research area, problems

Finding a Research Topic (including interdisciplinary)

Soha Hassoun

Department of Computer Science Tufts University

Sandhya Dwarkadas

Department of Computer Science University of Virginia

Link to captions

https://bit.ly/3PYcqIB

Research Area vs. Research Problems

Research area is broad (e.g., machine learning; systems)

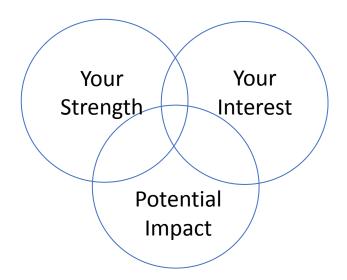
 Research problems are specific questions to answer within a research area (e.g., combining supervised and unsupervised learning for image recognition; designing efficient data prefetchers for chip-multiprocessors)

 A thesis advances knowledge by addressing important research problem(s)

Poll

Did you already find your research area?

Are you working on a research problem?


Have you solved one or more research problem?

You + Advisor = Research

Finding a Research Area: You

Find what interests you that you can do well and where you can have potential impact.

Computing Research Association Widening Participation

Finding Your Strength

- What drives you?
 Technology, puzzles, applications, interdisciplinary work?
- What is easier for you?
 - Building things?
 - Proving theorems?
 - Analyzing data?

- How to find it if you don't know?
 - Try various projects/classes

Finding Your Passion

Love your topic!

- Sets the course for your next 5+ years
- May work in same/related area for years
- Determines, in part, opportunities offered to you upon graduation

Balance passion with practical issues, such as funding:

Is there funding for you to work in the area?

- Working as a TA
- Working as an RA
- Having a university/government/industry/... scholarship/grant

Identifying Potential Impact

- What kind of impact will the work have?
- What will you become an expert in?
- Where will this area take you next?

A good match with an advisor is important!

What's the advisor's role?

- research mentor
- career mentor
- your connection to a research community

What makes for a good match?

- Research sub-area: do some background reading; talk with advisor
- Flexibility: potentially expand to an adjacent sub-area; work with co-advisor
- Working style: talk with current graduate students; know your own style
- Agreeable funding situation

From a Research Area to Finding Research Problems

How Do You Identify Good Research Problems?

- Apprentice
- The Extended Course Project
- An Inspiring Talk
- Data Needs Answers
- Flash of Brilliance
- The Interdisciplinarian
- The Stapler

The Apprentice

- Your advisor has a list of topics/funded projects that need to be worked on
- A fairly common, easy method

- Several people may be working on the project: you have to find your own angle
- Don't work long on something that isn't really exciting to you

The Extended Course Project

- You do a project in a course that turns out to be great you want to do much more
- Another pretty good method to seed interdisciplinary research topics

- Check with your advisor
- The project may not be extensible to a PhD thesis

A Talk Inspires You

- You hear a talk in your area and think "I could do that better!" or "Why didn't they think of X?"
- You start a discussion with the speaker...

- Your idea may have already been done
- Your idea may not work

Data Needs Answers

- You participate in a data collection/analysis effort with another student or in industry
- You become fascinated with the potential of newly released data sets to answer questions no one is asking

- Data ownership and purpose of use
 - If industry, make sure you can access the data and publish

Flash of Brilliance

- Looking at the research problem space holistically
- Finding novelty from your knowledge and results

Pay attention to:

 The potential impact by focusing on your proposed ideas, results and state-of-the-art prior works

The Interdisciplinarian

You learn about a problem in another field that you think you can help with (e.g. history and computer science)

- You will need real collaboration with experts in the other field
- You'll need to make the case that this really is a contribution to both fields (especially to your own).
- Consider publication venues, which impacts future job prospects

The Stapler

- You work on multiple topics and publish papers that are good and interesting to you
- Can you somehow put it all together into a dissertation?

- It could be impossible to find a common theme that makes sense
 - your imagination is the limit!

Tips & Suggestions

Topic Scope

 Is the topic of sufficient depth to qualify as a challenging research problem?

 Is the problem too big for you to handle in the time-frame of a PhD?

Useful Things to Consider

- Is your problem solvable?
 - Do you have the tools? data? equipment?
 - O Do you have/can you acquire the skills?
 - O What is your metric of success?
 - What will you compare against?
- Do you have a story to tell?
 - Why my problem/solution is new?
 - Why my problem is scientifically exciting?
 - Why solving my problem will help the world?

Getting <u>started?</u>

Read/present papers regularly to find open research issues

- Practice summarizing, synthesizing & comparing sets of papers
- Be skeptical: don't 100% believe what a paper says

Work with a senior PhD student on their research

Get feedback and ideas from others: conferences, research internships, advisor's idea

Sometimes you need to take a leap of faith! Be open to trial – and - error

When you're stuck...

- Do internships in industry
 - They have many problems but may have no time to solve them
- Attend PhD oral exams, thesis defenses, faculty candidate talks
 - Understand how to formulate problems
 - Understand what constitutes a problem solution
- Assess your progress, with your advisor
 - Set goals per semester
 - Have you ruled out an area? converged on an area?
 - Chosen a topic for an exploratory research project

When you're <u>really</u> <u>really</u> stuck

- Change research advisor?
 Check department policies; check funding
- Change research areas?
 - May move you out of your advisor's comfort zone of expertise
 - Starting from "scratch" (e.g., need to learn the related work in a new area)
- Sometimes taking a few months break can relax you and freshen up your mind!

Things to Keep in Mind ...

- The path to finding a research area / problem is iterative
 - Don't expect to find it in just one shot
- Your research area can change with your career
 - No need to feel that you will be stuck with your PhD area for the rest of your life
- Ok to span two fields
 - Many breakthroughs are made this way

Recap

You + **Advisor** = Research

- Driven by strengths, passions, and potential impact
- Good match with advisor is a must

Many ways to identify good research problems

If stuck, try different strategies to get unstuck

Thank you for prior presenters

Sandhya Dwarkadas

Department of Computer Science University of Virginia

Carol Espy-Wilson

Department of Electrical and Computer Engineering University of Maryland

Carole-Jean Wu

Meta

Kathryn McKinley & Ellen Zegura

Finding a Research Area and Research Problems: Open Discussion!!

