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Jeffrey Preston "Jeff" Bezos

is an American Internet

entrepreneur and investor.

He is a technology

entrepreneur who has

played a key role in the

growth of e-commerce as the founder and
CEO of Amazon.com, ... Wikipedia

Born: January 12, 1964 (age 50),
Albuquerque, NM

Nationality: American

Spouse: Mackenzie Bezos (m. 1993)

Parents: Ted Jorgensen, Jacklyn Bezos,
Miguel Bezos

Education: Princeton University (1986),
River Oaks Elementary School, Miami
Palmetto High School
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[McCallum et al 1996]
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Abstract

This paper surveys the ficld of reinforcement learning from a computer-science pe
gpective. It is written to be accessible to rescarchers familiar with machine learning. Bo
the historical basis of the ficld and a broad seclection of current work are summariz
Reinforcement learning is the problem faced by an agent that learns behavior throu,
trial-and-crror intcractions with a dynamic environment. The work described here has
resemblance to work in psychology. but differs considerably in the details and in the u
of the word “rcinforcement.” The paper discusses central issucs of reinforcement learnir
including trading off exploration and cxploitation, cstablishing the foundations of the fic
via Markov decision theory, learning from delayed reinforcement, constructing empirie
models to accelerate learning, making use of generalization and hicrarchy, and coping wi
hidden state. It concludes with a survey of some implemented systems and an asscssme
of the practical utility of current methods for reinforcement learning.

1. Introduction

Reinforcement learning dates back to the carly days of cybernetics and v
psychology, ncuroscicnce, and computer science. In the last five to ten years, it has att
rapidly increasing intercst in the machine learning and artificial intelligence commu
Its promisc is beguiling—a way of programming agents by reward and punishment w
needing to specify how the task is to be achicved. But there are formidable compute
obstacles to fulfilling the promise.

This paper surveys the historical basis of reinforcement learning and some of the ¢
work from a computer science perspective. We give a high-level overview of the ficld
tastc of some spcecific approaches. It is, of course, impossible to mention all of the imp
work in the ficld; this should not be taken to be an exhaustive account.

—
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1. A Machine Learning Architecture for Optimizing Weh Search Engines
Justin Boyan, Dayne Freitag, and Thorsten Joachims
Abstract: Indexing systers for the World Wide Web, such as Lycos and Alta Vista, play an essential role in
nseful and usable. These systems are based on Information Retrieval methods for indexing plain text docuraent
heuristics for adjusting their document rankings based on the special HTML structure of Web documents. In
descrbe a wide range of such heuristicslincluding & novel one inspired by reinforcement leaming techniques fo
resvards through a graphlwhich can be used to affect a search engine’s rankings. We then dermonstrate a syste
coxmbine these hewrstics automatically, based on feedback collected unintrusively from nsers, resulting in rane
rankings.

Postscript Referring Page Details BibTeX Entry Word Matches: boyan, search engines Score: 1

2. Value Function Based Production Scheduling
Jeff G. Schneider Justin A, Boyan Andrew W, Moore
Abstract: Production scheduling, the problern of sequentially configuring a factory to meet forecasted demands
problem throughout the manufacturing industey. The requirement of maintaining product inventories in the face
demand and stochastc factory output makes standard scheduling models, such as job-shop, inadequate. Curre
algonthms, such as simulated annealing and constraint propagation, must exploy ad-hoc methods such as freq
cope with uncertainty. In this paper, we descrbe a Markov Decision Process (MDP) formulation of production
captures stochasticity in both production and demands. The solution to this MDP is a value function shich can
generate optimal scheduling decisions online. A simple exarmple illustrates the theoretical superiority of this ap
replanning-based methods. We then descabe an industdal application and two reinforcement leaming raethods
approximate value function on this domain. Our results demonstrate that in both detenministic and noisy scens
approxraation is an effective technique.

Postscript Referring Page Details BibTeX Entty Word Matches: boyan Score: 0.6094

3. Least-Squares Temporal Difference Learning

Justin A, Boyan

Abstract: Subritted to NIPS-98 TD() is a popular fanily of algorithms for approximate policy evaluation in la

works by incrementally vpdating the value function after each observed transition. It has two major drasvbacks
inefficient use of data, and it requires the nser to rnanually tune a stepsize schedule for good performance. For
value function approxirations and = 0, the Least-Squares TD (LSTD) algorithm of Bradtke and Barto [5] elir
parameters and iraproves data efficiency. This paper extends Bradtke and Barto’s work in three significant wa
presents a simpler derivaton of the L3TD algorithm. Second, it generalizes from = 0 to arbitrary values of ; at

the resulting algoxthm is shown to be a practical formulation of supenised linear regression. Third, it presents
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Application Goals

A KB of all scientists in the world

from papers, patents, web pages, newswire, press releases, tweets, blogs,...

A KB of scientific entities & relations

materials, equipment, organisms, processes, tasks, methods,...

- Better tools — Accelerate progress of science.

