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Q: What would Bill Dally say about deep learning hardware

Chat GPT: Bill Dally, a renowned computer scientist and the Chief Scientist at NVIDIA, has frequently spoken about deep learning hardware. Here are 
some key points he might emphasize:

1.Specialized Hardware: Dally often discusses the importance of specialized hardware for deep learning. He emphasizes that traditional CPUs are not 
well-suited for the massive parallel processing required by deep learning algorithms. Instead, GPUs (Graphics Processing Units) and other specialized 
processors like TPUs (Tensor Processing Units) are much more efficient.

2.Energy Efficiency: One of Dally's significant points is the need for energy-efficient hardware. Deep learning computations can be power-intensive, 
so designing hardware that maximizes performance per watt is crucial.

3.Memory Bandwidth: Dally would likely talk about the importance of memory bandwidth in deep learning hardware. The ability to quickly move 
large amounts of data between memory and processors is a critical factor in the performance of deep learning systems.

4.Scalability: Another key point is the scalability of hardware. Dally would emphasize the need for hardware that can scale to support larger models 
and datasets, which is essential for the continued advancement of deep learning.

5.Programmability: Dally might also highlight the importance of programmability in deep learning hardware. Having flexible and programmable 
hardware allows researchers and developers to experiment with new models and techniques more easily.

6.Co-design of Hardware and Algorithms: He often advocates for the co-design of hardware and algorithms. By designing algorithms with hardware 
capabilities in mind, and vice versa, significant performance gains can be achieved.

Dally's insights are grounded in his extensive experience in both academia and industry, making his perspectives highly influential in the field of deep 
learning hardware.



Gemini:  Bill Dally on Deep Learning Hardware: A Focus on Efficiency and Flexibility

Bill Dally, a renowned expert in computer architecture and the Chief Scientist at NVIDIA, has consistently emphasized the importance 
of efficiency and flexibility in deep learning hardware.
Here are some key points he would likely highlight:

Efficiency is Paramount
•Maximize compute density: Dally would stress the need for hardware that can pack as much computational power into a given area as possible. This is crucial 
for energy efficiency and performance.
•Minimize data movement: He would point out that moving data around consumes significant energy and time.  Hardware should be designed to reduce data 
transfer overhead.
•Leverage specialized hardware: While general-purpose processors are versatile, specialized hardware like GPUs and TPUs offer superior performance for 
specific workloads like deep learning.

Flexibility is Essential
•Programmability: Dally would advocate for hardware that can be easily programmed to handle different deep learning models and algorithms. This adaptability 
is crucial for staying ahead of rapidly evolving research.
•Hybrid architectures: He would likely discuss the benefits of combining specialized hardware with general-purpose processors to create hybrid systems that 
offer both high performance and flexibility.

Specific Examples of Dally's Insights
•GPU architecture: Dally has been instrumental in developing NVIDIA's GPU architecture, which has become the de facto standard for deep learning 
acceleration. He would emphasize the importance of parallel processing,memory bandwidth, and efficient data movement in GPU design.
•Efficient data centers: Dally has also explored ways to optimize data center infrastructure for deep learning workloads. This includes efficient power 
delivery, cooling systems, and network connectivity.

In essence, Bill Dally's perspective on deep learning hardware is centered on creating systems that deliver exceptional performance while maintaining the 
ability to adapt to new challenges and opportunities.
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Motivation



Deep Learning was Enabled by Hardware
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Some History
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Gains from

• Number Representation
• FP32, FP16, Int8, FP4
• (TF32, BF16)
• ~16x, 32x

• Complex Instructions
• DP4, HMMA, IMMA
• ~12.5x

• Process 
• 28nm, 16nm, 7nm, 5nm, 4nm
• ~2.5x, 3x

• Sparsity  ~2x

• Die Size 2x

• Model efficiency has also improved – 
overall gain > 1000x
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Specialized Instructions Amortize Overhead

Operation Energy** Overhead*

HFMA 1.5pJ 2000%

HDP4A 6.0pJ 500%

HMMA 110pJ 22%

IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process



1 PFLOPS (TF32) 
1 / 2 PLFLOPS (FP16 or BF16) (dense/sparse)
2 / 4 PLFOPS (FP8 or Int8) (dense/sparse)

3.4TB/s (HBM3) 94GB
18 NVLINK ports 
400Gb/s each 900GB/s total
700W

Transformer Engine
Dynamic Programming Instructions

9 TOPS/W (Int8/FP8)

Hopper H100

4PF Sparse FP8, 900GB/s, 700W



Blackwell B200
The Two Largest Dies Possible—Unified as One GPU

10 PetaFLOPS FP8  |  20 PetaFLOPS FP4
192GB HBM3e  |  8 TB/sec HBM Bandwidth  |  1.8TB/s NVLink

2 reticle-limited dies operate as One Unified CUDA GPU

NV-HBI 10TB/s High Bandwidth Interface

Full performance. No compromises

4X Training | 30X Inference | 25X Energy Efficiency & TCO

Fast Memory
192GB HBM3e



3D Parallelism
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GB200 NVL72
Delivers New Unit of Compute

