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Q: What would Bill Dally say about deep learning hardware

Chat GPT: Bill Dally, a renowned computer scientist and the Chief Scientist at NVIDIA, has frequently spoken about deep learning hardware. Here are
some key points he might emphasize:

1.Specialized Hardware: Dally often discusses the importance of specialized hardware for deep learning. He emphasizes that traditional CPUs are not
well-suited for the massive parallel processing required by deep learning algorithms. Instead, GPUs (Graphics Processing Units) and other specialized

processors like TPUs (Tensor Processing Units) are much more efficient.

2.Energy Efficiency: One of Dally's significant points is the need for energy-efficient hardware. Deep learning computations can be power-intensive,
so designing hardware that maximizes performance per watt is crucial.

3.Memory Bandwidth: Dally would likely talk about the importance of memory bandwidth in deep learning hardware. The ability to quickly move
large amounts of data between memory and processors is a critical factor in the performance of deep learning systems.

4.Scalability: Another key point is the scalability of hardware. Dally would emphasize the need for hardware that can scale to support larger models
and datasets, which is essential for the continued advancement of deep learning.

5.Programmability: Dally might also highlight the importance of programmability in deep learning hardware. Having flexible and programmable
hardware allows researchers and developers to experiment with new models and technigues more easily.

6.Co-design of Hardware and Algorithms: He often advocates for the co-design of hardware and algorithms. By desighing algorithms with hardware
capabilities in mind, and vice versa, significant performance gains can be achieved.

Dally's insights are grounded in his extensive experience in both academia and industry, making his perspectives highly influential in the field of deep
learning hardware.

NVIDIA.



Gemini: Bill Dally on Deep Learning Hardware: A Focus on Efficiency and Flexibility

Bill Dally, a renowned expert in computer architecture and the Chief Scientist at NVIDIA, has consistently emphasized the importance
of efficiency and flexibility in deep learning hardware.
Here are some key points he would likely highlight:

Efficiency is Paramount
*Maximize compute density: Dally would stress the need for hardware that can pack as much computational power into a given area as possible. This is crucial

for energy efficiency and performance.
*Minimize data movement: He would point out that moving data around consumes significant energy and time. Hardware should be designed to reduce data

transfer overhead.
*Leverage specialized hardware: While general-purpose processors are versatile, specialized hardware like GPUs and TPUs offer superior performance for

specific workloads like deep learning.

Flexibility is Essential
*Programmability: Dally would advocate for hardware that can be easily programmed to handle different deep learning models and algorithms. This adaptability

is crucial for staying ahead of rapidly evolving research.
*Hybrid architectures: He would likely discuss the benefits of combining specialized hardware with general-purpose processors to create hybrid systems that
offer both high performance and flexibility.

Specific Examples of Dally's Insights
*GPU architecture: Dally has been instrumental in developing NVIDIA's GPU architecture, which has become the de facto standard for deep learning

acceleration. He would emphasize the importance of parallel processing,memory bandwidth, and efficient data movement in GPU design.
*Efficient data centers: Dally has also explored ways to optimize data center infrastructure for deep learning workloads. This includes efficient power

delivery, cooling systems, and network connectivity.

In essence, Bill Dally's perspective on deep learning hardware is centered on creating systems that deliver exceptional performance while maintaining the
ability to adapt to new challenges and opportunities.

NVIDIA.



3. Eeam Theory: Example Calculation:

The maximum bending moment M. for a center-loaded simply supported beam Is: - | | |
Let's assume typical dimensions for a 6-inch aluminum I-beam:

PL
M. ... = e » Height h = 6 inches
« Flange width b = 3 Iinches
%, NESKETHET! Sirees: = Flange thicknesst¢ = 0.5 inches
The maximum bending stress a,,,,,.. IS: e Web thicknecs £ — 0,95 incho
Moz - € « Span L = 10 feet (120 inches)
Tmar = T
Using standard tables for I-beams or calculating:
where ¢ = '%
« Moment of inertia I (approximate value for example): 9 In™4
5. Load Capacity:
g d ‘ Yield strength of aluminum (6061-T6):
Set 7., equal to the yield strength:
« o, = 32,000 psi
T L 'ﬂ'rfﬂ'tﬂ-I C
Y I Plug these values into the formula:
Solving for P: p_ 8-35,000-9
120 -6
4-a, -1
P = 7 !
o
2,520, 000
Since ¢ = %: - 720

T . g I.-h P = 3, 500 pounds
<A NVIDIA I



THE WALL STREET JOURNAL.

