
 • Skills in the context of using tools
 • Strategies (Cognitive & Metacognitive)
 • Self-Regulation (Including Affect)
 – Making decisions on when and how to provide feedback to the learner
 • E.g., how to effectively use formative assessments & help (support) provided in system
Interpretation and Aggregation functions

- Interpret and understand students’ learning behaviors in OELEs
 - Have to track and interpret students’ activities
 - **Method 1**: Analytic measures (Segedy, Kinnebrew, & Biswas, 2015)
 - Model-driven metrics and Context-driven hypotheses about the students’ learning tasks
 - Developed a novel approach for modeling learners called Coherence Analysis
 - **Method 2**: Exploratory Mining Methods for discovering students’ learning behavior patterns (Kinnebrew, Loretz, & Biswas, 2013)
 - Sequence Mining and Differential Sequence Mining of students’ activity data
 - More recent approach (Kinnebrew, Segedy, & Biswas, in review)
 - Combine methods (1) and (2) to provide a more expressive framework
Extra Slides
The CTSiM task model

• Task Model – Directed acyclic graph from Domain general to CTSiM specific tasks and subtasks to lowest levels – correspond to CTSiM actions (directly observable)
Strategy Model

- Captures the relationship between tasks
 - Sequencing information, i.e., Temporal Ordering
 - Shared Context between the tasks
 - Example: IA → SC: Read a page or two of the resources then construct model
 Are the information acquisition and solution construction actions related?

Describes how actions & tasks combined to achieve higher level goals
Coherence Analysis

• Good problem solving flows from good task understanding and skill levels:
 – Students know how to interpret/utilize the information they encounter
 – Students refrain from excessive “shot-in-the-dark” guesses

• Coherence
Two actions \((x,y)\) taken by a student in an OELE are said to be *coherent* if the second action, \(y\), logically follows from information generated by the first action, \(x\). In this example, \(x\) supports \(y\).

Action x generates potential that action y uses.
Acknowledgements

• This work has been supported by the NSF
 – (NSF Cyber-learning grant #1124175 and NSF Cyber-learning grant #1441542)
• IES CASL Grant # R305A120186