« Revolutionize peer review
- “open peer review”
- Submission, reviews & comments public.
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Improving Generative Adversarial Networks with Denoising Feature Matching pdf
David Warde-Farley, Yoshua Bengio

5Nov 2016 ICLR 2017 conference submission readers: everyone

Abstract: We propose an augmented training procedure for generative adversarial networks designed to address shortcomings of the
original by directing the generator towards probable configurations of abstract discriminator features. We estimate and track the
distribution of these features, as computed from data, with a denoising auto-encoder, and use it to propose high-level targets for the
generator. We combine this new loss with the original and evaluate the hybrid criterion on the task of unsupervised image synthesis from
datasets comprising a diverse set of visual categories, noting a qualitative and quantitative improvement in the ““objectness" of the
resulting samples.

TL;DR: Use a denoiser trained on discriminator features to train better generators.
Conflicts: umontreal.ca, iro.umontreal.ca, polymtl.ca, google.com

Keywords: Deep learning, Unsupervised Learning

Authorids: d.warde.farley@gmail.com, yoshua.umontreal@gmail.com

Add Comment public review
1 reply

Training Scheme and Denoising
Antonia Creswell

16 Nov 2016 ICLR 2017 conference paper580 public comment readers: everyone

Comment: The generations in this paper suggest that using extra information from features of the discriminator allows the generator to
produce images with more object like features. | have some questions/comments:

1) In equation 5 it appears that you are training r to reconstruct a corrupted version of the features, rather than the features themselves,
the reason for this is not clear?

II Cphi(x)) - r(C(phi(x))) || rather than | phi(x) - (C(phi(x))) |

2) This approach involves training 3 networks. It would be interesting to know what kind of training scheme was used? Whether, D,G and r
networks are trained for one iteration each, or if some networks are trained for more iterations before updating the next network?

3) It would also be interesting to know whether parameters |_denoise and |_adv are fixed or adjusted during training?

Add Comment
* denotes a required field

title

Brief summary of your comment

comment

Your comment or reply
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[2010, 2012]

evidence evidence evidence

Structured
Data

Entity Relation Resolution
Extraction Extraction (Coref)

Human Edits as evidence: [wick, Schultz, McCallum 2012]L

wer

X Traditional: Change DB record of truth
v Mini-document “Nov 15: Scott said this was true”




“Epistemological KnowledgeBase”

evidence evidence evidence

Structured
Data

Entity Relation Resolution
Extraction Extraction (Coref)

inference constantly bubbling in background...

Never Ending Inference [wick, et al 2012] l

X KB entries locked In answer

v KB entries always reconsidered with more evidence, time,...




“Epistemological KnowledgeBase”

evidence evidence evidence

Structured
Data

Entity Relation Resolution
Extraction Extraction (Coref)

inference constantly bubbling in background...

Resolution is foundational kbbD 2008: ACL 2012] l
X Not just for coref of entity-mentions... answer

v’ Align values, ontologies, schemas, relations, events,...
Especially in Epistemological DB: entities/relations never input, only “mentions”




“Epistemological KnowledgeBase”

evidence evidence evidence ,

Structured “

Data

Entity Relation Resolution
Extraction Extraction (Coref)

inference constantly bubbling in background...

Resource-bounded Information Gathering jwsbpwm 2012
X Full processing on whole web
v Focus queries and processing where needed & fruitful




“Epistemological KnowledgeBase”

Text evidence evidence evidence

docs Structured
Data

Entity Relation Resolution
Extraction Extraction (Coref)

inference constantly bubbling in background...
Inference B Inference l Inference R Inference f Inference B Inference l‘
worker worker worker worker worker worker answer

Smart Parallelism [acL 2011; NIPS 2011]
X MapReduce, black-box
v’ Reason about inference & parallelism together
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Divergences. JMLR. 2006.

A. Banerjee, |. S. Dhillon, J. Ghosh, S. Sra. Clustering on the Unit Hypersphere

using von Mises-Fisher Distributions.
Journal of Machine Learning Research. 2005
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A. Banerjee, S. Chassang, E. Snowberg. Decision Theoretic Approaches to
Experiment Design and External Validity. Handbook of Field Experiments. 2016.
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A. Banerjee, S. Chassang, E.
Snowberg. Decision Theoretic
Approaches to Experiment Design anc
External Validity. Handbook of Field
Experiments. 2016.
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Entity Resolution as
Clustering

Partition M into entities £ = {e1e2 . ek}
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Entity Resolution Challenge

Power law of entity size

Entity Mentions in Wikipedia
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[Wick, Singh, McCallum, ACL, 2012]
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[Wick, Singh, McCallum, ACL, 2012]

Entity-based Coref

Super-Entity

Mention

% More efficient. Fewer factors; avoid N2.

% Joint inference on all attributes of entity. Pair-wise couldn’t
% 100k mentions “e coli” hidden under one sub-entity.

