INFERRING USERS' CONTEXT FROM THEIR SMARTPHONE DATA

Speaker: Preeti Bhargava
Host: Lori Pollock

CRA-W Undergraduate Town Hall
September 28th, 2017
About Me‡

Work Experience
- Current: Senior Research Engineer, Data Science, Lithium Technologies | Klout (2016 – present)
- Senior Member Technical Staff, Oracle India (2007 - 2010)

Education
- MS (2012) and PhD (2015), UMD, College Park
 - Advisor: Prof. Ashok Agrawala
- BE (2007), Delhi College of Engineering

PhD Internships
- Xerox PARC (2013)
- Samsung Research America (2014, 2015)

‡http://preetibhargava.info
pretsbhargava@gmail.com
PhD Research Focus†

Dissertation: Proactive Context-aware Computing and Systems

Mobile and Ubiquitous Systems
- Locus (Mobiquitous’12, JLBS’15)
- RoverII (UbiComp’12)
- SenseMe (Mobiquitous’14, EAI Endorsed Tran. on CASA 2016)
- TellMe (Mobiquitous’15)

Personalization and Recommender Systems
- User Interest Modeling from Facebook (IUI’15)
- Multi-dimensional collaborative recommendations (WWW’15)

User Modeling
- User Behavior Modeling from smartphone data collection (EAI Endorsed Tran. on CASA 2016)
- ThingTalk

Internet of Things

AI
- Machine Learning
- NLP
- AI Planning

Systems
- Context-aware Systems
- Mobile Systems
- Internet of Things

HCI
- UbiComp
- Context and Activity Recognition

‡Pertinent papers, posters, talks etc. available at http://preetibhargava.info
Current Research Focus

Extracting rich information from noisy user generated text on social media

- Densely Annotated Wikipedia Text (WWW 2017 workshop)
- Entity Disambiguation and Linking (WWW 2017 workshop)
- Lithium NLP (EMNLP 2017 workshop)
- Twitter Sentiment analysis (ICDM 2017 workshop)

AI
- Machine Learning
- NLP
- Data Science

Big Data
- Big data modeling
- Big data mining

‡Pertinent papers, posters, talks etc. available at http://preetibhargava.info
INFERRING USERS' CONTEXT FROM THEIR SMARTPHONE DATA

Preeti Bhargava
Senior Research Engineer, Data Science
Lithium Technologies | Klout
“Any information that can be used to characterize the situation of an entity.”

Multiple dimensions of user’s context:
- Who is the user? What do we know about him? Preferences/Interests/Demographics/Mood
- Where is the user? – Location
- What is the user doing? - Activity
- When? – Time
- Who is the user with? - People around him

Modeling users' context from their smartphone data

Smartphones – ubiquitous and powerful

- Multitude of sensors - GPS, accelerometer, WiFi and cellular radio, gyroscope, camera, microphone etc.
- Come equipped with an increasing range of computational, storage and communication capabilities
- Can be used to:
 - infer several dimensions of user’s context
 - deliver information to users
- Current talk will focus on 2 dimensions – location and activities
Poll question 1

How many sensors can you count on your smartphone?

How Many Sensors are in a Smartphone?

- Light
- Proximity
- 2 cameras
- 3 microphones (ultrasound)
- Touch
- Position
 - GPS
 - WiFi (fingerprint)
 - Cellular (tri-lateration)
 - NFC, Bluetooth (beacons)
- Accelerometer
- Magnetometer
- Gyroscope
- Pressure
- Temperature
- Humidity

Modeling users' context from their smartphone data (contd.)

Where is the user? Location

- Outdoor localization – GPS
- Indoor localization – Wi-Fi, Bluetooth, RFID, NFC
- Alternative technologies exist but still several challenges
 - Low cost of deployment and maintenance
 - Accuracy vs Calibration effort tradeoff
 - Robustness to environmental changes
 - Multi-story environments - Floor determination
Indoor localization

Selected existing approaches and their limitations

- **Wi-Fi Fingerprinting – RADAR (2000), Horus (2003)**
 - Very accurate but…
 - Requires Wi-Fi Radio map calibration effort,
 - Expensive to set up and maintain,
 - Not robust to environmental changes

- **Bluetooth bases solutions (iBeacon)**
 - Need proprietary hardware

- **Some works on Floor determination**
 - User input (Active Campus (2002), FTrack (2012))
 - Low accuracy GSM fingerprinting (Skyloc (2007))
Indoor localization (contd.)

My research work - Locus‡

- Calibration free, minimal set up, robust, room level accuracy
- Floor and location determination on the floor in multi-story buildings
- Uses knowledge of infrastructure – buildings, AP locations, room boundaries
- Deployed and tested on UMD campus (~220 buildings with ~4500 APs)
- Designed to enable several LBS such as indoor navigation and tracking in medical emergency scenarios

‡ P. Bhargava, S.Krishnamoorthy, A.K. Nakshathri, M. Mah, A. Agrawala, Locus: An indoor localization, tracking and navigation system for multi-story buildings using heuristics derived from Wi-Fi signal strength, MobiQuitous 2012
Indoor localization (contd.)