36 GRACE CPUs

72 BLACKWELL GPUs

Fully Connected NVLink Switch Rack

GB200 NVL72

Training 720 PFLOPs

Inference 1.4 EFLOPs

NVL Model Size 27T params

Multi-Node All-to-All 130 TB/s

Multi-Node All-Reduce 260 TB/s



Scale-up – NVLink and NVSwitch – to 256 GPUs

Scale-out – IB to 10,000s of GPUs 

Collectives Double Effective Network Bandwidth (AllReduce)
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Software





2.4-2.9x From Software Improvements





Future Directions



Future Directions

Number representation
• Log numbers
• Vector scaling (VS-Quant)
• Optimal Clipping
• Much cheaper math
• Smaller numbers

Sparsity
• Activations
• Lower density (vs 2:4 in A100/H100)

Better tiling
• Lower memory energy

Circuits
• Memory
• Communication
• 3D memory

Process
• Capacitance scaling
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Input Buffer Weight Buffer
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Number Representation
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Symbol Representation (Codebook)

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015

clustering





Log Representation





•Dynamic Range 105

•WC Accuracy 4%

•Vs Int8 – DR 102 

•WC Accuracy 33%

•Vs FP8 (E4M3) – DR 105

•WC Accuracy 6%

𝑣 = −1𝑠2𝑒𝑖.𝑒𝑓

Log4.3 S EI
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• Log Numbers

• Multiplies are cheap – just an add

• Adds are hard – convert to integer, add, convert back

• Fractional part of log is a lookup

• Integer part of log is a shift

• Can factor the lookup outside the summation

• Only convert back after summation (and NLF)
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Optimum Clipping



Whatever number representation you use

Pick the range optimally



clip clip

clipped quantizationmax-scaled quantization

large q. noise low density data



𝑠𝑛+1 =
𝑬 𝑋 ⋅ 𝟏 𝑋 >𝑠𝑛

4−𝐵

3
𝑬 𝟏 𝑋 <𝑠𝑛 + 𝑬 𝟏 𝑋 >𝑠𝑛

𝐽 =
4−𝐵

3
𝑠2න

0

𝑠

𝑓|𝑋| 𝑥 𝑑𝑥 + න
𝑠

∞

𝑠 − 𝑥 2𝑓|𝑋| 𝑥 𝑑𝑥



Vector Scaling



VS-Quant
Per-vector scaled quantization for low-precision inference

Modified vector MAC unit for VS-QuantFine-grained scale factors per vector

[Dai et al., MLSYS 2021]

Works with either post-training quantization or quantization-aware retraining!



 

 

 

 [3] [7] [8] [9] This work 

Process Technology 7nm 28nm 5nm 7nm 5nm 

Area (mm2) 19.6 1.9 5.46 3.04 0.153 

Supply Voltage (V) 0.55 – 0.75 0.6 – 0.9 0.55 – 0.9 0.58 – 0.83 0.46 – 1.05 

Frequency (MHz) 1000 – 1600 100 – 470 332 – 1196 290 – 880 152 – 1760 

On-Chip SRAM (KB) 8192 206 3072 2176 141 

Data Formats INT2/4, FP8/16/32 INT8 INT8, INT16 INT8/16, FP16 INT4 INT4 VSQ INT8 

Performance (TOPS) 102.4 (4b, 0.75V) 1.43 (8b, 0.9V) 14.7 (8b, 0.9V) 3.6 (8b, 0.83V) 3.6 (1.05V) 3.6 (1.05V) 1.8 (1.05V) 

Energy Efficiency (TOPS/W) 16.5* (4b, 0.55V) 17.5* (8b, 0.6V) 13.6* (8b, 0.6V) 6.8* (8b, 0.58V) 91.1† (0.46V) 95.6† (0.46V) 39.1† (0.46V) 

Area Efficiency (TOPS/mm2) 5.22 (4b, 0.75V) 0.75 (8b, 0.9V) 2.69 (8b, 0.9V) 1.2 (8b, 0.83V) 23.3 (1.05V) 23.3 (1.05V) 11.7 (1.05V) 
* Input densities not reported.    † Measured with 50% non-zero input densities. Includes estimated leakage power. 

Dataset, Task SQuAD v1.1, Reading Comprehension ImageNet, Image Classification 

Network BERT-Base BERT-Large DeIT-Small DeIT-Base 

Sequence Length 128 384 128 384 197 197 

 Baseline FP32 Accuracy (%) 87.5 87.5 90.3 90.9 79.8 81.8 

Data Bitwidth (4V = 4b VSQ) 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 

Accuracy Loss (%) 80 0.7 0.7 81 0.5 0 88 1.1 1.1 89 0.8 0.1 29 3.6 0.7 25 1.3 0.4 

MAC Utilization (%) - 98 99 - 98 99 - 98 99 - 98 99 - 94 96 - 97 98 

Throughput (inferences/s) - 88 45 - 28 14 - 25 13 - 8.1 4.1 - 210 108 - 56 28 

Energy Eff. (inferences/s/W) - 1.7k 745 - 539 235 - 502 216 - 160 69 - 3.5k 1.5k - 1.0k 406 
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Fig.6: Workload mapping and data reuse. 

