UNDERSTANDING SCIENTIFIC COLLABORATION

AAAI/CCC Symposium on Accelerating Science: A Grand Challenge for AI

Charlotte P. Lee
Associate Professor
Dept. of Human Centered Design & Engineering (HCDE)
University of Washington
Seattle, WA
Research Program: Empirically grounded collaboration theory

How can we better understand and support how scientists collaborate?

Approach: how scientists do research and how they organize in order to do their work
What is Computer Supported Cooperative Work (CSCW)?

• Subfield of Computer Science field of Human-Computer Interaction (HCI)

• Notion of “Human” in HCI keeps expanding
 • Ergonomics/Human Factors
 • Psychology
 • Social Science – (Organization Science), Ethnomethodology, Anthropology, Sociology
 • Humanities/Arts

• CSCW concerned with informing user-centered design of collaborative systems how people cooperate in social situations
 • how people use existing systems,
 • How prototype affects human activity
Social Science in HCI

Strongest influences
• Cultural Anthropology
• Ethnomethodology

Ethnography the first Social Science method widely adopted in HCI and CSCW (not the only one!)
• Rich descriptions
• Emphasis on the particular cases
• Implications for design
• Skepticism about theory, models
Releasing the stranglehold and breaking down barriers in CSCW

- Grounded, data-driven theories of collaboration
- Multi-sited ethnography of scientific research groups
- Studying and theorizing the “middle range” – meso level theory.

- Early stages of any science focus on descriptive laws that summarize empirical regularities

- Model of Coordinated Action (MoCA)
- Theoretical framing to generate new research questions for both qualitative and quantitative researchers
The Model of Coordinated Action (MoCA) and its seven dimensions with the end points of each continuum.

Lee & Paine 2015
Implications for CSCW Research

- Change over time
- Differences *within*
 - particular domains
 - particular types of activity
- Differences *across*
 - particular domains
 - particular types of activity

Early prototype of a comparative, overlaid visualization of the coordinated action examples discussed in article. Not actual data.
Research Program

How can we better understand and support how scientists collaborate?

- Scientific Cyberinfrastructures
- All types of collaboration for innovation
- Sociotechnical design for emergent organizations
CSCW Research on Sociotechnical Aspects of Scientific Collaboration

- Collaboratories
- *Cyberinfrastructure Development and Use*
- Data Sharing / Data Science
- Software Development
- Infrastructure Studies
Accelerating Science: A Computing Research Agenda

White paper by Honavar, Hill and Yelick (2016):

• Accelerating science requires rich model of entire scientific process
• Science increasingly a collaborative — need sharable structures and processes that facilitate collaborative science
• Need to do more supporting sharing: scientific workflows, mechanisms for decomposing tasks, assigning tasks, integrating results
Looking at All of Scientific “Process”

Figure 1: A Cartoon of the Scientific Process
CROSS-DISCIPLINARY COMPARATIVE STUDY OF SCIENTIFIC COLLABORATION
Research Sites

- University of Washington, Seattle WA
- Four research groups in different sciences doing data-intensive research
Research Sites

<table>
<thead>
<tr>
<th>PI</th>
<th>Phenomena of Study</th>
<th>Research Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hank</td>
<td>Interaction of “dynamics, radiation, and cloud processes”</td>
<td>4 Doctoral Students</td>
</tr>
<tr>
<td>Atmospheric Science professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waldo</td>
<td>Submarine volcanoes and mid-ocean ridge hydrothermal systems</td>
<td>3 Doctoral Students</td>
</tr>
<tr>
<td>Marine Geophysicist professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin</td>
<td>Human Immunodeficiency Virus (HIV)</td>
<td>1 Doctoral Student</td>
</tr>
<tr>
<td>Microbiologist professor</td>
<td></td>
<td>3 Research Scientists</td>
</tr>
<tr>
<td>Magnus</td>
<td>Epoch of Reionization through the development and application of novel radio telescopes</td>
<td>3 Post-Doctoral Researchers</td>
</tr>
<tr>
<td>Empirical Cosmologist professor</td>
<td></td>
<td>3 PhD Students</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Undergraduate Students</td>
</tr>
</tbody>
</table>
Research Methods

• Qualitative study
 • Observations of group meetings
 • Three rounds of semi-structured interviews over 3 years
 • Artifact analysis
 • Examination of Wikis, software code, publications, websites

• Iterative qualitative data collection and analysis to elicit and develop themes
Two Research Data “Lifecycle” Models

Models necessarily abstract and concretize stages, however work is much more fluid and interconnected!

Assembling or Selecting a Subset of Data - Examples

Hank - Atmospheric Science

Data Product A
Precipitation values

Data Product B
Temperature values

Data Product N

Waldo – Marine Geophysics

Ocean Bottom Seismometer
Data Product
Air gun shots

Model Product X

Crust Model
Product A
Researcher 1

Crust Model
Product B
Researcher 2
Assembling or Selecting a Subset of Data

• In Waldo’s group one data product supports multiple sub-projects, each researcher selects elements from it:
 • “… we can go through and look at the arrival of each packet of energy from those air gun shots, and you just make little clicks along in the GUI in order to identify where that arrival is.” (Rollin, PhD student)
Processing Work

- refines data products for particular scientific goals
- requires a high level of scientific and technical competence
- Often shapes and is shaped by iterations of research questions themselves—not necessarily separate from analysis
Coordinative Entities Framework (CEF)

How can we better understand and support how scientists collaborate?

