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Abstract  
By integrating real-time brain input into personalized learning 

environments, it would be possible to capture a learner’s 

changing cognitive state and adapt the learning experience 

appropriately. Working toward this goal, we aim to develop a 

robust system that can classify a user’s cognitive state during a 

learning activity, using brain data collected with functional 

near-infrared spectroscopy, an emerging non-invasive 

neuroimaging tool. This paper describes preliminary steps we 

have taken toward this objective as well as the underlying 

vision and research goals. This work has implications for 

online education as well as the growing fields of brain 

computer interfaces and physiological computing.  

 

Introduction  
With the growth of online and computer-based learning 

environments, there now exists an unprecedented amount of 

data on how students solve problems and build knowledge. 

Many educational technologies collect fine-grained clickstream 

data on student activities within a learning environment, 

including the steps students take to solve problems, correctness 

of their actions, hints requested, and additional scaffolding 

received. Large data mining efforts using this data have 

provided substantial knowledge on how students learn, 

including optimal practice schedules for learning materials [2], 

skills students require to solve a particular problem [14], and 

the range of off-task behaviors that students may engage in [5]. 

However, processes related to deep learning, such as reflecting 

on errors and confronting misconceptions, often occur at times 

when students are thinking and thus, during a pause in the log 

data. Of course, pauses during use of educational systems can 

also be indicative of many other cognitive or motivational 

states such as conversing with a teacher, engaging in off-task 

behavior, daydreaming, or simply focusing on the wrong 

problem features [7,18,28]. The predictive power of pauses 

varies across datasets based on when they occur, what happens 

after, and its length. If pauses during learning could be better 

understood and characterized, it might be possible to build 

predictive models of when students are learning from online 

environments.  

 

It may be possible to leverage brain data and other 

physiological sensing to disambiguate what is occurring during 

pauses in log data. There are indications that fMRI can be used 

to detect when students are thinking deeply about a problem 

[1], and EEG can be used to predict learners’ scores on an 

assessment [16], their correctness and confidence in their 

answers [22], and aspects of their mental state (e.g., workload, 

engagement, and distraction) [40]. In addition, physiological 

sensors have been explored for forming better predictions of 

learning from educational data. Eyetracking has been used 

along with log data to differentiate between where successful 

and unsuccessful students attend to on the interface [35,32], 

predict self-explanation [17], and indicate boredom and 

curiosity [27]. Other researchers have attempted to predict 

states such as distraction, confidence, frustration, and 



excitement based on collections by physiological sensors 

[13,3,42].  

 

This project combines two complementary techniques - - 

educational data mining and functional near-infrared 

spectroscopy (fNIRS) brain imaging – with the overall goal of 

understanding the cognitive processes that occur during pauses 

while using learning environments. fNIRS is an emerging non-

invasive neuroimaging tool [15] that has been used to measure 

cognitive state in real-time while participants complete 

computer-based tasks [39]. It is now a realistic tool for 

researchers, being less expensive, more portable and more 

comfortable to wear [38]. The continuous nature of 

physiological measurements allow us to fill in pauses in log 

data with insights from brain data, with the goal of 

differentiating different types of pauses to better understand the 

learner’s cognitive state. The detailed educational log data 

provides contextual information about what events occur 

before and after the pauses that will enable better 

interpretations of the brain activity. By combining brain and 

log data, we can explore critical moments and better 

understand what is occurring during individual use of a 

learning environment.  

 

In this report, we first present the theoretical foundations for 

our approach, describing the types of cognitive states we wish 

to identify and how brain data might help us do so. We then 

discuss the steps we have taken so far as well as future work.  

 

Background  
Educational Data Mining  

Our project aims to increase the potential for robust learning: 

learning that is retained over time, transfers to other situations, 

and enables future learning in new contexts [29]. There are 

several obstacles for the use of a learning environment to result 

in robust learning. For example, some students “game the 

system” attempting to get correct answers by using system 

features in unintended ways rather than by building up 

knowledge in the problem domain [6] often times by repeated 

help requests or systematically guessing. During mind 

wandering, another form of disengagement, students engage in 

internal non-task thoughts [37,33], limiting the knowledge they 

develop. Even motivated students may actively attend to their 

work in the learning environment but be unable to master the 

required skill, continuing to make repeated errors after many 

attempts (called wheel-spinning) [19].  

 

A large focus in educational data mining research has been to 

predict student learning outcomes based on data on student 

problem-solving processes. Predictions can be made about 

robust learning outcomes [10,8,12, 20] and non-productive 

behaviors such as gaming [21, 6,34], mind-wandering [31], and 

wheel-spinning [19]. In these predictive models, timing 

information is heavily used. For example, Gowda et. al [20] 

used 25 features, 12 which involved timing and 4 which 

involved pauses, to predict whether student learning was 

shallow. Pauses in system logs can represent either positive 

learning events (i.e. the student thinking deeply about the 

topic) or undesirable cognitive states (i.e. mindwandering or 

wheel-spinning). Some predictive models interpret fast 

response times as indicators of low effort and slow times as 

indicators of engagement in deeper processing [4,11,25]; others 

identify long response times as indicators of disengagement or 

distraction [20,10] and short times as indicators of fluency 

[8,9].  

