Server Side Applications
(i.e., public/private Clouds and HPC)

Kathy Yelick
UC Berkeley
Lawrence Berkeley National Laboratory

<
A
rrrrrrr ""l

BERKELEY LAB

Proposed DOE Exascale Science Problems

s

’(/3 ',‘
NS
> »
3 E :

A

e o k_h:j}'(':‘.
Combustion

Light Sources Power Grid Mangfacturing

Much of science will happen
at the boundary between
simulation and observation

ALS

ADVANCED
LIGHT SOURCE

JEONT=1 J(NT=T8 .. (e‘)NJ’JI[

B . ol
HogGISAXS 8 RG]

» | ‘.‘
\Applied Math

Global optimization: compute in detectors and on site (lower
latency) vs. (cheaper) centralized facilities; network bandwidth

Using HPC in Bioinformatics

HipMer = High Performance Meraculous assembler

Human genome (3Gbp):

— SGA assembler: 140 hours

— Original Meraculous: 48 hours (Perl, some serial bottinecks)
— HipMer: 4 minutes (700x speedup)

Wheat genome (17 Gbp):

— Meraculous (did not run, 170 hours projected):

— HipMer: 39 minutes; 15K cores (first all-in-one assembly)
Wetland metagenome (1.25 Thp):

— Meraculous (projected): 15 TB
— HipMER: 11 minutes; 20K cores (contig generation)

Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, Aluru, Egan,Hofmeyr

Data Fusion for Observation with
Simulation

« Unaligned data from observation
 One-sided strided updates

2500
1

g . {
\ X
Scott French, Y. Zheng, B. Romanowicz, K. Yelick Q North

Hawaii hotspot geology [i

BERKELEY LAB

Science in embedded sensors: Internet of
Things

Transportation Modeling Power Grid Modeling

= s G

Computing Challenges:
* Real-time processing, filtering, denoising with model fitting
 Machine learning algorithms and scalable implementations
* Decision support models; understanding and influencing humans

Programming Challenge? Science Problems
Fit Across the “Irregularity” Spectrum

Massive Nearest All-to-All Random
Independent Neighbor Simulations access, large

Jobs for Simulations data
Analysis and Analysis

Simulations

Increasing irregularity (lower computational
intensity, and lower spatial and temporal locality) [

<
A
rrrrrrr ""l

Analytics vs. Simulation Kernels:

7 Giants of Data 7 Dwarfs of Simulation
Basic statistics Monte Carlo methods
Generalized N-Body Particle methods
Unstructured meshes
Linear algebra Dense Linear Algebra
Optimizations { Sparse Linear Algebra
Integrations Spectral methods
Alignment Structured Meshes

There are some differences between data and simulation algorithms, but
more similarities than differences. Some of the data algorithms use no

! arithmetic (genomics) or lower precision (deep learning) and the sparse
% matrices are typically less structured.

Machine Learning Mapping to Linear Algebra

Logistic : : : : Graphical
: Dimensionality Clustering :
Regression, . Model Deep Learning

Reduction (e.g., (e.g., MCL, .

Support Structure (Convolutional
NMF, CX/CUR, Spectral .

Vector PCA) Clustering) Learning (e.g., Neural Nets)

Machines & CONCORD)

=
A T~ X

Sparse Sparse Sparse Matrix Sparse - Sparse -
! ! . Dense Dense
Matrix- Matrix- Times Sparse _ Dense :
: . Matrix , Matrix
Sparse Dense Multiple Matrix Matrix :
Vector Matrix

Product
Vector Vector Dense Vectors Product (BLAS2) (SoDM?) (BLAS3)

(SpMSpV) (SpMV) (SpPMM) (SPGEMM)

Increasing arithmetic intensity

What users want from (nano-inspired) computers

* An exaop single threaded general processor with 1
exabyte of bandwidth

1000x reduction in cost per “core hour” in the cloud
— Make impractical problems practical

— Cost is best represented by energy (reflect system size,
personnel costs, power bill, etc.)

Flat memory hierarchy
— Increase fast memory capacity 1000x
— Increase bandwidth to slower memory and lower latency

* Or a machine that does this at least for key kernels:
— Sparse / dense matrix products, FFTs, convolutions, stencils

-11 -

Communication Avoiding Algorithms

Communication-Avoiding Sparse/Dense Matrix Multiply

400 T T T
—+— 15D Col A
350 L =—t+— 15D Inner ABC |
1.5D Col ABC
300 | —+— 2.5D SUMMA ABC |

3

N
(62
o

Mflops per core
N
o
o

MK

/ “C shadow”

Y

“A shadow”

150
100
50 ;

N I e

384 768 1536 3072 6144

Machine size (# cores) .
A6k x 172k B172k x 66k (0,0038% nnz, Cray XC30 I <
for i
for j
for k

Cli,jl ... Ali,K]... B[Kj] ...

Penporn Koanantakool et al, 2016

<
A
rrrrrrr "“l

12 BERKELEY LAB

Communication Avoiding Matrix Vector Multiply
On a 1D Grid (aka a line)

The Matrix Powers Kernel : [Ax, A%X, ..., A¥X]

 Replace k iterations of y = A-x with [Ax, A%x, ..., A*]

12 3 4 32

 |dea: pick up part of A and x that fit in fast memory, compute
each of k products

« Example: A tridiagonal matrix (a 1D “grid”), n=32, k=3
eneral idea works for any “well-partitioned” A

Communication Avoiding Kernels

gSeguenﬁaIcase)
T [AX, A°X, ..., A"X]

he Matrix Powers Kernel :

« Replace k iterations of y = A-x with [Ax, A%X, ..., A*X]
« Sequential Algorithm
Step 1 Step 2

1 2 3 4.. ... 32
 Example: A tridiagonal, n=32, k=3
« Saves bandwidth (one read of A&x for k steps)

« Saves latency (number of independent read events)

Matrix Powers Kernel on a General Matrix

For implicit memory
management (caches)
uses a TSP algorithm
for layout

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

« Saves communication for “well partitioned” matrices
« Serial memory bandwidth: O(1) moves of data moves vs. O(k)

" Parallel message latency: O(log p) messages vs. O(k log p) ’\‘ \
16 BERKELEY

‘ml
BERKELEY LAB
e B Nont ey

Special Purpose Devices for Science Mission

Neuromorphic

/ B

Rn (\FL\\J

Use Convolutional
Neural Nets for low-
power, real-time data

analysis in materials,

biology and
cosmology

Quantum simulation

Experimentally
implement chemical
simulation protocols
in existing qubit
simulation platform

Custom Processing

Even with new
devices, gains in
performance are
from parallelism
and specialization

BERKELEY LAB

Principles for Algorithms, Systems and Applications
(What the users will do)

Increase parallelism
— Add expression level parallelism in addition to task/data/loop
— Expose the data to map (statically?) to hardware

* Avoid communication (in spite of innovations)
— Novel algorithms and software

* Avoid synchronization (including for new architectures)
— Overlap, tasking, event-driven execution: for variable clock speeds
— Reproducibility in spite of asynchrony and approximation

* Increase specialization and adaptation

— Code generation and optimization to use special purpose devices,
FPGAs, analog, neural, quantum,...

— New models of computation and types of algorithms
~ — What does computational mean?

-18-