- Multi-sited ethnography
- 4 coordinative “entities”
- prototypical organizational or cooperative work arrangements (Schmidt 1990)
- social system of work with different forms of interaction
- Identifying prototypical types and learning about differences between them
<table>
<thead>
<tr>
<th>Entity</th>
<th>Key facets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Group (PG)</td>
<td>1 Focal group of a CSCW study organized by a principal investigator who plans and runs projects to advance their research agenda 3 Endures over time so long as the PI is engaged in research</td>
</tr>
<tr>
<td>Project Aggregation (PA)</td>
<td>4 Group organized or co-organized by a PI or member of their PG around a shared research question or goal 6 Endures for either short or long periods of time until shared questions or goals are resolved or put aside 7 Lacks formal organizational structure and depends upon continuing engagement between PGs</td>
</tr>
<tr>
<td>Project Federation (PF)</td>
<td>8 Formal partnership of individuals, groups, or organizations developing and using resources for multiple scientific questions or goals 10 Endures over time to sustain and use resources produced 11 Membership is formal with defined rules and requirements and a CSCW study’s focal PG must be members</td>
</tr>
<tr>
<td>Facility Organization (FO)</td>
<td>12 Organization producing and sustaining resources in a general research area that a PG or PA can draw upon in their research projects 14 Endures over time to ensure availability and durability of its resources</td>
</tr>
</tbody>
</table>
Entities by Formalization

Formalization & Entrenchment

Less Formal

Project Aggregations (PAs)

Principal Groups (PGs)
Project Federations (PFs)

Facility Organizations (FOs)

More Formal
Principal Group (PG)

- A **focal** group being studied
- Organized by a Principal Investigator (PI)
 - Has projects planned & run to advance PI’s agenda
- Composed of
 - Undergraduate & graduate students
 - Postdocs
 - Research scientists
 - Other research staff
- Endures over time with PI’s career
Project Aggregation (PA)

• Group engaging member(s) of one PG with member(s) of other PG(s)
• Organized around **shared** research goal or task
• Short or long-term endurance
 • Dissolves when questions/goals are resolved or shelved
• **Lacks** formal organizational structure
 • Depends on **ongoing** engagement between PGs
Project Federation (PF)

- **Formal** partnership of individuals, groups, organizations
- Developing & using resources for multiple research questions or goals
- Membership is formal with **rules & requirements**
 - Members come from constituent PGs, PAs, or organizations
- A focal PG must be members
- Endures over time to sustain resources
Facility Organization (FO)

- Organization producing & sustaining resources
- PGs and PAs rely upon FOs as a resource provider
- PGs or PAs are NOT members of FO’s organization
- Endures over time to keep resources available
Figure 1. Overview of the WRT Project Federation with different sub-PFs and their constituent PGs and PAs. Magnus’s PG is highlighted in green, nested within the US EoR PA, the EoR sub-PF, and the overarching WRT Project Federation. We did not study the A, B, or C science PFs.
<table>
<thead>
<tr>
<th>Research Group</th>
<th>Data Collection</th>
<th>Data Processing</th>
<th>Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hank</td>
<td>Principal Group (PG) Facility Organization (FO)</td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
</tr>
<tr>
<td>Climate Modeling</td>
<td>Waldo</td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
</tr>
<tr>
<td>Undersea Seismology</td>
<td>Principal Group (PG) Facility Organization (FO)</td>
<td>Martin</td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
</tr>
<tr>
<td></td>
<td>Martin</td>
<td>Principal Group (PG) Facility Organization (FO)</td>
<td>Principal Group (PG) Project Federation (PF)</td>
</tr>
<tr>
<td>HIV Microbiology</td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
<td>Magnus</td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
</tr>
<tr>
<td></td>
<td>Project Federation (PF)</td>
<td>Magnus</td>
<td>Principal Group (PG) Project Federation (PF)</td>
</tr>
<tr>
<td></td>
<td>Principal Group (PG) Project Aggregation (PA)</td>
<td></td>
<td>Principal Group (PG) Project Federation (PF)</td>
</tr>
</tbody>
</table>
Conclusion

• Still know very little about the dynamics of scientific collaboration
• More complicated than imagined, but not intractable
• Need right people with the right tools
 ➔ Climbing Everest ➔

We’re working on it!
Papers

Acknowledgements

This work has been supported in part by National Science Foundation grants IIS-0954088, ACI-1302272, OCI-1220269, IIS-0712994, and OCI-0838601

Thanks also to:

Ying-Yu Chen
Ilana Diamant
Scott D. Mainwaring
Ron Piell
Erin Sy
Study Participants