 



Understanding what occurs during pauses and using them for 

predictions is further complicated by the fact that a “typical” 

pause length varies across problems, sessions, and students 

[26]. Educational data mining researchers often use additional 

contextual features surrounding the pauses to get more accurate 

reads on what cognitive states occur within the pauses, 

spanning the instructional events triggering the response times 

[4], student knowledge of the relevant skill [7], or problem 

difficulty [11]. Despite the use of these contextual features, 

there are still inconsistencies across different analyses, and 

often features that are predictive in one analysis will not be 

predictive in a second. In addition, it is likely that students 

cycle through different cognitive states within a given pause 

[36].  

 

Real-time Brain Sensing in Natural Settings with fNIRS  

The variance described above motivates our ongoing brain 

sensing work, as we want to better understand what occurs 

during pauses that account for differences between problems, 

students, and natural variation within a student’s learning 

behaviors. Real-time brain sensing has the potential to fill some 

gaps and is becoming a realistic tool for HCI researcher. In 

fNIRS neuroimaging, sensors are placed and secured on the 

head with a headband (Fig. 1). The sensors use near infrared 

light to detect hemodynamic changes associated with neural 

activity in the brain during tasks [15].  

 

Because fNIRS primarily detects light that travels 1-3 cm into 

the cortex, most fNIRS research focuses on the easily 

accessible frontal polar cortex (FPC) which lies behind the 

forehead. The brain processes that activate the FPC are mainly 

high level executive functioning, and have been shown to play 

a part in memory, problem solving, judgment, planning, 

coordinating, controlling and executing behavior. Several 

researchers have found that the FPC is highly activated during 

the development of expertise, and less activated once reached 

[40,29,23]. From this work, there is strong evidence that the 

FPC will have activation patterns that are detectable during 

various aspects of learning.  

 

Most work on FPC activation was done using fMRI or positron 

emission tomography (PET) imaging which is not realistic for 

real-time, ecologically valid measurement. In contrast, fNIRS 

avoids many restrictions of other techniques, most notably it 

has significantly lower costs and far fewer mobility 

restrictions. Additionally, PET requires hazardous material 

ingestion and fMRI is not practical for use with computers due 

to the strong magnetic fields. Unlike these more intrusive 

measures, EEG has been used successfully in brain-computer 

interface research. However, it typically requires a longer set 

up time, is more susceptible to motion artifacts, and has lower 

spatial resolution than fNIRS.  

 

Research Questions  
We see potential in combining brain data with educational data 

mining for learning assessment and are currently building a 

large, rich dataset to explore this and build a foundation for 

future research. There are many research questions that can be 

explored with our dataset:  

1. Can we detect cognitive states in learning contexts that 

have been detected in non-learning contexts?  

2. Can we replicate findings from log data analysis in the 

with our population and learning environment?  

3. What is occurring within the brain data during moments 

of interest in intelligent tutoring log data, represented 

by pause-related features typically associated with 



cognitive states? Does the activity appear to be 

congruent with what we expect to be going on? Across 

what percent of similar pauses?  

4. How can the brain data collected augment predictions 

made using log data?  

5. How does brain activity within pauses vary between 

students, and within the same students across multiple 

sessions?  

6. How do our models interact with self-reported 

cognition and motivation?  

 

Preliminary Work  
We have taken several steps toward our research goals. First, 

we conducted a proof-of-concept study in which we collected 

preliminary fNIRS data from 11 participants as students used a 

basic e-learning platform for fraction addition. The proof-of-

concept study demonstrated that we could successfully 

integrate brain data features with log data features. Next, we 

transitioned to using the ASSISTments platform to better suit 

our needs [24]. We built up a repository of developmental math 

problems, then ran a pilot study with 3 Drexel University 

student participants for the purpose of testing various 

developmental math topics within ASSISTments. We aimed to 

discover which topics would be appropriate for our target 

population of non-STEM college students such that the 

students would be able to learn the topic during a tutored ITS 

session. We included problems on geometry, probability, 

functions, algebraic simplification, factoring, square roots, 

inequalities, and linear equations. Of these topics, all subjects 

got problems on geometry, probability, algebraic 

simplification, and square roots incorrect on their first attempt; 

however, during the interview period after the ITS session, the 

probability question was the only one that the participants rated 

as difficult. The students also stated that once the remembered 

how to do the geometry and simplification problems they were 

easy. Based on these results, it was decided that probability and 

algebraic simplification would be the topics covered in our 

study. The probability topic will ideally provide insight into 

periods when a student does now know how to do a problem 

and when the student should be learning. The simplification 

problems will give insight into when a student needs to 

remember how to complete a problem or already knows how to 

complete it. By using these two topics, there are various 

cognitive and motivational states that can be accessed and 

predicted based on the collected log and brain data.  

