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Much of science will happen  
at the boundary between  

simulation and observation 
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Superfacility for Science 
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HipGISAXS & RMC 

GISAX 
 
 
 
 
Slot-die printing of  
Organic photovoltaics  

Global optimization: compute in detectors and on site (lower 
latency) vs. (cheaper) centralized facilities; network bandwidth 
 



Using HPC in Bioinformatics 

HipMer = High Performance Meraculous assembler 
•  Human genome (3Gbp): 

–  SGA assembler: 140 hours 
–  Original Meraculous: 48 hours (Perl, some serial bottlnecks) 
–  HipMer: 4 minutes (700x speedup) 

•  Wheat genome (17 Gbp): 
–  Meraculous (did not run, 170 hours projected):  
–  HipMer: 39 minutes; 15K cores (first all-in-one assembly) 

•  Wetland metagenome (1.25 Tbp): 
–  Meraculous (projected): 15 TB  
–  HipMER: 11 minutes; 20K cores (contig generation) 

Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, Aluru, Egan,Hofmeyr 



Data Fusion for Observation with 
Simulation 

•  Unaligned data from observation 
•  One-sided strided updates  

Scott French, Y. Zheng, B. Romanowicz, K. Yelick 

Hawaii hotspot geology 



Science in embedded sensors:  Internet of 
Things 
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Decision Science 

Transportation Modeling Power Grid Modeling 

Scenario Prediction, Planning 

Figure 7: Hourly averaged actual usage is shown on the left. And hourly averaged predicted usage is
shown on the right. Triangles markers show the averaged temperature. As presented in Tables 4 and 5,
the predicted usage shows higher values than the actual usage, demonstrating that differing pricing policies
affect household usage patterns.

accurate short-term forecasts, our baseline model aims to capture intraday characteristics that persists for
years. Our tests show that one of the boosting technique, GTB, could incorporate important features such
as outdoor temperature and capture the core user behavior. For example, the baseline model from GTB
accurately reproduces the lag between the daily peak temperature and peak electricity usage.

The ultimate objective of our work is to evaluate the effectiveness of the different pricing schemes.
The new baseline is an important component. This preliminary work demonstrate that new approach is
promising, but additional work is needed to evaluate the effectiveness of this approach. For example, we
should to re-evaluate the features used in the regression models and systematically measure their impact.
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Computing Challenges: 
•  Real-time processing, filtering, denoising with model fitting 
•  Machine learning algorithms and scalable implementations 
•  Decision support models; understanding and influencing humans 
  



Programming Challenge? Science Problems 
Fit Across the “Irregularity” Spectrum 

Massive 
Independent 
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data 
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Increasing	irregularity	(lower	computa4onal	
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Analytics vs. Simulation Kernels:  

7 Giants of Data 7 Dwarfs of Simulation 
Basic statistics Monte Carlo methods 
Generalized N-Body Particle methods 
Graph-theory Unstructured meshes 
Linear algebra Dense Linear Algebra 
Optimizations Sparse Linear Algebra 
Integrations Spectral methods 
Alignment Structured Meshes 

There are some differences between data and simulation algorithms, but 
more similarities than differences.  Some of the data algorithms use no 
arithmetic (genomics) or lower precision (deep learning) and the sparse 
matrices are typically less structured. 
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What users want from (nano-inspired) computers


•  An	exaop	single	threaded	general	processor	with	1	
exabyte	of	bandwidth	

•  1000x	reduc9on	in	cost	per	“core	hour”	in	the	cloud	
– Make	imprac4cal	problems	prac4cal	
–  Cost	is	best	represented	by	energy	(reflect	system	size,	
personnel	costs,	power	bill,	etc.)	

•  Flat	memory	hierarchy	
–  Increase	fast	memory	capacity	1000x	
–  Increase	bandwidth	to	slower	memory	and	lower	latency	

•  Or	a	machine	that	does	this	at	least	for	key	kernels:		
–  Sparse	/	dense	matrix	products,	FFTs,	convolu4ons,	stencils		

-	11	-	



Communication Avoiding Algorithms 
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“A shadow” 

“C shadow” 

j 

i A66k x 172k, B172k x 66k, 0.0038% nnz, Cray XC30 

100x 

Communication-Avoiding Sparse/Dense Matrix Multiply 

for i 
   for j 
      for k 

B[k,j]  … A[i,k] …  C[i,j] … 

Penporn Koanantakool et al, 2016 
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Communication Avoiding Matrix Vector Multiply  
On a 1D Grid (aka a line) 

 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  
 

 
•  Idea: pick up part of A and x that fit in fast memory, compute 

each of k products 
•  Example: A tridiagonal matrix (a 1D “grid”), n=32, k=3 
•  General idea works for any “well-partitioned” A 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels 
(Sequential case) 

The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Sequential Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Saves bandwidth (one read of A&x for k steps) 
•  Saves latency (number of independent read events) 

Step 1 Step  2 Step  3 Step  4 



Matrix Powers Kernel on a General Matrix 

•  Saves communication for “well partitioned” matrices 
•  Serial memory bandwidth: O(1) moves of data  moves vs. O(k) 
•  Parallel message latency: O(log p) messages vs.  O(k log p)  
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Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin 

For implicit memory 
management (caches) 
uses a TSP algorithm 
for layout 
 



Special Purpose Devices for Science Mission 

Neuromorphic Custom Processing 

Even with new 
devices, gains in  
performance are 
from parallelism 
and specialization 

Quantum simulation 

Use Convolutional 
Neural Nets for low-
power, real-time data 
analysis in materials, 
biology and 
cosmology 

IBM TrueNorth chip Siddiqi’s Quantum Circuit  

Experimentally 
implement chemical 
simulation protocols 
in existing qubit 
simulation platform 

CHISEL for hardware design 



Principles for Algorithms, Systems and Applications"
(What the users will do)


•  Increase	parallelism	
–  Add	expression	level	parallelism	in	addi4on	to	task/data/loop	
–  Expose	the	data	to	map	(sta4cally?)	to	hardware	

•  Avoid	communica9on	(in	spite	of	innova4ons)	
–  Novel	algorithms	and	soZware	

•  Avoid	synchroniza9on	(including	for	new	architectures)	
–  Overlap,	tasking,	event-driven	execu4on:	for	variable	clock	speeds	
–  Reproducibility	in	spite	of	asynchrony	and	approxima4on	

•  Increase	specializa9on	and	adapta9on	
–  Code	genera4on	and	op4miza4on	to	use	special	purpose	devices,	
FPGAs,	analog,	neural,	quantum,…	

–  New	models	of	computa4on	and	types	of	algorithms	
–  What	does	computa4onal	mean?	
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