Classical Computing

> Quantum Computing

> > Source – Google, Original Idea- Scott Holmes

Hybrid Quantum-Classical Systems: Architectures, Resource Management, and Security (Part-2)

Swamit Tannu

Quantum Control Hardware

Qubit Control: Responsible for manipulating the state of the qubits **Qubit Readout**: Responsible for measuring the state of the qubits (0/1)

Control Hardware is Expensive

Control hardware for Google Sycamore

Number of qubits	53
Number of FPGAs	30+
Number of DACs	200+
Number of mixers	50+
Number of cables	200+

Goal: \$700 per qubit

Qubit Readout for Transmon

5 frequency-multiplexed superconducting qubits¹

¹Lienhard, Benjamin, et al. "Deep-neural-network discrimination of multiplexed superconducting-qubit states." *Physical Review Applied* 17.1 (2022): 014024.

Goal: Make Readout Cost Effective

Retain crosstalk mitigation advantages offered by neural networks

Reduce hardware cost and complexity

Efficient Machine Learning Systems for High-Fidelity Qubit Readout (ISCA'23)

SATVIK MAURYA

CHAITHANYA NAIK MUDE

WILLIAM D. OLIVER

BENJAMIN LIENHARD

SWAMIT TANNU

Detecting Relaxations

Combining Matched Filters

Use traces corresponding to relaxations for training Relaxation Matched Filters (RMF).

	Baseline ¹	Our
Qubit 1	0.969	0.985
Qubit 2	0.753	0.754
Qubit 3	0.943	0.966
Qubit 4	0.946	0.962
Qubit 5	0.97	0.989
F _{5Q}	0.9122	0.9266

MF-RMF-NN

¹Lienhard, Benjamin, et al. "Deep-neural-network discrimination of multiplexed superconducting-qubit states." *Physical Review Applied* 17.1 (2022): 014024.

Hardware Utilization

To read **five qubits**,

baseline needs more resources than what we have on the FPGA, we can read **fifty qubits** with one FPGA

Lienhard, Benjamin, et al. "Deep-neural-network discrimination of multiplexed superconducting-qubit states." *Physical Review Applied* 17.1 (2022): 014024.

Software developers spend 35-50 percent of their time validating and debugging software. The cost of debugging, testing, and verification is estimated to account for 50-75 percent of the total budget of software development projects, amounting to more than \$100 billion annually

Source: The Debugging Mindset: Understanding the psychology of learning strategies leads to effective problem-solving skills

Even if they work VQAs can be hard to monetize

Running a Variational Quantum Algorithm (VQA) successfully needs:

(1) Right initialization for circuit parameters

(2) Appropriate noise mitigation methods

(3) Suitable classical optimizer configurations

VQA landscapes can help

High Performance Debugging for Variational Quantum Algorithms using Compressed Sensing (ISCA'23)

TIANYI HAO*

KUN LIU*

SWAMIT TANNU

UNIVERSITY OF WISCONSIN-MADISON

Compressed Sensing

Candès, E.J., Romberg, J.K. and Tao, T. (2006), Stable signal recovery from incomplete and inaccurate measurements. *Comm. Pure Appl. Math.*, 59: 1207-1223. https://doi.org/10.1002/cpa.20124

UNIVERSITY OF WISCONSIN-MADISON

OSCAR: cOmpressed Sensing based Cost Andscape Reconstruction

1 Pick small number of β, γ randomly

2 Run circuit with randomly selected β , γ pairs

3 Generate sampled landscape

Reconstruct Landscape

With 5%-10% of samples, we can reconstruct the full landscape

Parallel Reconstruction of Landscape

Random parameters are independent \rightarrow Embarrassingly Parallel

Evaluating Efficacy of Landscape Reconstruction

OSCAR can efficiently and accurately reconstruct cost landscapes

Use Case – Help benchmark efficacy of noise mitigation

Richardson and Linear: two mitigation methods

Reconstructed landscapes preserve features of the original ones

Recon. landscapes preserve features of the original's

Underutilized Quantum Computers Result in Large Queuing Delays

Multiprogramming: Opportunity

Partition the quantum resources enable multiprogramming to improve utilization and reduce cost

PayPal was founded in 1998, in 2000, it lost \$6 million, or \$1,900 an hour, to fraud at a time when its revenue was less than \$5 million

Multiprogramming: Security Risks

Speculated Risks : DoS, learning output state, steal circuits, compiler optimizations, etc.

"Quantum Intellectual Property" can become target