English Edition ¥ Print Edition Vv io Latest Headlines | Mo

ClO JOURNAL

Pro Take: Going Beyond Moore’s Law;
Semiconductor Innovation Continues,

But It Is Tougher

It's getting harder, but we still have good ideas, says Bill Dally, chief
scientist at semiconductor powerhouse Nvidia, known for its Al chips

By Steven Rosenbush | Follow |

Nov. 8, 2023 7:00 am ET
Q:D D AA 69 Gift unlocked article ﬂ Listen (6 min)
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Deep Learning was Enabled by Hardware
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Training Compute (petaFLOPs)
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Some History



Int 8 TOPS

Single-Chip Inference Performance - 1000X in 10 years

B200

4500.00 8200
H100
4000.00

4000.00

3500.00

3000.00

2500.00 — T

2000.00

1500.00 A100

1248.00
1000.00
500.00 Hi:
3.94 6.84 21.20
0.00 -
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Gains from

Number Representation
FP32, FP16, Int8, FP4
(TF32, BF16)
~16X, 32X

Complex Instructions
DP4, HMMA, IMMA
~12.5X%

Process
28nm,

~2.5X, 3x

, /nm, 5nm, 4nm

Sparsity ~2x

Die Size 2x

Int 8 TOPS

Model efficiency has also improved —

overall gain > 1000x

Single-Chip Inference Performance - 1000X in 10 years

4500.00 B200
H100 20,000
FPS8 4000.00
4000.00 Transformer Eng
3500.00
3000.00
2500.00
2000.00 A100
Structured
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1500.00
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FP16 Cores
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500.00 Scalar FP32
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K20X
21.20 125.00
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0.00 —
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Specialized Instructions Amortize Overhead

Operation Energy** Overhead™
HFMA 1.5p) 2000%
HDP4A 6.0p] 500%
HMMA 110pJ 22%
IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch — 30pJ
**Energy numbers from 45nm process

NVIDIA.



Hopper H100

1 PFLOPS (TF32)
1/ 2 PLFLOPS (FP16 or BF16) (dense/ )

2 / 4 PLFOPS (FP8 or Int8) (dense/ )

3.4TB/s (HBM3) 94GB

18 NVLINK ports

400Gb/s each 900GB/s total
/00W

Transformer Engine
Dynamic Programming Instructions

9 TOPS/W (Int8/FP8)

4PF Sparse FP8, 900GB/s, 700W

<ANVIDIA. I



Blackwell B200

The Two Largest Dies Possible—Unified as One GPU

2 reticle-limited dies operate as One Unified CUDA GPU

NV-HBI 10TB/s High Bandwidth Interface
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Full performance. No compromises

EYTTLILLAALL

Fast Memory

4X Training | 30X Inference | 25X Energy Efficiency & TCO
192GB HBM3e

10 PetaFLOPS FP8 | 20 PetaFLOPS FP4
192GB HBM3e | 8 TB/sec HBM Bandwidth | 1.8TB/s NVLink
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Pipeline Parallel

3D Parallelism

It takes 20 GPUs to
hold one copy of
GPT4 model
parameters

GPU 12 GPU 20

Tensor Parallel

<A NVIDIA. I
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GB200 NVL72

36 GRACE CPUs
GB200 NVL72 /2 BLACKWELL GPUs

Fully Connected NVLink Switch Rack

Training 720 PFLOPs
Inference 1.4 EFLOPs
NVL Model Size 27T params
Multi-Node All-to-All 130 TB/s
Multi-Node All-Reduce 260 TB/s
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Scale-up — NVLink and NVSwitch —to 256 GPUs

Scale-out — IB to 10,000s of GPUs

Collectives Double Effective Network Bandwidth (AllReduce)

<A NVIDIA.



Training Compute (petaFLOPs)

System Scaling

SELENE

s NN
2.8 EF V)TN

TRANSFORMER
ENGINE
SATURN V G
0.6PF
TF32 HOPPER
10,000,000,000 ‘
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@
1,000,000 PASCAL
®
®
®
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[ ]
. 70,000x in 5 years
e ® ,
100
2012 2014 2016 2018 2020 2022 2024
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Software
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Relative Per formance

2.4-2.9x From Software Improvements

GPT-]
NVIDIAHIO0 Tensor Co re GPU

vi.l B va0

3X 2.9X

24X

1X

0X

Offline Server



HPC]

Swnce 1887 - Covenng the Faste:
mn the World and the Pacple Who Run Them
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O 0 0 0 0 O

