Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST)

Veena Misra, Director and Professor of ECE

CCC Workshop, August 31st, 2016
ASSIST’s vision is to use nanotechnology to impact healthcare and manage wellness by building self-powered wearable, wireless, multiple sensor platforms that enable:

Long-term monitoring of personal health & environment enabled by always-on platforms

Sophisticated picture of health via correlation of multiple sensors

Personalized Medicine
Self-Powered Sensor Platforms based on Nanotechnologies: ASSIST is uniquely innovating both sides of the power problem.
ERC: 3-Plane Strategic Research
Application: Health and Wellness Use Cases

- **Goal:** Long Term Personal Health and Personal Environmental Monitoring

<table>
<thead>
<tr>
<th>Chronic Condition</th>
<th>Use Cases</th>
<th>Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Health</td>
<td>• A child with asthma rides the school bus for 1 week
• Nurse exposed to hospital chemicals containing VOCs</td>
<td>• Low power ozone
• Low power VOCs
• Real-time wheeze detection
• Data correlation</td>
</tr>
<tr>
<td>Cardiovascular Health</td>
<td>• Heart patient with arrhythmia needs continuous/vigilant ECG monitoring</td>
<td>• High harvested power
• Low power chip/radios
• Flexible TEG/MEG
• Real-time arrhythmia detection with low latency</td>
</tr>
<tr>
<td>Glycemic Index Management</td>
<td>• A pre-diabetic wants to correlate glycemic index trends to diet
• Physicians wants to correlate neurocognitive function in adolescent to stress exposure</td>
<td>• Sweat collection under low and high sweat
• Biocompatibility
• Biomarker validation in sweat</td>
</tr>
</tbody>
</table>
ASSIST Research

- Energy Harvesting and Storage
 - Thermoelectrics
 - Piezoelectrics
 - Reverse Electro-wetting
 - Storage

- Emerging Low Power Nanoelectronics
 - Ultimate Energy Efficiency Devices
 - Non-volatile architectures
 - Ultra low power SoC
 - Ultra Low power Radios
 - Body Worn Antenna

- Low power health and environmental sensors
 - Ozone and VOC Sensing
 - Next Gen (Pulse-ox and BP)
 - Sweat Biochemical Glucose and Cortisol
 - ISF Extraction

- Wearability and Data
 - Data
 - Flexible Materials
 - Integration in Testbeds
 - Human Factors
Integration of all components into systems

Sensor Node

- Power Source (Harvested Power)
- Health Sensors
- Env. Sensors
- SoC
 - Power Management
 - Analog Front End
- Energy Storage
- Antenna

Data Aggregator

- Digital Control / Processing / Management

Signal Processing

- Software

Smartphone

Cloud
- Real Time Analytics, managed APIs

Integration of all components into systems
ASSIST Research

- Energy Harvesting and Storage
 - Thermoelectrics
 - Piezoelectrics
 - Reverse Electro-wetting
 - Storage

- Emerging Low Power Nanoelectronics
 - Ultimate Energy Efficiency Devices
 - Non-volatile architectures
 - Ultra low power SoC
 - Ultra Low power Radios
 - Body Worn Antenna

- Low power health and environmental sensors
 - Ozone and VOC Sensing
 - Next Gen (Pulse-ox and BP)
 - Sweat Biochemical Glucose and Cortisol
 - ISF Extraction

- Wearability and Data
 - Data
 - Flexible Materials
 - Integration in Testbeds
 - Human Factors
ASSIST Research Portfolio

1. Energy Harvesting and Storage

- Thermoelectrics
- Piezoelectrics
- Reverse Electro-wetting
- Storage

Three Efforts: Optimized materials, flexible thermoelectric packaging and system modeling

N and P type Bi$_2$Te$_3$ nanocomposites with state of the art performance
Flexible and open thermoelectrics packaging for flexible/stretchable TEGs
Novel motion harvesting design with optimized damping has demonstrated **42μW of power** while pseudo-walking (best in class by 25%) w/ thick optimized PZT films.
ASSIST Research Portfolio

