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Overview

Where are we?
- Recent end-to-end demonstrations of quantum applications

What do we need to utilize 50-500 qubits?

Benchmarking

ldentifying practical quantum advantage
Software stack

High-level quantum programming framework



Some recent demos in quantum machine learning
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Algorithm: Quantum Nearest Centroid

Dataset: MNIST,
Hardware: lonQ Harmon
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Quantum runtime: O(kd + nd + kn log(d)/eps)

Classical runtime: O(nkd)
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https://www.nature.com/npjqi

Dataset: German Road Sign
Algorithm: Quantum CNN
Hardware: lonQ Aria

% Q2B
https://www.youtube.com/watch?v=MP15 (_4

27AbfAl&ab_channel=QCWare 2022 | Silicon Valley

Classification Accuracy on lonQ Aria
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e Stochastic sampling from dataset used for QPU training
e For 16 qubits, model is trained classically and inference is performed on hardware
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Quantum advantage in number of parameters?

Quantum models are much more compact than classical

Quantum Convolutional Circuit
4 qubits - 30 parameters
8 qubits - 45 parameters
16 qubits - 60 parameters

Classical Convolutional Neural Network
Comparable performance ~ 59,000 parameters
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Dataset: Stock Prices
Algorithm: Quantum Copula-based GAN
Hardware: lonQ Harmony
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TABLE I. KS statistics and p-value of KS test across multiple models. The quantum models use N, = 6 qubits.

Model Dy (the smaller the better) p-value (threshold 0.05)
Parametric model 0.0449 0.117
Classical GAN 0.0363-0.0508 0.0530-0.309
QGAN simulation 0.0320-0.0396 0.226-0.473
QGAN experiment, QPU cloud 0.0352 0.3570

QCBM simulation 0.0425-0.0520 0.0511-0.1717
QCBM experiment, QPU cloud 0.0373-0.0515 0.0548-0.3030
QCBM experiment, QPU Next Gen 0.0330-0.0510 0.0578-0.4465
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Dataset: Stock Prices
Algorithm: Quantum Copula-based GAN
Hardware: lonQ Harmony
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TABLE I. KS statistics and p-value of KS test across multiple models. The quantum models use N, = 6 qubits.

Model Dy« (the emaller the hatter) n-valne (thrachald () NS\

- We also note that we are able to train QGAN/QCBM at a
Parametric model much faster learning rate and therefore conclude the training
Classical GAN

with much fewer iterations than classical GAN. In classical

QGAN simulation GAN, the learning rate used is 0.0001 and model training

QGAN experiment, QPU cloud

QCBM simulation concludes after 20 000 iterations. Attempts to increase the
QCBM experiment, QPU cloud learning rate failed due to nonconvergence in model training.
QCBM experiment, QPU Next Gen In QGAN, model training concludes after 1000 iterations. In

QCBM for 6 qubits, the training converges to a good value for
as little as 20 iterations.
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Next Steps



Cireut wiatn

Benchmarking

Benchmarking framework & theory needed for rapidly evolving applications
and hardware

Volumetric Positioning - All Applications (Merged) Volumetric Positioning - All Applications (Merged) Volumetric Positioning - All Applications (Merged)
Device=gasm simulator 202109-14 18:26:04 UTC Device=gasm simulator 20210922 23:40:19 UTC Device=gasm simulator 2021-09-22 23:41:00 UTC
" " " SupermarQ, arXiv: 2202.11045
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QEDC benchmarking suite,
arXiv:2110.03137

(b) Mermin-Bell (c) Phase Code (d) Bit Code




|dentifying Practical Quantum Advantage

- Quantum advantage in practice, vs just pure math

- Heuristic algorithms harder to prove but will be the main hope for
gquantum advantage with near-term hardware

- Forinstance, in QML, variational ansatz can capture correlations that are
hard for classical, leading to

Fewer iterations to train

Faster inference

Better accuracy in the tails

Use fewer parameters in the model

% Better at generalizing to unseen data

% Better at predicting outliers

X/ X/ X/ X/
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Software stack that is efficient and robust

- Hardware architecture is evolving fast (new devices every ~6 months) + different
platforms have different underlying physical operations -> want to avoid user
having to customize and update programs constantly -> need Intermediate
Representations

- Hardware errors can be complex and even time-dependent -> how far can
software stack compensate for that?

- Hybrid quantum-classical -> Lots of classical tools needed: Ex. optimizers that use
few evaluations & are robust to fluctuations; circuit knitting tools; computing on
quantum networks; asynchronous execution; mid-circuit measurement handling



High-level quantum programming framework

- Right now, quantum compilation refers to circuit transformations +
mapping and scheduling to hardware
- Do we need to move away from circuit model at the user level to program
50-500 qubits?
- Instead:
< Quantum data structures, Ex. Hilbert spaces, Bell states, reduced
density matrices with specified entanglement spectrum, matrix
product states, tensor networks, ground states
% Quantum operations: Ex. Hamiltonian evolution, oracle operations,
amplitude amplification, quantum signal processing
% User has access to these abstraction in the programming framework
% Compiler synthesizes efficient circuits to realize these data structures
and operations



