Quantum error correction and mitigation (part 2)

Andrew Cross

IBM Quantum

Path to full-scale QC through error mitigation and correction

Error mitigation is essential for obtaining accurate results on near term quantum computers

Probabilistic Error Cancellation

Average over many circuit instances with additional gates inserted to reconstruct the noise inverse

Zero noise extrapolation

Increase noise through stretching circuits and extrapolate back to the zero noise limit

Noise amplification / stretch factor

Zero-noise extrapolation for 127 qubit, depth 60 circuits

ibm_kyiv

Learn device-wide noise

Instead of cancelling the noise, amplify it

Extrapolate to zero noise limit from measurements at amplified noise levels

Mitigation beyond expectation values

Coherent Pauli checks

 $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$ $|0\rangle$ Logical error 48 layers of CNOTs if outcome 1 Number Logical error probability of logical qubits: 0.8 0.4 n=6n=40.2 n=20.0 0 10 15 # of checks

Payload 1: repeated layers CNOTs

 $|0\rangle$

Single-shot error mitigation by coherent Pauli checks van den Berg et al, arXiv:2212.03937 (2022)

CPC construction:

Roffe et al, Quant. Sci. Tech., 3(3):035010 2018 Debroy and Brown, PRA 102(5):052409 2020 Gonzales et al, arXiv:2206.00215 2022

Combining mitigation & correction: mitigated T-gates

How to combine error mitigation and correction to overcome near-term resource limitations?

Resource overhead limited by magic state preparation.

(encoded) magic state

Proposal: correct resource-heavy noisy T-gates with error mitigation, reserving error correction for Clifford gates.

noisy magic state

Piveteau et al, Error mitigation for universal gates on encoded qubits, PRL 127, 200505, 2021

Smooth path toward quantum advantage and full-scale QC?

Reducing the cost of full-scale fault-tolerant architectures

Planar code architecture is expensive

IBM Quantum

1000Q module (Condor)

An [n, k, d] stabilizer code in 2D satisfies $n \ge c k d^2$ for constant c.

(⇒ high overhead)

Bravyi, Poulin, Terhal, Phys. Rev. Lett. 104, 050503, (2010)

New connectivity constraints?

nearest-neighbor

limited non-nearest-neighbor

IBM Quantum

Modular architecture at IBM

Coupler types

- C-coupler / hyperedge (on-chip, w-local, constant diameter)
- M-coupler (medium range, NN between chips)
- L-coupler (long range, perimeter only)

Bravyi, Dial, Gambetta, Gil, Nazario, The Future of Quantum Computing with Superconducting Qubits, arXiv:2209.06841

Low-density parity check (LDPC) codes

LDPC code families have checks whose weights do not grow with the size of the system, and each qubit also participates in a constant number of checks.

Gottesman, Fault-tolerant quantum computation with constant overhead, QIC 14, 15-16, 2014

general LDPC codes have high rate but require long-range checks

IBM Quantum

Cartoon: 8 non-adjacent gubits

Progress in quantum LDPC code theory

IBM Quantum

Need small, high-rate LDPC codes with *simple* fault-tolerant gates and *practical* classical decoders

finite codes with good performance: Panteleev and Kalachev, Ouantum, 5(585), 2021

planar codes: high thresholds and local stabilizers -- ideal for near term

Surface codes are exemplars for all codes constrained to 2D (Bravyi, Poulin, Terhal, 2009)

expander codes/HGP: practical thresholds and non-local stabilizers (Tillich, Zemor, 2009; Fawzi, Grospellier, Leverrier, 2018)

State of the art until recently; vanishing relative distance

PK codes: discovered in 2021; asymptotically good rate and distance

(Panteleev, Kalachev 2021; Breuckmann, Eberhardt 2020)

Fault-tolerant gates in quantum LDPC codes

IBM Quantum

Homomorphic Logical **Measurements**

Huang, Jochym-O'Connor, Yoder, arXiv:2211.03625, 2022

Gates on hypergraph product codes

Quintavalle, Webster, Vasmer, arXiv:2204.10812, 2022

Quantum Computation on Fractal Geometries

Zhu, Jochym-O'Connor, Dua, PRX Ouantum 3, 030338, 2022

Fold-transversal gates

Breuckmann, Burton, arXiv:2202.06647, 2022

Low-overhead FTQC using longrange connectivity

Cohen, Kim, Bartlett, Brown, Sci. Adv. 8, eabn1717 2022

Pieceable gates

Yoder, Takagi, Chuang,, Phys. Rev. X 6,0310392016

011023, 2021

Generalized code deformation

1	<u> </u>
a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	0 0 0 0 0 0 0 0 0
ь	
6	
C	00000000000
0	
æ	0000000000
5	0000000000
	1)—a—2)— b—3—6 — d —5

Krishna, Poulin, Phys. Rev. X 11,

Parallel universal gates on quantum LDPC codes with low qubit overhead?