New platforms for quantum computing

Nathalie de Leon Department of Electrical and Computer Engineering Princeton University

Next Steps in Quantum Computing workshop May 18, 2023

Improving the lifetime of superconducting qubits

Arute et al *Nature* 2019

large scale (NISQ) processors

quantum chemistry, quantum simulation, time crystals

Last record for planar device set in 2012

limited by dielectric loss

Adapted from Kjaergaard, Oliver et al, Annu. Rev. Condens. Matter Phys. (2020)

Losses related to surfaces

bulk loss set by sapphire should allow for Q $\sim 10^9$

Wang et al, APL 2015

Losses get worse at low temperature, low power

Gao 2008

Candidates for loss, noise

New material platforms for superconducting qubits

<u>Two hypotheses</u> for dielectric loss

Substrate contaminants

Nb oxides are complicated -> resistive loss

collaboration with Andrew Houck, Bob Cava

Replace Nb with Ta: T₁ exceeding 0.3 ms

Place, Rodgers, Cava, NdL, Houck, et al, Nature Comms 2021

Adapted from Kjaergaard, Oliver et al, (2020)

Reproduced in many labs

Wang, et al, npj Quantum Information 2022

 \overline{F} lifetime (ms) Pauli operator expectation value (including SPAM error) 2.3x GKP • $T_1^t = 292 \pm 4 \mu s$ $\{|0\rangle, |1\rangle\}$ • $T_{2E}^{t} = 238 \pm 3 \mu s$ (b) { |0>, |1> } qubit $T_1^c = 610 \pm 10 \, \mu s$ • $T_2^c = 950 \pm 40 \, \mu s$ (c) GKP qubit • $T_Y = 1360 \pm 30 \mu s$ • T_X • $T_Z = 2200 \pm 30 \mu s$ 0 100 QEC cycles 2 3 5 0 1 Time (ms)

(a) $\{|g\rangle, |e\rangle\}$ qubit

integrated with cavity for real-time, break even QEC with GKP code

Sivak, et al, Nature 2023

Lozano, et al, arXiv:2211.16437

Systematic studies of Ta resonators

- eliminate variation in junction fab
- robust to processing
- larger temperature / power range

• much faster measurements!

Surface participation dependence

Crowley, McLellan, Dutta, Cava, Houck, NdL, et al, arXiv:2301.07848

Surface participation dependence

Crowley, McLellan, Dutta, Cava, Houck, NdL, et al, arXiv:2301.07848

packaging

Losses in state of the art devices

Crowley, McLellan, Dutta, Cava, Houck, NdL, et al, arXiv:2301.07848

New qubits and new material systems: grand challenges

- identifying and addressing microscopic sources of loss, noise models: problems affect (almost) all platforms
- systematic search for new materials: parametrization is important!
- material issues affect size/scalability, couplers, other components, architecture

Acknowledgements

Yichen Jia, Chenyu Zhou, Mingzhao Liu (BNL CFN)

NSF RAISE TAQS DOE NQIS: C2QA