Podcast
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Since 1987 - Covering the Fastest Computers
in the World and the People Who Run Them
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Exascale

O 0 0 0 O

Specials

HPCE

Since 1887 - Covenng the Fashes? Computors
in ha Warld and the Pacple Who Run Them

Home
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Hesource Library

st Computers

Home

MLPerf Training - ahead of Moore's Law

Relative performance - Best results - Closed, available, on premises

lopics
o4
P, Y P
. 1.1-8.3X 1.4-8.9X ST
Bty 1.7-9.5X 1.1-10.2X 1.2-5.2X Seclors
motiralie!
——BERT e Evacra
o DLRM 2-7.9% txascale
M R\ derw? 2°7-5x-_ a
10 iUV . |
e ' Specials

MLPerf Training 4.0 — Nvidia Still King; Power and

Hesource Library

O 0 0 0 0 0 O

Podcast

LLM Fine Tuning Added

By John Russell

?;’
June 12, 2024
There are really two stories packaged in the most recent MLPerf Training 4.0 o oaing e oo omptere
results, released today. The first, of course, is the results. Nvidia (currently
king of accelerated computing) wins again, sweeping all nine “events” s @ Home
(workflows) as it were. Its lead remains formidable. Story number two, ® Topics
& nume
'g ' ' ’- O Topics
MLPerf Inference 4.0 Results Showcase GenAl; O Sectors
Nvidia Still Dominates & Einscuis
By John Russell
® Specials
March 28, 2024 I
NVIDIA H100 GPUs Set Standard for Generative Al S 1687 Covaring he Fastost oo

in Debut MLPerf Benchmark
June 28, 2023

] vt the World and the Poogie Whs Bun Tham

& Home
June 28, 2023 — Leading users and industry-standard benchmarks agree:

NVIDIA H100 Tensor Core GPUs deliver the best Al performance, especially
on the large language models (LLMs) powering generative Al.

. & Topics

& Sectors

H100 GPUs set new records on all eight tests
in the latest MLPerf training benchmarks
released this week, excelling on a new MLPerf

lechnologies

4

O 0 0 0 &

. . Sectors
test for generative Al. That excellence is =
delivered both per-accelerator and at-scale in M | Pe rf Al/ML/DL
massive servers.

Exascale

MLPerf Releases Latest Inference Results and New

Storage Benchmark
By John Russell

September 13, 2023

MLCommons this week issued the results of its latest MLPerf Inference (v3.1)
benchmark exercise. Nvidia was again the top performing accelerator, but
Intel (Xeon CPU) and Habana (Gaudil and 2) performed well. Google

nravided a neak at ite new TPl | (vRe) nerfarmance Ml C.ommnne alan

New MLPerf Training and HPC Benchmark Results

Showcase 49X Performance Gains in 5 Years
November 8, 2023

SAN FRANCISCO, Nov. 8, 2023 — Today, MLCommons announced new
results from two industry-standard MLPerf benchmark suites:

« The MLPerf Training v3.1
suite, which measures the

MLPerf Inference 3.0 nghllghts Nvidia, Intel,

Qualcomm and...ChatGPT

By John Russell

April 5, 2023

Nvidia Hopper, Ampere GPUs Sweep MLPerf

Benchmarks in Al Training
November 9, 2022

Nov. 9, 2022 — Two months after their debut sweeping MLPerf inference
benchmarks, NVIDIA H100 Tensor Core GPUs set world records across
enterprise Al workloads In the industry group’s latest tests of Al training.

Together, the results show H100 is the best choice for users who demand
utmost performance when creating and deploying advanced Al models.

Nvidia Dominates MLPerf Inference, Qualcomm also

Shines, Where’s Everybody Else?

By John Russell

April 6, 2022




Future Directions




Future Directions

Number representation

* Log numbers

» Vector scaling (VS-Quant)
* Optimal Clipping

* Much cheaper math

* Smaller numbers

Sparsity
* Activations
* Lower density (vs 2:4 in A100/H100)

Better tiling
* Lower memory energy

Circuits
* Memory
* Communication
* 3D memory ® Input Buffer = Weight Buffer
= Accumulation Buffer = Accumulation Collector
Process = Datapath + MAC m Data Movement

» Capacitance scaling

<ANVIDIA. I



Number Representation



INt&

fpl6

log8

syma38

spike

analog

o Attributes:

Activation

Buffer

Storage

Cost

Operation energy
Movement energy

Accuracy

Dynamic range
Precision (error)

