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Software vs. Hardware

% How to divide the job between software and hardware optimizations?
« Example: practical application, say Shor’s algorithm.

« Example: QEC with 2 logic qubits with gate error rate at the level of 106~ 107,
Hardware

% Be realistic.
« More powerful hardware makes software easier. M
+ More powerful software makes hardware easier. M

% To find the boundary for software and hardware optimization is like an art
and the boundary will change over time due to:
« Overall Cost budget
» State-of-the-art Hardware technology.
+ Specific Application.
« Our understanding of the physics and system designs.

Software

% A good software will
* help resolve hardware constraints.
« quantitively tell us how good the hardware need to be.
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Lessons Learned from Classical World: Classical Compiler

Source program

Monolithic  Two-pass gofu',‘),r Multicore/GPU | Autotuning  ML/Quantum
Compiler | Compiler Cgr:]rglifler:g Compiler Compiler | Compiler

1950s 1980s 2004 2002 OpenMP 2009 Petabricks
LLVM 2007 NVCC 2014 t
Target program 014 Opentuner

+ Error Diagnosis
+ Code Optimization * *

Our observation: From Monolithic to Modular to Architecture(Input)-aware to Domain-Specific.

2018 TVM

% Modular with a good set of abstractions (intermediate representation) allows easy adaption.
% Get used to specialization towards whatever is needed.
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My View of Three Important Set of Software Toolchains

My focus is more at top level:
% Toward Hardware Scaling Up.

+»» Toward Quantum Error Correction.

Other interesting toolchains for optimization at lower level:
e.g., EDA for qubit engineering.
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Quantum Scaling-Up Strategies

Vertical Scaling
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Horizontal Scaling \ .
\ * Quantum interconnect CS

Chiplet Quantum Computing \\’ Quantum memory

Distributed Quantum Computing

\ Gate Time: 1 ns

Ve

-« Quantum register

Software ecosystem would be different for different hardware architectures.
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A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices
Anbang Wu, Gushu LI, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, and Yuan Xie. [ASPLOS’20]

Key Novelty:
We can use a compiler to efficiently mitigate the constraints of
limiting sparse 2-qubit connection on hardware.
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Software Infrastructure:
1. Initial mapping
2. efficient routing

Non-cloning theorem!
Insert a special gate SWAP
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Paulihedral: A Generalized Block-Wise Compiler Optimization Framework For Quantum Simulation Kernels

Gushu Li, Anbang Wu, Yunong Shii, Ali Javadi-Abhari, Yufei Ding, Yuan Xie.

7

< Intermediate Representation (IR):
. Between source code and machine code
. Right level of abstraction for efficient analysis and optimization.

:for(i =1;i < N;i++){
i for(j =1;j < M; j++ )
i x =x+a[i;}}

_________________

1

1

e b+ TN Ml 5 x
' IR for the loop

A nested loop

Key here is a higher-level, formula-like IR to concisely encode (for/while) loops
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[ASPLOS’'22]
Key Novelty:

What is a Good Quantum Intermediate representation? Principles for Guidance

Abstraction: Multi-Qubit Operation, i.e., Multi-Qubit Gate.

** Expressiveness: Efficiently + Universal
+** Beneficial

¢ Easy Lowering



Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices

Gushu Lj, Yufei Ding, Yuan Xie

Key Novelty:

We propose to build a special compiler for optimizing quantum computing on large-
scale chiplet quantum hardware. A new highway model is propped to boost
computation by enabling more concurrency in gate execution regardless of the

distances among the involved qubits.
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Example: Computation process on chiplets at the presence of highway (dark blue paths in
(c)). Commutable gates in circuit (a) are aggregated to multi-target control gates (b) and
executed simultaneously on the highway (d).

Preliminary Results:

Name

Building blocks

Single chiplet

Connected chiplets

Square

Hexagon

Heavy
Square

Heavy
Hexagon
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https://arxiv.org/abs/2305.05149

On average
(geomean), the
circuit depth is
reduced by
69.05%, and the
effective number
of CNOTs is
reduced by
27.25%.



AutoComm: A Framework for Enabling Efficient Communication in Distributed Quantum Programs

Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, Yufei Ding

Key Novelty:

First Compiler that enables optimization for burst communication.

Teleportation Teleportation
: : D T71
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(1) The optimized implementation of one (2) The optimized implementation of one
controlled unitary block by one call of Cat-Comm Unitary block by two calls of TP-Comm

Insights: Burst communications enable more remote gates and thus reduce
the ERP pair consumption, but they are often hidden in the original quantum
programs.

Results: Compared to state-of-the-art DQC
Operation Variable Name | Latency compilers, experimental results show
Single-qubit gates g ~ 0.1 Cx | that our proposed AutoComm can
CX and CZ gates thg 1CX reduce the communication
Measure fias 5CX resource consumption and the
EPR preparation Lep ~ 12CX | program latency by 72.9% and
One-bit classical comm teb ~1CX | 69.2% on average, respectively.
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[MICRO’22]
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Example: Our compiler would enable communication aggregation

with three key modules. (a) Identifying potential burst

communication. (b) Linear merge. (c) Iterative refinement.



QEC is a Software Layer

[ Applications ]

Quantum simulation, Shor's algorithm, Quantum ML, VQE...

A

\ 4

QEC Code Surface code, LDPC code, Stabilizer code, Subsystem code...
( Quantum Hardware 1( sparse coupling graph = special but critical types errors 1
q J | (correlated error, losing qubits) - more general noise modeling

Vertical Integration and Co-desgin
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-

Horizontal Expanding and Unification



A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices
Anbang Wu, Gushu LI, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, and Yuan Xie. [ISCA'22]

Key Novelty:

We can use a compiler to mitigate such a structural-level mismatch.

Surface Code

Software Infrastructure:

We can systematically solve the mismatch: 1) Good abstraction;
2) Knowledge of beneficial and legal transformations; 3) An
efficient search scheme.

Data qubit Bridge tree finder Measurement
allocation or Syndrome Qubi scheduler

Initial

Bridge
rectangle

Syndrome

rectangle Refine loop

Branching-
free

Architecture and Compiler Support for Fault-tolerant Quantum Computing based on Code Switching
Anbang Wu, Keyi Yin, Andrew Cross, Ang Li, and Yufei Ding

Key Novelty:

[In submission]

We take (Steane code + RM code) as an example, to show the power of full-stack integration/codesign, from QEC-hardware
codesign to compiler-application codesign.
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1. Mapping of two code on the same area to facilitate code conversion.
2. When to apply the conversion?

Examples of placing multiple logical qubits. Green arrows
denote logical CX directions. (a) connectivity 4. (b) connectivity 4
rotated. (c) connectivity 6. (d) connectivity 8
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Thank you!
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