
Challenges & Opportunities in
Quantum Applications

Sonika Johri

Coherent Computing

Next Steps in Quantum Computing, May 18

Overview
Where are we?

- Recent end-to-end demonstrations of quantum applications

What do we need to utilize 50-500 qubits?

- Benchmarking
- Identifying practical quantum advantage
- Software stack
- High-level quantum programming framework

Some recent demos in quantum machine learning

Dataset: MNIST,
Algorithm: Quantum Nearest Centroid
Hardware: IonQ Harmony

npj Quantum Information volume 7, Article number: 122 (2021)

Classical runtime: O(nkd)
Quantum runtime: O(kd + nd + kn log(d)/eps)

Classical
Raw

Error mitigated

https://www.nature.com/npjqi

Dataset: German Road Sign
Algorithm: Quantum CNN
Hardware: IonQ Aria

https://www.youtube.com/watch?v=MPt5
27AbfAI&ab_channel=QCWare

Dataset: Stock Prices
Algorithm: Quantum Copula-based GAN
Hardware: IonQ Harmony

Physical Review Research 4, 043092 (2022)

Dataset: Stock Prices
Algorithm: Quantum Copula-based GAN
Hardware: IonQ Harmony

Physical Review Research 4, 043092 (2022)

Dataset: MNIST
Algorithm: QC-AAN
Hardware: IonQ Harmony

Physical Review X 12, 031010 (2022)

Next Steps

Benchmarking
Benchmarking framework & theory needed for rapidly evolving applications
and hardware

QEDC benchmarking suite,
arXiv:2110.03137

SupermarQ, arXiv: 2202.11045

Identifying Practical Quantum Advantage
- Quantum advantage in practice, vs just pure math
- Heuristic algorithms harder to prove but will be the main hope for

quantum advantage with near-term hardware
- For instance, in QML, variational ansatz can capture correlations that are

hard for classical, leading to
❖ Fewer iterations to train
❖ Faster inference
❖ Better accuracy in the tails
❖ Use fewer parameters in the model
❖ Better at generalizing to unseen data
❖ Better at predicting outliers

Software stack that is efficient and robust
- Hardware architecture is evolving fast (new devices every ~6 months) + different

platforms have different underlying physical operations -> want to avoid user
having to customize and update programs constantly -> need Intermediate
Representations

- Hardware errors can be complex and even time-dependent -> how far can
software stack compensate for that?

- Hybrid quantum-classical -> Lots of classical tools needed: Ex. optimizers that use
few evaluations & are robust to fluctuations; circuit knitting tools; computing on
quantum networks; asynchronous execution; mid-circuit measurement handling

High-level quantum programming framework
- Right now, quantum compilation refers to circuit transformations +

mapping and scheduling to hardware
- Do we need to move away from circuit model at the user level to program

50-500 qubits?
- Instead:

❖ Quantum data structures, Ex. Hilbert spaces, Bell states, reduced
density matrices with specified entanglement spectrum, matrix
product states, tensor networks, ground states

❖ Quantum operations: Ex. Hamiltonian evolution, oracle operations,
amplitude amplification, quantum signal processing

❖ User has access to these abstraction in the programming framework
❖ Compiler synthesizes efficient circuits to realize these data structures

and operations

