Causal Inference and the Data-Fusion Problem

Elias Bareinboim eb@purdue.edu

(Joint work with J. Pearl)

Symposium on Accelerating Science:
A Grand Challenge for Al
November, 2016

Nuts and D.

WHAT'S GOING ON HERE?

Language of Science

Perhaps surprising to some...

Chomsky Hierarchy

Computation

- Not only computational
 Not only sample size
 - Interplay of observations, experiments, and substantive knowledge

Data collection (not # samples)

The Grammar of Science, Pearson, 1892

Noise, uncertainty, and variability.

Statistical Models

Models

Models

tension between layers..

The Design of Experiments Fisher, 1935

GOAL

- Develop machinery (language, conditions, and algorithms) for performing two tasks:
 - 1. Learning about population-level causal effects by cohesively combining multiple heterogenous datasets.

Bareinboim, Pearl. Causal Inference and the Data-Fusion Problem. PNAS'16.

2. Deciding individual-level treatments by leveraging population-level fused data.

Bareinboim, Forney, Pearl. Bandits with Unobserved Confounders. NIPS'15.

BIG PICTURE ("All data is not created equal")

- Heterogenous datasets are pervasive in the empirical sciences since the data is collected:
 - (1) under different experimental conditions,
 - (2) the underlying populations are different,
 - (3) the sampling procedure is not random,
 - (4) the treatment assignment is not random,
 - (5) many variables are not measured.
- All these dimensions are now formalized.
- And there are conditions and algorithms to decide what is "entailed" from a certain data collection.

MOTIVATION FOR DATA-FUSION

Target population Π^*

Query of interest $Q = P*(y \mid do(x))$

(a) US

Census data available

(b) New York

Survey data resembling target

(c) Los Angeles

Survey data younger population

(d) Boston

Age not recorded Mostly successful lawyers

(e) San Francisco

High post-treatment blood pressure

(f) Texas

Mostly Spanish subjects
High attrition

(g) Arkansas

Randomized trial College students

(h) Utah

RCT, paid volunteers, mainly unemployed

(i) Wyoming

Natural experiment young athletes

HETEROGENOUS DATASETS

Target Q = P*(y |do(x)) Dataset 1

Dataset 2

Dataset n

d ₁	Population	Los Angeles	New York	Texas
d ₂	Obs. / Exp.	Experimental	Observational	Experimental
	Treat. Assign.	Randomized Z ₁	-	Randomized Z ₂
d ₃	Sampling	Selection on Age	Selection on SES	-
d ₄	Measured	X ₁ , Z ₁ , W, M, Y ₁	X_1, X_2, Z_1, N, Y_2	X ₂ , Z ₁ , W, L, M, Y ₁

DATA-FUSION TASKS

Description of each dataset: tuple (d₁, d₂, d₃, d₄) (population, obs./exp., sampling, measure.)

```
    Causal Inference (observational studies)
    (d₁, Observ., d₃, d₄) → (d₁, Experiment(X), d₃, d₄)
```

- 2. Sampling Selection Bias $(d_1, d_2, Select(Salary), d_4) \rightarrow (d_1, d_2, \{\}, d_4)$
- 3. *Transportability* (External Validity) (Bonobos, d₂, d₃, d₄) → (Humans, d₂, d₃, d₄)

Data-fusion:

```
\{(d_1, d_2, d_3, d_4)\} \rightarrow (d'_1, d'_2, d'_3, d'_4)
```

BIG PICTURE

With the current scientific knowledge about the problem (2) and the available data (3), is it possible to answer the research question (1)?

inference engine

solution (yes) no)

$$P^*(y \mid do(x)) = \sum_{z} P(y \mid do(x), z) P^*(z)$$

3 data -

$$P^*(x, y, z) + P(y | do(x), z)$$

DEMO

CONCLUSIONS

- Data-fusion from big data requires encoding of structural features of the data-generating model.
 - Even when the 'gold standard' (RCTs) is available, it is still not direct to compute effects of interventions.
- There are necessary and sufficient conditions (and algorithms) that fully characterize sampling selection bias and transportability (non-parametrically).
- Principled framework for data-fusion pooling and aggregating observational and experimental information spread throughout heterogenous domains for population- and individual-level causal inference.