Software for Advancing Quantum Computing

Yufei Ding

Assistant Professor Department of Computer Science University of California, Santa Barbara

UC SANTA BARBARA — PICASSO Lab

Software vs. Hardware

- How to divide the job between software and hardware optimizations?
 - Example: practical application, say Shor's algorithm.
 - Example: QEC with 2 logic qubits with gate error rate at the level of $10^{-6} \sim 10^{-9}$.
- ❖ Be realistic.
 - More powerful hardware makes software easier.
 - More powerful software makes hardware easier.
- To find the boundary for software and hardware optimization is like an art and the boundary will change over time due to:
 - Overall Cost budget
 - State-of-the-art Hardware technology.
 - Specific Application.
 - Our understanding of the physics and system designs.
- ❖ A good software will
 - help resolve hardware constraints.
 - quantitively tell us how good the hardware need to be.

Lessons Learned from Classical World: Classical Compiler

- Our observation: From Monolithic to Modular to Architecture(Input)-aware to Domain-Specific.
- ❖ Modular with a good set of abstractions (intermediate representation) allows easy adaption.
- Get used to specialization towards whatever is needed.

My View of Three Important Set of Software Toolchains

My focus is more at top level:

- ❖ Toward Hardware Scaling Up.
- **❖** Toward **Quantum Error Correction**.

Other interesting toolchains for optimization at lower level:

e.g., EDA for qubit engineering.

Quantum Scaling-Up Strategies

Software ecosystem would be different for different hardware architectures.

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices

Anbang Wu, Gushu LI, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, and Yuan Xie.

[ASPLOS'20]

Key Novelty:

We can use a compiler to efficiently mitigate the constraints of limiting sparse 2-qubit connection on hardware.

Software Infrastructure:

- 1. Initial mapping
- 2. efficient routing

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework For Quantum Simulation Kernels

Gushu Li, Anbang Wu, Yunong Shii, Ali Javadi-Abhari, Yufei Ding, Yuan Xie.

Intermediate Representation (IR):

- Between source code and machine code
- Right level of abstraction for efficient analysis and optimization.

Key here is a higher-level, formula-like IR to concisely encode (for/while) loops

UC SANTA BARBARA — PICASSO Lab

[ASPLOS'22]

Key Novelty:

What is a Good Quantum Intermediate representation? Principles for Guidance

Abstraction: Multi-Qubit Operation, i.e., Multi-Qubit Gate.

- Expressiveness: Efficiently + Universal
- Beneficial
- **&** Easy Lowering

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices

https://arxiv.org/abs/2305.05149

Gushu Li, Yufei Ding, Yuan Xie

Key Novelty:

We propose to build a special compiler for optimizing quantum computing on large-scale chiplet quantum hardware. A new **highway** model is propped to boost computation by enabling more concurrency in gate execution regardless of the distances among the involved qubits.

(d) **Example:** Computation process on chiplets at the presence of highway (dark blue paths in (c)). Commutable gates in circuit (a) are aggregated to multi-target control gates (b) and executed simultaneously on the highway (d).

Preliminary Results:

Name	Building blocks	Single chiplet	Connected chiplets
Square			
Hexagon	\Diamond		
Heavy Square			
Heavy Hexagon	\Diamond		

On average (geomean), the circuit depth is reduced by 69.05%, and the effective number of CNOTs is reduced by 27.25%.

AutoComm: A Framework for Enabling Efficient Communication in Distributed Quantum Programs

Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, Yufei Ding

[MICRO'22]

Key Novelty:

First Compiler that enables optimization for burst communication.

(1) The optimized implementation of one controlled unitary block by one call of Cat-Comm

(2) The optimized implementation of one Unitary block by two calls of TP-Comm

Insights: Burst communications enable more remote gates and thus reduce the ERP pair consumption, but they are often hidden in the original quantum programs.

Results:

Operation	Variable Name	Latency
Single-qubit gates	t_{1q}	~ 0.1 CX
CX and CZ gates	t_{2q}	1 CX
Measure	t _{ms}	5 CX
EPR preparation	t_{ep}	~ 12 CX
One-bit classical comm	t_{ch}	~ 1 CX

Compared to state-of-the-art DQC compilers, experimental results show that our proposed AutoComm can reduce the communication resource consumption and the program latency by 72.9% and 69.2% on average, respectively.

Software Infrastructure:

Example: Our compiler would enable communication aggregation with three key modules. (a) Identifying potential burst communication. (b) Linear merge. (c) Iterative refinement.

(c)

UC SANTA BARBARA — PICASSO Lab

QEC is a Software Layer

A Synthesis Framework for Stitching Surface Code with Superconducting Quantum Devices

Anbang Wu, Gushu LI, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, and Yuan Xie.

[ISCA'22]

Key Novelty:

We can use a compiler to mitigate such a structural-level mismatch.

Software Infrastructure:

We can systematically solve the mismatch: 1) Good abstraction; 2) Knowledge of beneficial and legal transformations; 3) An efficient search scheme.

Architecture and Compiler Support for Fault-tolerant Quantum Computing based on Code Switching

Anbang Wu, Keyi Yin, Andrew Cross, Ang Li, and Yufei Ding

[In submission]

Key Novelty:

We take (Steane code + RM code) as an example, to show the power of full-stack integration/codesign, from QEC-hardware codesign to compiler-application codesign.

UC SANTA BARBARA — PICASSO Lab

- 1. Mapping of two code on the same area to facilitate code conversion.
- 2. When to apply the conversion?

Examples of placing multiple logical qubits. Green arrows denote logical CX directions. (a) connectivity 4. (b) connectivity 4 rotated. (c) connectivity 6. (d) connectivity 8

Thank you!