Modeling and Analyzing Education Systems: Two Applications for CSLS

Britte Haugan Cheng
Presented to CSLS Workshop 2
Ann Arbor, Michigan
November 2, 2016
Problem 1: Scaling Educational Innovations
Problem 2: Reforming Educational Testing Systems
Problem 1: Scaling Educational Innovations
Challenges to Scaling Educational Innovations

• Emerging theory
 – Implementation models (variation, social dynamics)
 – Context of implementation

• Few resources to aggregate theory, design knowledge, research results
 – Publication is non-functional
 – Aggregating theory requires it’s own theory (systemic research is expensive and often narrowly focused)
Current Approaches

• Emerging Theory: Design-based Methods (knowledge to practice)
 – Design-based Implementation Research
 – Research-Practitioner Partnerships
• Resources to Aggregate Results: Large-scale Evaluations
 – RCTs
 – What Works Clearing House
New Solutions via CSLS: Computational Models of Systems

• Emerging Theory: Participatory Modeling of Implementation
 – Models as ‘boundary objects’
 – Integrating social networks and dynamics
• Resource to Aggregate Results: Functional, Reusable, Extensible
 – Retrospective analysis and simulation (prediction, experimentation)
 • Demonstrate success and failure
 • Illustrate crucial variation
 – Existing models are valuable in new contexts

Example: STEM recruitment and retention model in Higher Education
Problem 2: Reforming Educational Testing Systems
Challenges to Reforming Testing Systems

• System stakeholder outcomes do not align
 – Formal testing infrastructure vs. Classroom Learning
 • Trends (longitudinal comparisons)
 • Expensive

• Data streams do not converge
 – Classroom data is not easily aggregated or communicated
 – Large-scale data is not timely
Current Approaches

• Aligning system stakeholder outcomes
 – Vertical Assessment Systems (vertical alignment vs. vertical scaling)
 – Learning progressions (developmental alignment/coherence)

• Converging data streams
 – Cognitive models and data models (ITS)
 – Bayesian measurement models (game-based assessment) and emerging products of learning analytics
 – Computer-adaptive testing models
New Solutions via CSLS: Computational Models of Systems

• Aligning system stakeholder outcomes
 – Coordinate cognitive and measurement models across classroom and large-scale assessment contexts
 • Vast variation in student trajectories
 – Infrastructure for establishing this alignment in new contexts

• Converging data streams
 – New data corpuses for learning analytics/educational analytics
 – New insights into data organization and structure

Example: Formative Assessment Systems Model
Thank You