Transport

Multiply

Accumulate

Operation
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INt&

Dynamic Range

fpl6 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5
spike —
m Acc (Min) mAcc (Max) mDyn
log8
symo
syma38
<ok TN nnT —

1 0.1 0.01

Precision (Error)
analog /\/\
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Symbol Representation (Codebook)

20000
xXx |[Inear guantization
. nonlinear quantization by

15000} ®®® C(lustering and finetuning
)
= 10000}
C
U
g

5000}

O X X X @X @ &K 0 0X0 X @ X @0 & 0 0X0 0 X 0X @X X X X
—0.04 ~0.02 0.00 0.02 0.04 0.06

weight value
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Count

Weight distribution of layer 1 (PTB small)
6000

o000

4000
3000
2000
1000

D .
295 -2 -1.5 -1 05 0 05 1 15 2
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Log Representation
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* Dynamic Range 10° _ snel.e
Y g vV = _1 2 f
*\WC Accuracy 4%

*Vs Int8 — DR 102
*\WC Accuracy 33%

*\/s FP8 (E4AM3) — DR 10°
*\WC Accuracy 6%
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* Log Numbers

* Multiplies are cheap — just an add

* Adds are hard — convert to integer, add, convert back
* Fractional part of log is a lookup

* Integer part of log is a shift

» Can factor the lookup outside the summation
* Only convert back after summation (and NLF)

<ANVIDIA. I
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Optimum Clipping



Whatever number representation you use

Pick the range optimally
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Vector Scaling



VS-Quant

Per-vector scaled quantization for low-precision inference

recsize—1

D= ) WD, |5, (a0

=0

Weights Input Activation

=7

KxPxQ
K
Input activation Weight Output activation
Kx R xS x ceil(C/V) integer scale factors
+
K floating-point scale factors
Fine-grained scale factors per vector Modified vector MAC unit for VS-Quant

Works with either post-training quantization or quantization-aware retraining!

[Dai et al., MLSYS 2021] <A NVIDIA. I



INT4 Quantization VSQ Scale Factors

Noise One scale factor for each 64-element input vector

Min value — Max value
in matrix in matrix / \
64
]
- — /T
' —
Scaling W x K V]
-8 0, 7/ K \ N N
Traditional Quantization f
Second scale factor for each input matrix
Min value " Max value
In vector In vector
: Traditional Quantization VS
More scaling Q Q
One scale factor Two scale factors: one per
per matrix vector, one per matrix
/ High quantization noise Reducec
FP32 data -8 0, V4 81 4 quantization noise
distribution VSQ
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Sparsity




Pruning

before pruning after pruning

pruning  _ _ __ ’4‘
synapses
@ O C

[ —>
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Structured Sparsity

Sparse Tensor
Core

Input activations

Select

) e

Dot-product

<+

"= zero entry

Fine-grained I I I EE::

structured pruning Compress =...

) > =P 1

1 1]

2:4 sparsity: 2 non- ====

zero out of 4 entries HEERE

Dense trained *ﬂ Non-zero Indices I‘:’ll'l:[)llt activations
weights data values

Fine-tune weights Fine-tuned sparse and
compressed weights

Mishra, Asit, et al. "Accelerating sparse deep neural networks." arXiv preprint arXiv:2104.08378 (2021)

NVIDIA A100 Tensor Core GPU Architecture whitepaper <ANVIDIA. I


https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Accelerators




EIE (2016)

SpMat

Act 0 Act 1

Ptr_Even  Arithm  Ptr_Odd

6 <

NVIDIA.

Everiss (2016)

—PE

fray -

==—IEEPSE--=

<3

NVIDIA.

DRAM

indices

Weight FIFO | F
(sparse)

SCNN (2017)

DRAM
IARAM Neighbors
(sparse) )
OARAM PPU
(sparse) Halos
— ReLU
|ARAM indices )l Compress
OARAM indices
Coordinate -
Computation
o
® ® é ‘@ Buffer bank \
: Fell %2 :
. + E 'E :
® ® E ‘@ Buffer bank \
©

FxI multiplier array

A accumulator buffers

<3

NVIDIA.

Simba (2018)

NVIDIA.
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Accelerators Employ:

» Special Data Types and Operations
*Do in 1 cycle what normally takes 10s or 100s — 10-1000x efficiency gain

* Massive Parallelism —>1,000x, not 16x — with Locality
* This gives performance, not efficiency

* Optimized Memory
* High bandwidth (and low energy) for specific data structures and operations

* Reduced or Amortized Overhead
* 10,000x efficiency gain for simple operations

* Algorithm-Architecture Co-Design

<A NVIDIA. I



Fast Accelerators since 1985

. Dally, W.J. and Bryant, R.E., 1985. A hardware architecture for switch-level simulation. /EEE Trans.
CAD, 4(3), pp.239-250.