Fig.5: Accelerator block diagram. 

Fig.4: Approximate softmax implementation. 

Fig.3: 8b/4b datapath with VSQ support. 

Fig.2: Per-vector scaled quantization (VSQ). 

Fig.1: Workload components of transformers. 

Fig.7: Chip measurements. 

Fig.8: Die micrograph. 

Table 1: Measured application performance at 0.67V. 

Table 2: Comparison to prior work. 
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Sparsity



Pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015



Structured Sparsity

NVIDIA A100 Tensor Core GPU Architecture whitepaper

Mishra, Asit, et al. "Accelerating sparse deep neural networks." arXiv preprint arXiv:2104.08378 (2021)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf


Accelerators



EIE (2016) Eyeriss (2016) SCNN (2017) Simba (2018)



Accelerators Employ:

• Special Data Types and Operations

•Do in 1 cycle what normally takes 10s or 100s – 10-1000x efficiency gain

• Massive Parallelism – >1,000x, not 16x – with Locality

• This gives performance, not efficiency

• Optimized Memory

• High bandwidth (and low energy) for specific data structures and operations

• Reduced or Amortized Overhead

• 10,000x efficiency gain for simple operations

• Algorithm-Architecture Co-Design

53



Fast Accelerators since 1985

• Mossim Simulation Engine: Dally, W.J. and Bryant, R.E., 1985. A hardware architecture for switch-level simulation. IEEE Trans. 
CAD, 4(3), pp.239-250.

• MARS Accelerator:  Agrawal, P. and Dally, W.J., 1990. A hardware logic simulation system. IEEE Trans. CAD, 9(1), pp.19-29.

• Reconfigurable Arithmetic Processor: Fiske, S. and Dally, W.J., 1988. The reconfigurable arithmetic processor . ISCA 1988.

• Imagine:  Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P. and Owens, J.D., 2003. Programmable stream 
processors. Computer, 36(8), pp.54-62.

• ELM: Dally, W.J., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R.C., Parikh, V., Park, J. and Sheffield, D., 2008. Efficient 
embedded computing. Computer, 41(7).

• EIE: Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE: efficient inference engine on 
compressed deep neural network, ISCA 2016

• SCNN:Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, S.W. and Dally, W.J., 2017, 
June. Scnn: An accelerator for compressed-sparse convolutional neural networks, ISCA 2017

• Darwin: Turakhia, Bejerano, and Dally, “Darwin: A Genomics Co-processor provides up to 15,000× acceleration on long read 
assembly”, ASPLOS 2018. 

• SATiN: Zhuo, Rucker, Wang, and Dally, “Hardware for Boolean Satisfiability Inference,”



Eliminating Instruction Overhead

OOO CPU Instruction – 250pJ (99.99% overhead, ARM A-15)

Area is proportional to energy – all 28nm

16b Int Add, 32fJ

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science, Tech. Rep. FORTH-ICS/TR-
450 (2015)



Cost of Operations

Operation: Energy (pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FP Mult 1.1

32b FP Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

Area (m2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014
Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Relative Energy Cost Relative Area Cost

1 10 100 1000 10000 1 10 100 1000



The Importance of Staying Local

LPDDR DRAM
GB

On-Chip SRAM
MB

Local SRAM
KB

640pJ/word

50pJ/word

5pJ/word
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[Venkatesan et al., ICCAD 2019]

Configurable using synthesizable SystemC, HW generated using HLS tools

Magnet



Energy-efficient DL Inference accelerator 
Transformers, VS-Quant INT4, TSMC 5nm

• Efficient architecture

• Used MAGNet [Venkatesan et al., ICCAD 2019] to design a 
low-precision DL inference accelerator for Transformers

• Multi-level dataflow to improve data reuse and energy efficiency

• Low-precision data format: VS-Quant INT4 

• Hardware-software techniques to tolerate quantization error

• Enable low cost multiply-accumulate (MAC) operations

• Reduce storage and data movement

• Special function units

• TSMC 5nm
• 1024 4-bit MACs/cycle (512 8-bit)
• 0.153 mm2 chip
• Voltage range: 0.46V – 1.05V
• Frequency range: 152 MHz – 1760 MHz

• 95.6 TOPS/W with 50%-dense 4-bit input matrices 
with VSQ enabled at 0.46V

• 0.8% energy overhead from VSQ support with 50%-
dense inputs at 0.67V

[Keller, Venkatesan, et al., “A 95.6-TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization in 5nm”, JSSC 2023]
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Conclusion

• Deep Learning was enabled by hardware and its progress 
is limited by hardware

• 1000x in last 10 years

• Number representation, complex ops, sparsity

• Logarithmic numbers 
• Lowest worst-case error for a given number of bits

• Can ‘factor out’ hard parts of an add

• Optimum clipping

• Minimize MSE by trading quantization noise for clipping noise

• VS-Quant

• Separate scale factor for each small vector – 16 to 64 scalars

• Accelerators – Testbeds for GPU ‘cores’

• Test chip validates concepts and measures efficiency

• 95.6 TOPS/W on BERT with negligible accuracy loss
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