 

In addition to running the pilot study and preparing for 

upcoming mass data collection, we have also been developing 

a tool to extract learning data and visualize brain data . The 

team has been developing programs to extract and analyze 

important information from ASSISTments log data and 

developing a toolbox to analyze and visualize brain data from 

fNIRS. Together, this toolbox and these programs will provide 

a more in-depth view into a learner’s state and will eventually 

be available for use by other researchers.  

 

Building a Rich Dataset  
With these preliminary steps complete, we are now in our data 

collection phase. We are iteratively collecting data from groups 

of 20 participants at a time, recruited from students in 

developmental mathematics classes at Drexel University. The 

goals of this collection are to 1) collect controlled data with 

known characteristics in well-studied tasks and 2) collect data 

during realistic, naturalistic learning experiences to uncover 

predictive features in the data and improve our understanding 

of learning outcomes.  



 

Procedure  

The core data collection procedure is as follows. After 

obtaining informed consent, participants are introduced to 

ASSISTments [24] and undergo a short training. We then place 

the fNIRS sensors on their forehead along with peripheral 

physiological sensors, including cardiovascular, respiratory, 

Galvanic skin response and eye tracking. Once the sensors are 

arranged, the user session proceeds through calibration tasks, a 

15 minute pre-test consisting of conceptual checks, problems 

of mixed difficulty levels, challenge problems, and transfer 

problems. The participant then completes a 40-minute 

intervention problem set consisting of probability and 

simplification problems of varying difficulty in random order. 

The intervention problem set is “tutored”, in that students will 

be able to request help and get feedback on their problem-

solving. The problems are organized so that 10 minutes are 

spent on each topic at a time. The student then completes 10 

minutes of tutored “challenge” problems, which are of higher 

difficulty than the intervention problems. The challenge 

problems are designed to learn how well students can use their 

developing knowledge to master a new topic. Finally, students 

take an untutored posttest isomorphic to the pretest. At the end 

of the session, the fNIRS as well as all physiological sensors 

are removed and the student undergoes a debriefing and 

completes a questionnaire.  

 

Planned Analysis  
Our data collection phase is ongoing. Below we describe some 

of our plans for analysis to answer our main research questions.  

 

Exploratory Analyses  

The large dataset we create will allow us to build robust 

machine learning classification models of cognitive states such 

as elevated cognitive workload, which has been demonstrated 

to be detectable by fNIRS [38,39]. A second necessary 

component of our research is determining the degree to which 

we can replicate previous educational data mining findings 

within our research context. We will extract features and 

identify feature combinations typically associated with 

cognitive states of interest such as wheel-spinning and 

mindwandering, and use our toolkit to tag those pauses with 

that additional cognitive state information. Then, following the 

methodologies presented in previous papers, we will test a 

series of statistical and machine learning models for conducting 

feature selection and predicting learning based on log data. Our 

dependent variable will be the deep and shallow learning 

outcomes surveyed.  

 

Core Analyses  

We will identify time ranges in the log data associated with the 

predictive features, as well as the other theoretically significant 

features we have surveyed. In an exploratory fashion we will 

examine brain activity during those time ranges and determine 

interesting activity features. We will evaluate how consistent 

brain activity is across like regions, where it is different, and 

potentially why. As part of this process, we will explicitly look 

for variations in brain activity between students. This analysis 

should help us isolate the most detectable cognitive processes 

using the intersection of brain and log data within our 

particular context. We will include the brain features extracted 

in our learning predictive models by combining them with 

intelligent tutoring log features both absent of and in 

conjunction with pause information. We will focus on brain 

features that appear indicative of the detectable cognitive and 



motivational states and see if the brain data improves our 

model accuracy.  

 

Secondary Analyses  

As we begin to understand the cognitive and motivational 

states that are possible to detect within the brain data, we will 

add additional measures to try to extract further ground truth 

assessments of those states (i.e. we may ask students to report 

how distracted they were during a particular problem, or 

include a measure of cognitive load at the end of each session). 

In addition, we will include self-reported measures of the 

cognitive states we are examining [18]. During a learning 

activity, students are periodically asked to respond to (Y/N) 

questions about whether their mind is wandering. This self-

report validation will provide an additional source of validation 

for the conclusions we draw regarding individual students’ 

learning process.  

 

Conclusion  
The combination of educational data mining and brain sensing 

techniques has the potential to facilitate the detection of critical 

cognitive and motivational states during use of an online 

learning environment. We have conducted several pilot studies 

in order to explore this potential integration, and are currently 

engaged in a large-scale data collection. This data collection 

will lead to the construction of a data set that will allow us to 

answer important research questions relating to the nature of 

cognitive states during learning experiences and the design of 

highly adaptive learning environments that can respond to 

those cognitive states.  

 

 

 

Web Links 
The blog for this CREU Project can be found at: 

leveragingbraindata.strikingly.com  

 

Presentations and Publications 
This abstract and its associated poster were presented at SIG 

CHI 2016 in San Jose, CA as late-breaking work. The title of 

the work was: Toward Real-time Brain Sensing for Learning 

Assessment: Building a Rich Dataset. 
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