Trustworthy Cyber Social Learning Systems

Lori A. Clarke
College of Information and Computer Sciences
University of Massachusetts Amherst
No question that such systems “should be” trustworthy

- Basis for important decision making
- Will impact health, well being, and safety of our citizenry
 - micro decisions about individuals (e.g., medical care, education plans)
 - Macro decisions about best practices (e.g., standards of care, sustainable energy consumption)
- Will have a tremendous economic impact
 - On the cost of societal infrastructure
 - On individual companies and industries
Will they be trustworthy?

- If the answer must be Yes or No, then the answer is No

- Can we develop cyber social learning systems that are trustworthy **enough** that there is significant benefit associated with their use?
 - Will these benefits be far greater than the downside costs?
 - Will improvement to quality of life be greater than the costs associated with failures (e.g., loss of life, temporary loss of services, security and privacy violations)

- Can cyber social learning systems learn to be more trustworthy over time?
Trust Concerns

- **Reliability**
 - How can we test and validate such systems?

- **Security**
 - How can we develop a CSLS that can thwart most attacks (and ensure a high level of privacy)?

- **Continuous evaluation**
 - How can we monitor the results to determine if they are valid and continue to be valid?
Reliability

- CSLS will undoubtedly be complex with many different components: control, reasoning, large and growing data sets, human participants
 - System of systems
 - Numerous examples of failed or poorly designed systems and well functioning systems

- Numerous testing and verification tools
 - Strong support for unit testing; infrastructure to support integration testing, etc.
 - Powerful reasoning capabilities for small subsystems
 - But requires considerable investment in resources
 - (E.g. DARPA support to verify the SEL OS kernel)
Reliability

- CSLS will be complex and opaque and thus hard to validate
 - CS community demanded that the code for electronic voting machines be made publically available and that there be a verifiable voting trail
 - Small, simple systems
 - Can audit the results – know what the results should be!
 - Often will not know if the results are valid
 - Metamorphic testing tests for “expected” trends
- CSLS employ ML and other approaches whose accuracy will be hard to determine
 - What are the properties that should be proven?
- Humans are unreliable participants and users
 - Inadvertent errors, malicious actions
Results from a CSLS could have enormous economic impact

- Findings could influence the choice of medications, medical devices, text books, appliances, fuel combinations, etc.
- Thus there is the potential for fraud
 - In the design (e.g., Volvo) or through hacks on the system or the data

Must demand the use and development of best practices

- Development practices: programming languages, coding practices, architectural design, validation
- Physical security
- Process safeguards
 - E.g., Limit opportunities for collusion, insider attacks, single points of failure
Continuous Evaluation

- Results must be continuously questioned
 - Employ N-version programming
 - Significantly different ML algorithms evaluating the same data; careful analysis of the differences
 - Check for and guard against cultural biases
 - E.g., physician bias impacting the results because of different responses to men versus women or other segments of society

- CSLS will need to continuously evolve, and be continuously reevaluated
CSLS raise many hard research questions

- Testing
- Verification
- Security
- Multi-faceted monitoring
- Systematic, validated, and continuous improvement

In our enthusiasm for CSLS, Computer Scientists need to be honest about the concerns and be strong advocates for research to address these concerns.