# Challenges & Opportunities in Quantum Applications

Sonika Johri Coherent Computing

Next Steps in Quantum Computing, May 18

## **Overview**

Where are we?

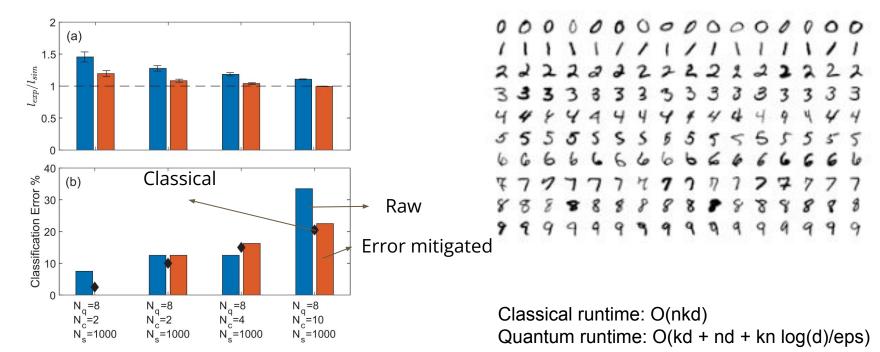
- Recent end-to-end demonstrations of quantum applications

What do we need to utilize 50-500 qubits?

- Benchmarking
- Identifying practical quantum advantage
- Software stack
- High-level quantum programming framework

## Some recent demos in quantum machine learning

## Dataset: MNIST, Algorithm: Quantum Nearest Centroid Hardware: IonQ Harmony



npj Quantum Information volume 7, Article number: 122 (2021)

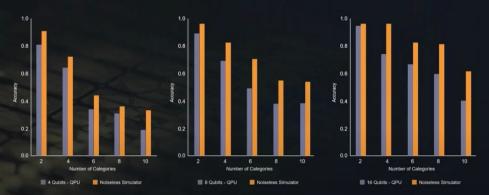
### Dataset: German Road Sign Algorithm: Quantum CNN Hardware: IonQ Aria

https://www.youtube.com/watch?v=MPt5 27AbfAl&ab\_channel=QCWare

2022 | Silicon Valley

2B

#### **Classification Accuracy on IonQ Aria**



- Stochastic sampling from dataset used for QPU training
- For 16 qubits, model is trained classically and inference is performed on hardware



#### Quantum advantage in number of parameters?

Quantum models are much more compact than classical

#### **Quantum Convolutional Circuit**

4 qubits - 30 parameters 8 qubits - 45 parameters 16 qubits - 60 parameters

Classical Convolutional Neural Network Comparable performance ~ 59,000 parameters

#### Dataset: Stock Prices Algorithm: Quantum Copula-based GAN Hardware: IonQ Harmony

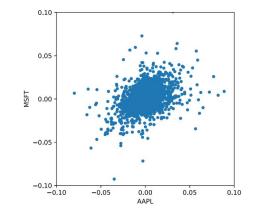


TABLE I. KS statistics and p-value of KS test across multiple models. The quantum models use  $N_q = 6$  qubits.

| Model                         | $D_{KS}$ (the smaller the better) | p-value (threshold 0.05) |
|-------------------------------|-----------------------------------|--------------------------|
| Parametric model              | 0.0449                            | 0.117                    |
| Classical GAN                 | 0.0363-0.0508                     | 0.0530-0.309             |
| QGAN simulation               | 0.0320-0.0396                     | 0.226-0.473              |
| QGAN experiment, QPU cloud    | 0.0352                            | 0.3570                   |
| QCBM simulation               | 0.0425-0.0520                     | 0.0511-0.1717            |
| QCBM experiment, QPU cloud    | 0.0373-0.0515                     | 0.0548-0.3030            |
| QCBM experiment, QPU Next Gen | 0.0330-0.0510                     | 0.0578-0.4465            |

#### Dataset: Stock Prices Algorithm: Quantum Copula-based GAN Hardware: IonQ Harmony

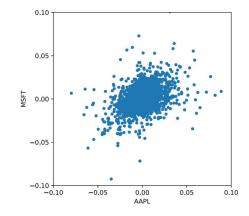
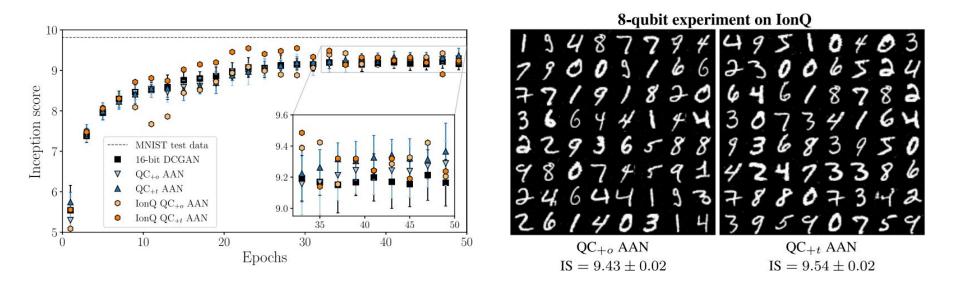