% Better supports inference about crowd-sourced edits




[Wick, Singh, McCallum, ACL, 2012]

Hierarchical vs Pairwise Evaluation
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PubMed + Web of Science

« 200 million author mentions = ~400GB

- Inference speed
- ~100k samples per second
- ~48 hours of inference time
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Eur Neurol. 2012 Nov 23,69(2):102-107. [Epub ahead of print]

Long-Term Changes of Central Ocular Motor Signs in Patients with
Vestibular Migraine.

Neugebauer H, Adrion C, Glaser M, Strupp M.
Department of Neurology and the German Dizziness Center (IFB), University of Munich, Munich, Germany.
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January 15, 2000

Tech pioneer Bill Gates stepped down
today as chief executive officer of
Microsoft, the Seattle-headquartered

software giant. He will remain
Chairman of the company, which rose to
prominence after beating Digital
Research Inc for the contract to
provide an operating system for PCs.
His long-time friend, Steve Balmer,
will take over as CEO of Microsoft.
Gates will now focus on the charitable
foundation he runs with his wife
Melinda French Gates. Bill and Melinda
were married in a ceremony in Hawaii,
rather than her hometown of Dallas.
Steve Balmer was best man.
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Applications & Collaborations

« OpenReview.net
« MIT Material Science

« US Patent Office

« Meta.com




OpenReview.net

OpenReview.net _ mccallum@cs.umass.edu Tasks Logout
Open Peer Review. Open Publishing. Open Access. Open Discussion. Open Directory. Open I C L R 2 O 1 7
Recommendations. Open API. Open Source.

cLRz0tT UAI 2017

NIPS 2016 Deep Learning Symposium
NIPS 2016 workshop NAMPI
NIPS 2016 workshop MLITS

ECCV2016 BNMW

ICLR 2016 workshop |ightweight
ICLR 2014 L ' ' itieg"
reviewing entities

ICLR 2013

ICML2013Inferning. o Experimentatior] &
ICML 2013 PeerReview SOC|a| SCIeﬂCe on

AKBC 2013

BT | Pee review culture

ArXiv overlay




MIT Material Science

Recipe paragraphs
from 300k papers

2.1. Synthesis procedure

> Extracted recipe structure

LiFePO4 was synthesized from a stoichiometric mixture of
reagent grade NH4H,PO, (Alfa-Aesar), CH3COOLi (Aldrich), and
FeC,04-2H,0 (Aldrich) by a conventional solid-state reaction
method. These materials were ground for 20 min, then pressed into
pellets and heated at 623K in a quartz-tube furnace with flow-
ing nitrogen gas for 6 h. After slowly cooling to room temperature,
pellets were ground again for 20 min and up to 6 wt.% copoly-
mer (guluronic acid) was added to the samples. The guluronic acid
powder was ground and dissolved in the alcohol solution. These
samples were heated to 973K at a heating rate of approximately
3Kmin~! and held at that temperature for 10h in order to derive
the LiFePO4/C composite materials. After solid-state reaction, the
total carbon content of LiFePO4/C powder was measured by EA.
These carbons were obtained from the synthesized precursors and
guluronic acid.

New recipe ideas




USPTO PatentsView

Inventor Disambiguation Competition

< API Q, Data Query & Data Download

PatentsView/=>,

The PatentsView search tool allows audiences to interact with nearly 40 years of data on
patenting activity in the US. Use the tool to explore technological, regional, and individual-level
trends through several search filters and multiple view options.

VIEW RESULTS BY: @, Patent ® |nventor Ml Assignee i Class

Patent Inventor

title or number first and/or last name

Assignee, At-Issue USPC Patent Class

name name or number

Location, At-Issue Grant Date (1976-2016)

i= View as a List $ View as a Map

Recent Updates from the PatentsView Team

The PatentsView database has been updated through July 15, 2016. All respective data are
accessible through the web tool, AP, and bulk downloads.

World Intellectual Property Office (WIPO) technology fields are now integrated into the
database and can be retrieved through the APl and bulk downloads.

The updated database features two new data fields - U.S. government organization name and
contract and award numbers — both extracted from the government interest statement on

ass: 1st place. Deploying at USPTO.




Meta

Mission - Organize and Deliver All of the World’s
Scientific and Technical Information.

Founded in 2010 <« Team of 25+ < Venture Backed

Toronto (HQ) « San Francisco « Montreal




Large Commercial STEM
Text-Mining Collection
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Meta' 's Scientific Knowledge Graph:

3.5B 1B 422M 26M 16M l i

recommendations paper-concept citations papers genetic elements
matches ’
\
concepts researchers antibodies drugs mstrtutes
e

234K 96K 85K 36K 4GB —
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Summary

 Building and leveraging knowledge bases for science

- Representation
= Knowledge graph: entities & relations:
= sybets» universal schema vector embeddings (on nodes & edges)
= Reasoning by RNN paths through network.
- Next: efficient search for scientific reasoning by RL trougn tis grapn

- Applications
= OpenReview.net (+ KB of all researchers, expertise, career path)
= MIT Material Science
= USPTO Patent Inventor Disambiguation
= Meta.com