Locus System High Level Overview

Access Points, Rooms and Buildings database

AP MAC

<x,y>, AP Id, Floor #, Building

Wi-Fi scan data
(RSSI, MAC address, SSID)

LocateMe

X coordinate, Y coordinate, Room #, Floor #, Building Address, Location Type, Room Use
Indoor localization (contd.)

Locus Results and Benefits

- Average Floor accuracy (% of correct floor estimations) > 95%
- Average Euclidean Location Error < 6.5m (Room level accuracy)
- One of the first calibration-free systems for floor and location determination in multi-story buildings
- Minimum setup, deployment and maintenance expenses
- Readily deployable
- Robust to environmental changes
- Relies on existing infrastructure and mobile device capabilities
- Scalable to buildings with any number of floors
- Low software and hardware complexity
- Designed to support multiple indoor location based context-aware applications
Indoor localization (contd.)

Applications of indoor localization systems

- Indoor Navigation
- Retail – coupons based on proximity
- Health care
 - Emergency scenarios
 - Tracking patients in a hospital
- Can you think of any?
Modeling users' context from their smartphone data (contd.)

What is the user doing? Activity Recognition

- In addition to location, context or situation of the user includes several dimensions - activities, environment, people around him
- Challenges in multi-dimensional context and activity recognition:
 - automated - embedded in ubiquitous devices
 - robust
 - power efficient
 - non-invasive manner
 - accurate
 - scalable
 - privacy preserving …
Context and Activity Recognition

Selected existing approaches and limitations

- Environmental context (Indoor/Outdoor detection)
 - IODetector
 - uses light and magnetic field sensors, and cell tower signals
 - dependency on device manufacturer
 - sensor output varies with time of the day and weather

- Physical Activity Recognition
 - CenceMe and Jigsaw
 - Latency and privacy challenges due to backend server
 - Some calibration required for accelerometer (gait, position, orientation)s
Context and Activity Recognition (contd.)

Existing approaches and limitations (Not exhaustive)

- Social Context Recognition
 - SenceMe – bluetooth and location sharing
 - Privacy invasion
- Device Activity Recognition
 - MFU, MRU apps
Context and Activity Recognition (contd.)

My research - SenseMe‡

- SenseMe – On-device system that recognizes 5 dimensions of user’s context:

<table>
<thead>
<tr>
<th>Situation Dimension</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental context</td>
<td>{Indoor, Outdoor, Indoor-Outdoor}</td>
</tr>
<tr>
<td>Physical Activity</td>
<td>{Stationary, Walking, Running, In-vehicle}</td>
</tr>
<tr>
<td>Context-aware Location</td>
<td>Set of locations determined by Wi-Fi (indoors) or GPS (outdoors)</td>
</tr>
<tr>
<td>Device Activity</td>
<td>Task the user is engaged in on the device such as phone call or messaging</td>
</tr>
<tr>
<td>Social Context</td>
<td>Number of people around the user</td>
</tr>
</tbody>
</table>

Context and Activity Recognition (contd.)

SenseMe architecture

SenseMe Service
- Environmental Context Recognition Service
- Physical Activity Recognition Service
- Localization Service
- Social Context Recognition Service
- Device Activity Recognition Service

Front End Application Layer
- SenseMeVis

SenseMe Db
- <Location, Physical Activity, Device Activity, Environmental Context, Social Context>

<Indoor; Stationary; Phone Call; A.V. Williams Building, College Park; With 4 people>
Context and Activity Recognition (contd.)

SenseMeVis

Context-aware location

Environmental and social context

Physical Activity

Device Activity
Context and Activity Recognition (contd.)

SenseMe results

<table>
<thead>
<tr>
<th>SenseMe service</th>
<th>Overall Accuracy (%)</th>
<th>Closest Baseline Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Context Recognition</td>
<td>91.23</td>
<td>88</td>
</tr>
<tr>
<td>Physical Activity Recognition</td>
<td>95.75</td>
<td>95</td>
</tr>
<tr>
<td>Context-aware Localization</td>
<td>93.12</td>
<td>--</td>
</tr>
<tr>
<td>Device Activity Recognition</td>
<td>99.1</td>
<td>--</td>
</tr>
<tr>
<td>Social Context Recognition</td>
<td>87.5</td>
<td>--</td>
</tr>
</tbody>
</table>
SenseMe advantages

- Uses power conservation techniques - Suppression, Piggybacking and Adaptation to duty cycle GPS
- Calibration-free - Uses techniques that are agnostic to orientation, body position, time, weather etc.,
- Scalable – tested with users having varied schedules and mobility patterns
- Device independent and universally applicable
- Minimum latency and Privacy preserving - All computation and processing carried out on device
- Non-invasive - runs in the background to collect and process user’s data without the need for any intervention.
GRADUATE SCHOOL APPLICATION AND ADMISSION PROCESS - HOW TO GO FROM CS UNDERGRADUATE TO A PHD PROGRAM? WHAT DOES GRADUATE SCHOOL LOOK LIKE FOR CS?