TABLE I. KS statistics and p-value of KS test across multiple models. The quantum models use  $N_q = 6$  qubits.

| Model                                                                                                                                                                | $D_{KC}$ (the smaller the better)<br>We also note that we are able                                                                                                                                                   | n-value (threshold 0.05)<br>e to train QGAN/QCBM at a                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parametric model<br>Classical GAN<br>QGAN simulation<br>QGAN experiment, QPU cloud<br>QCBM simulation<br>QCBM experiment, QPU cloud<br>QCBM experiment, QPU Next Gen | much faster learning rate and the<br>with much fewer iterations that<br>GAN, the learning rate used in<br>concludes after 20 000 iteration<br>learning rate failed due to noncome<br>In QGAN, model training concern | herefore conclude the training<br>in classical GAN. In classical<br>is 0.0001 and model training<br>ins. Attempts to increase the<br>ponvergence in model training.<br>Indes after 1000 iterations. In |
|                                                                                                                                                                      | QCBM for 6 qubits, the training as little as 20 iterations.                                                                                                                                                          | converges to a good value for                                                                                                                                                                          |

## Dataset: MNIST Algorithm: QC-AAN Hardware: IonQ Harmony

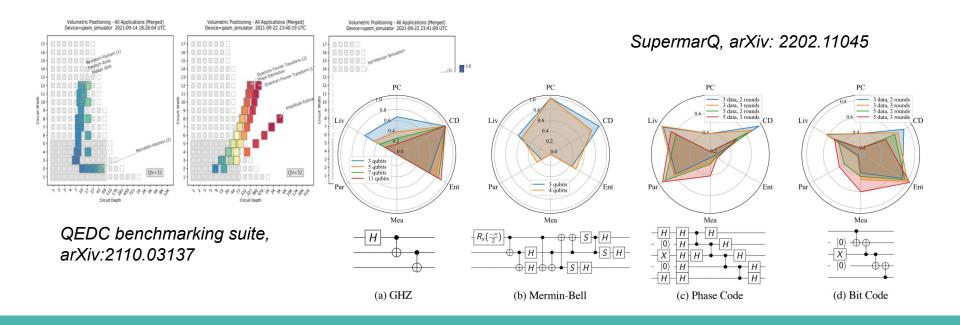


Physical Review X 12, 031010 (2022)





# Benchmarking framework & theory needed for rapidly evolving applications and hardware



# **Identifying Practical Quantum Advantage**

- Quantum advantage in practice, vs just pure math
- Heuristic algorithms harder to prove but will be the main hope for quantum advantage with near-term hardware
- For instance, in QML, variational ansatz can capture correlations that are hard for classical, leading to
  - Fewer iterations to train
  - Faster inference
  - Better accuracy in the tails
  - Use fewer parameters in the model
  - Better at generalizing to unseen data
  - Better at predicting outliers

## Software stack that is efficient and robust

- Hardware architecture is evolving fast (new devices every ~6 months) + different platforms have different underlying physical operations -> want to avoid user having to customize and update programs constantly -> need Intermediate Representations
- Hardware errors can be complex and even time-dependent -> how far can software stack compensate for that?
- Hybrid quantum-classical -> Lots of classical tools needed: Ex. optimizers that use few evaluations & are robust to fluctuations; circuit knitting tools; computing on quantum networks; asynchronous execution; mid-circuit measurement handling

# High-level quantum programming framework

- Right now, quantum compilation refers to circuit transformations + mapping and scheduling to hardware
- Do we need to move away from circuit model at the user level to program 50-500 qubits?
- Instead:
  - Quantum data structures, Ex. Hilbert spaces, Bell states, reduced density matrices with specified entanglement spectrum, matrix product states, tensor networks, ground states
  - Quantum operations: Ex. Hamiltonian evolution, oracle operations, amplitude amplification, quantum signal processing
  - User has access to these abstraction in the programming framework
  - Compiler synthesizes efficient circuits to realize these data structures and operations