Cross-cutting Panel 3

What computational models and architectures enable the nanotech-to-applications connection?

Nanotechnology-Inspired Information Processing Systems of the Future Workshop

Washington D.C.

8/31/16
Panelists

Gert Cauwenberghs
UCSD, Bioengineering
Neuromorphic Computing

Luis Ceze
UW Seattle, CSE
Systems: Architecture, OS
Programming Languages

Lav Varshney
UIUC, ECE
Information and
Systems Theory

Sharad Malik
Princeton EE
System Design Methodology
From Applications to Fabrics

Inference Applications

Virtual Reality

Applications: Several algorithms
Algorithm: Several kernels

Figure source: N. Verma
Picture source: ultravr.org
From Applications to Fabrics

• Relevant application metrics
 • Statistical throughput/latency?
 • Other QoR metrics?
 • Energy per task/result?
 • BW per task/result?
 • Other resource efficiency metrics?
From Applications to Fabrics

• Emerging computation models
 • Statistical?
 • Probabilistic?
 • Neuro based?
 • Integration of hybrid models?
From Applications to Fabrics

- Microarchitecture components
 - Novel implementations of $X[t+1] = f(X[t])$
 - New state elements
 - New functional accelerators
 - New combinations
 - In-memory computing
 - In-sensor computing
From Applications to Fabrics

- Microarchitecture models
 - Error models?
 - Statistical models?
 - Functional
 - Speed
 - Energy
 - Derivation from device models?

Application Metrics
Computational Models
Microarchitecture Models
Device Models
From Applications to Fabrics

- Programming interfaces
 - Balance application specification needs with ease of mapping to microarchitectures
 - Instruction granularity
 - Appropriate intermediate representations
 - Mapping techniques

- Application Metrics
- Computational Models
- Programming Interface
- Microarchitecture Models
- Device Models
From Applications to Fabrics

- Overarching issues
 - Specialization vs. generalization
 - Amortizing platform costs
 - Amdahl’s law like benefit limits

- Maximally leveraging existing application to device stacks

Application Metrics
Computational Models
Programming Interface
Microarchitecture Models
Device Models
• Relevant application metrics
 • Statistical throughput/latency?
 • Other QoR metrics?
 • Energy per task/result?
 • BW per task/result?
 • Other resource efficiency metrics?

• Microarchitecture models
 • Error models?
 • Statistical models?
 • Functional
 • Speed
 • Energy
 • Derivation from device models?

• Emerging computation models
 • Statistical computation models?
 • Probabilistic computation models?
 • Integration of hybrid models?

• Microarchitecture components
 Novel implementations of $X[t + 1] = f(X[t])$
 • New state elements
 • New functional accelerators
 • New combinations
 • In-memory computing
 • In-sensor computing

• Overarching issues
 • Specialization vs. generalization
 • Amortizing platform costs
 • Amdahl’s law like benefit limits
 • Maximally leveraging existing application to device stacks

• Programming interfaces
 • Balance application specification needs with ease of mapping to microarchitectures
 • Instruction granularity
 • Appropriate intermediate representations
 • Mapping techniques

• Programming interfaces
 • Balance application specification needs with ease of mapping to microarchitectures
 • Instruction granularity
 • Appropriate intermediate representations
 • Mapping techniques