Speaker: Preeti Bhargava
Host: Lori Pollock
Getting involved in undergraduate research

Summary:

- Excellent **UTH on Dec 1st 2016** by Katherine Sittig-Boyd
- Apply to CREU, DREU (CRA-W) programs in USA, DAAD in Europe
- Email professors
- Intern and try to publish your research
- Attend conferences –
 - Grace Hopper Conference research track
 - Lots of labs/companies in the career fair
- Maintain an updated webpage/portfolio
Getting involved in undergraduate research (contd.)

Benefits:

- You realize whether you like research
- Gives you an edge when applying for graduate programs – demonstrates ability to conduct independent research
- Publications
- Recommendations from professors/supervisors
How to go from CS undergraduate to a PhD program? (contd.)

Pick universities

- USNews is a good source
 - Overall and Discipline specific rankings – AI, Systems, HCI etc.
- Top 20-30 in your field (CS/EE)
- Check out specific departments and professors
- Shortlist about 10 schools
- Distribute MS and PhD applications
How to go from CS undergraduate to a PhD program? (contd.)

Application materials* (Covered in detail in a previous UTH on July 14 2016 by Tanya Amert)

- General application
- SOP
- Recommendations
- Transcripts
- Test scores – GRE/TOEFL
- CV
- Fees

*Resources for applying to graduate school: http://preetibhargava.info/gradschool
What does CS graduate school look like?

General Timeline
- Year 1 - 2: Finish your coursework, find a research topic and an advisor
- Year 2 - 4: Start your research and publish your work
- Year 3: Qualifying exam (some schools require it)
- End of year 4: Propose your thesis
- Year 5 - 6: Finish your research
- End of year 6: Defend your thesis
- Have a plan (A and B) for these ~6 years!
- **Disclaimers:**
 - May vary across schools and departments
 - Very high level overview of milestones
CS PhD - Key milestones

Finding an advisor

- Guide for the rest of your graduate school journey – choose wisely!
- In your broad area of interest - read his/her papers
- Conducive working atmosphere and relationship
- Size of research group
- Funding
- Talk to other students
Finding a research topic/problem

- That you like and that you can contribute to
 - Remember – your thesis should be a novel and significant contribution to CS!
- Read recently published papers – discuss with research group and advisor
- Take courses relevant to your research
- Attend conferences (find the top tier conferences in your area)

Tips:
- Many professors and researchers maintain a calendar of upcoming conferences and deadlines
- Search for conferences rankings and find the top tier ones
CS PhD - Key milestones (contd.)

Funding*

- Apply for scholarships or fellowships at your school
- Several government and private organizations and companies sponsor awards, scholarships and fellowships – NSF, DOE, Facebook, Microsoft, Google, IBM etc.
- Writing grant proposals (with your advisor) – really helps if you want to pursue an academic career
- Travel grants for conference attendance

*List of scholarships, fellowships and travel grants: http://preetibhargava.info/resources-for-funding-grad-school
Publishing your work

- Write and publish papers - top tier conferences and journals
- Professors usually have a minimum requirement for their students
- Try to maintain a good cadence (~1-2 papers every year)
 - Less stressful
- Network and collaborate with other researchers in your field
 - Find them at conferences
 - Follow their work
Internships

- Industry internships - Extremely useful for a career in industry
- Apply to academic labs and schools
- Try to find a project close to your PhD research
- Publish your work – can be possibly included in dissertation!
- 3 papers through PARC and SRA internships
 - International students in US: Make sure you take care of CPT/OPT requirements at school
Thesis proposal

- Formulate the problem that your research is addressing
- Have a story that ties everything together
- Propose your thesis – write it up and present to a committee!
Defend and apply for jobs

- Finish your thesis work
- Start applying for jobs before you defend
 - Less stressful
 - 2-3 months or more on average
- Academic – prepare your CV, research statement, go to the universities and present your work
 - Ask your advisor for guidance on where to apply for Post doc or assistant professor positions
- Industry – prepare your CV, apply to the teams and companies that interest you, ask friends to refer you for open positions, use LinkedIn effectively, interview
- References from advisor, internship mentors, professors
Resources

Visit **CRA-W.org** for more resources for all levels of your career

Join our CRA-W mailing list, **CRA-W Updates**, by going to bit.ly/1McQCDd

Follow @CRAWomen to find out about upcoming events or programs

Don’t forget to take the feedback survey!

PLEASE COMPLETE FEEDBACK SURVEY