. Agrawal, P. and Dally, W.J., 1990. A hardware logic simulation system. IEEE Trans. CAD, 9(1), pp.19-29.

. Fiske, S. and Dally, W.J., 1988. The reconfigurable arithmetic processor . ISCA 1988.
. Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P. and Owens, J.D., 2003. Programmable stream
processors. Computer, 36(8), pp.54-62.

: Dally, W.J., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R.C., Parikh, V., Park, J. and Sheffield, D., 2008. Efficient
embedded computing. Computer, 41(7).

: Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE: efficient inference engine on
compressed deep neural network, ISCA 2016

:Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, SW. and Dally, W.J., 2017,
June. Scnn: An accelerator for compressed-sparse convolutional neural networks, ISCA 2017

: Turakhia, Bejerano, and Dally, “Darwin: A Genomics Co-processor provides up to 15,000x acceleration on long read
assembly”, ASPLOS 2018.

: Zhuo, Rucker, Wang, and Dally, “Hardware for Boolean Satisfiability Inference,”
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Eliminating Instruction Overhead

Area is proportional to energy — all 28nm

N\

16b Int Add, 321J

OO0O CPU Instruction — 250pJ (99.99% overhead, ARM A-15)

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science, Tech. Rep. FORTH-ICS/TR-
450 (2015) <ANVIDIA.




Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014
Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

=

Cost of Operations

Relative Energy Cost

=
-
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The Importance of Staying Local

LPDDR DRAM

GB

l 640pJ/word

On-Chip SRAM
MB

l 50pJ/word

Local SRAM

KB

l 5pJ/word

<ANVIDIA. I
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[Venkatesan et al., ICCAD 2019]
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Energy-efficient DL Inference accelerator
Transformers, VS-Quant INT4, TSMC 5nm

» Efficient architecture

* Used MAGNet [Venkatesan et al., ICCAD 2019] to design a
low-precision DL inference accelerator for Transformers

* Multi-level dataflow to improve data reuse and energy efficiency

* Low-precision data format: VS-Quant INT4
* Hardware-software techniques to tolerate quantization error

wn gq¢

* Enable low cost multiply-accumulate (MAC) operations
* Reduce storage and data movement

» Special function units

o TSMC5nm
_ 100 ‘ * 1024 4-bit MACs/cycle (512 8-bit)
% 80_,3‘«‘;& 7 ko * 0.153 mm? chip
= "\, /// T * 95.6 TOPS/W with 50%-dense 4-bit input matrices * Voltage range: 0.46V —1.05V
g °0" A% 1000 > with VSQ enabled at 0.46V » Frequency range: 152 MHz — 1760 MHz
2 07 (/ '\-\% § * 0.8% energy overhead from VSQ support with 50%-
> 20- /7 ~— "-m..,.“_".. -500 £ dense inputs at 0.67V

| | | 0
0.6 0.8 1.0
Supply Voltage (V)

[Keller, Venkatesan, et al., “A 95.6-TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization in 5nm”, JSSC 2023] <A NVIDIA I



Mapping
Program Directives

Mapper &
Runtime

Data & Task Placement

Custom Compute Blocks
- (Instructions or Clients)
(someday as ‘chiplets’)

-SMS

Efficient NoC Configurable Memory



Conclusion




Conclusion

Single-Chip Inference Performance - 317X in 8 years

* Deep Learning was enabled by hardware and its progress
is limited by hardware

1000.00

* 1000x in last 10 years
* Number representation, complex ops, sparsity

800.00

clip clip

Int 8 TOPS

600.00

Tensor PDF

400.00

* Logarithmic nhumbers

08 -06 -04 -02 00 02 0.4 06 0.8
Value

0.00 Lo

e Lowest worst-case error for a given number of bits Y12 843 I S0 927 219 61820 103121
* Can ‘factor out’ hard parts of an add

* Optimum clipping

* Minimize MSE by trading quantization noise for clipping noise

* VS-Quant
» Separate scale factor for each small vector — 16 to 64 scalars

* Accelerators — Testbeds for GPU ‘cores’

» Test chip validates concepts and measures efficiency
* 95.6 TOPS/W on BERT with negligible accuracy loss

wn gg¢
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