Emerging Low Power Nanoelectronics

- Ultimate Energy Efficiency Devices
- Non-volatile architectures
- Ultra low power SoC
- Ultra Low power Radios
- Body Worn Antenna

Multi-chip SoC solution

Multi-chip SoC with central SoC

< 1µW, efficient sensor interfaces, external NVM and new bluetooth compatible radios

Flexible, wearable antenna matched to ASSIST RFICs with PDMS/AgNWs shows world record efficiency of 80%

Target 400µW (COTS = 10mW)
Beyond CMOS Devices and Architectures

Project Strategy: Leverage emerging nanodevices to enhance battery less at node computing capability

Architecture Innovations
- NVP Microarchitecture exploration
- Dynamic voltage and frequency scaling
- Input power prediction by machine learning

Circuit/Device
- TFET for low power logic, memory, analog design
- Tunnel junction Characterization with Atomic Resolution
- Gate stack interface enhancement
- Group IV Ge-Sn based pTFETs

NVP Platform Demonstration
- Resistance to power failures
- Performance enhancement with dynamic frequency scaling

Emerging Device Demonstration
- Best-in class n-TFET demonstration
- Improved p-TFET demonstration
100% battery-less operation
Zero stand-by power
Maximum forward progress with instant backup and recovery options during power interrupt
Micro architecture optimized by Penn St; NVP designed by Tsinghua University
Interfaced to ASSIST energy harvesters (Werner, Troller-McKistry groups)

Narayanan Group
NVP + Tunnel FETs

- TFET is superior to CMOS at low voltage supply voltages
- NVP computational progress is improved by 2.7x using Tunnel FETs instead of LP CMOS (evaluation done with ambient RF power source)

Narayanan & Datta Group
ASSIST Research Portfolio

Wearability and Data

- Data
- Flexible Materials
- Integration in Testbeds
- Human Factors

Wheeze modeling and detection

Choosing delays and embedding dimension

\[
\begin{pmatrix}
 w(t) \\
 w(t + \tau_1) \\
 w(t + \tau_2)
\end{pmatrix}
\]

Time Delay E

Algebraic topology

[S. Emrani et al. ICASSP’14]

Signal in time domain

3D delay embedding

Krim (NCSU)
ASSIST Research Portfolio

Wearability and Data

Data Processing and Modeling:

Data Analysis and Prediction:

Energy Consumption:

Sensor Node
- Sensing
- Processing
- Transmission

Aggregator
- Feedback
- Transmission
- Sensor Node Parameter Tuning
- Inference
- Data Fusion

Cloud

Lobaton (NCSU)

Lobaton (NCSU)
Asthma Management Platform:

- Neoprene wrist strap with ABS plastic shell containing the circuitry with sensors for: ozone, PPG, motion, temperature, and humidity.
- Elastomer patch with ABS plastic shell containing circuitry with sensors for: ECG, skin impedance, PPG, wheezing, and motion.
- Handheld spirometer for measuring lung functionality.

Opportunity for Always-on Health Sensing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 2032</td>
<td>11mW* (COTS)</td>
<td>0.06mW*</td>
<td></td>
<td></td>
<td>11.1mW</td>
<td>2</td>
</tr>
<tr>
<td>CR 2032</td>
<td>0.03mW**</td>
<td>0.06mW*</td>
<td></td>
<td></td>
<td>0.09mW</td>
<td>266</td>
</tr>
<tr>
<td>CR 2032</td>
<td>0.03mW**</td>
<td>0.06mW*</td>
<td>1.13mW*</td>
<td>0.39mW*</td>
<td>1.3mW</td>
<td>17</td>
</tr>
<tr>
<td>Self-Powered (>1.3mW)</td>
<td>0.03mW**</td>
<td>0.06mW*</td>
<td>1.13mW*</td>
<td>0.39mW*</td>
<td>1.3mW</td>
<td>Indefinite!</td>
</tr>
</tbody>
</table>

Compute locally or in the cloud?
- Low power radios can change this dilemma
- Latency and liability

Privacy and Security
- Medical data vs. fitness data

Perception
- Nano and toxicity
- Human Centric

Partnerships
- We are seeking to work synergistically towards realizing self-powered, small form factors, multi-functional sensor platforms