Setting a Course for Post-Moore cCcC

- Computing Community
Computing Research Consortium

Software Performance
William Gropp (University of lllinois Urbana-Champaign), Randal Burns

(Johns Hopkins University), Brian LaMacchia (Farcaster Consulting Group), Charles E.

Leiserson (MIT), and Michela Taufer (University of Tennessee, Knoxville)

. N
2024-2025 CRA Quadrennial Paper ‘/ Q
CRA

With Moore's Law having ended, the U.S. must pivot from relying on hardware
improvements to investing heavily in software performance engineering (SPE)
through research, education, and workforce development to maintain its
technological edge, especially since few software engineers currently possess
these critical skills.

For decades, the United States has enjoyed scientific, economic, and strategic advantages
because of our ability to consistently engineer better and faster computer hardware. Not
anymore. The era of cheap, exponential hardware advances driven by semiconductor
miniaturization and Moore’s Law has ended. To maintain our historical advantages, the U.S.
now faces the challenge of designing applications that use available hardware more efficiently.
Future progress in Al, biology, physics, economics, finance, chemistry, geoscience, and other
fields all depends on fast computing, as does our national defense.

Researchers have identified three opportunity areas for significantly enhancing performance
and reducing energy consumption, thus enabling continued growth in performance in the
post-Moore era:

e Algorithms: The design of efficient, step-by-step procedures used to solve large-scale
problems or perform modular tasks in complex workflows.

e Hardware architecture: The organization of computer components, such as
processors, accelerators, and memory hierarchies.

e Software: Programs that run on hardware architectures to implement an application or
system.

Opportunities for increased application and system performance exist in all three areas.
Algorithm design, however, is limited to the relatively few individuals with specialized expertise
and exceptional math skills. Hardware architecture design is similarly restricted to those with
specialized expertise and access to state-of-the-art fabrication technology. In contrast,
software is ubiquitous, and approximately 1.7 million individuals in the United States are

2024-2025 CRA Quadrennial Paper 1


https://www.science.org/doi/10.1126/science.aam9744
https://www.bls.gov/oes/current/oes151252.htm

employed as software developers. Software performance engineering (SPE) — optimizing code
to run faster or use fewer resources — offers the most accessible opportunity for Al and other
applications to improve performance and minimize energy consumption.

Unlike the faster hardware provided by Moore’s Law, which sped up all applications, software
performance improvements affect only the applications that run the specific code being
optimized. Although shared libraries and platforms can be performance-engineered to run
faster, achieving high-performance applications typically requires custom engineering of the
applications themselves. For example, Al models can be trained significantly faster by
employing techniques such as using simpler math calculations, distributing the work across
multiple chips, and leveraging special software tools optimized for specific models. These
techniques can improve model training speeds by a factor of 10x, and multiple optimizations
can achieve gains of up to 150x. However, effectively implementing these techniques requires
deep knowledge of computer hardware and the Al application used.

Maintaining the scientific, economic, and strategic advantages the United States enjoyed
during the era of Moore’s Law will require a large-scale effort across all U.S.-produced
software. Unfortunately, few software engineers are proficient in SPE. Software-productivity
toolchains for SPE remain underdeveloped and few universities teach even the foundational
principles of SPE, let alone provide comprehensive curricula.

Addressing this challenge requires significant investments in three key areas:

1. Prioritizing SPE research: Productivity tools must be developed for SPE to ease the
burden on average programmers and to relieve experts from painstaking and tedious
work. Programming languages must evolve to enable the rapid development of efficient
software. Computer system vendors must develop instrumentation frameworks that
enable programmers and users to gain insight into the performance and energy
consumption of their programs.

2. Educating students in SPE: Universities must be encouraged to develop
undergraduate and graduate SPE courses and to devise comprehensive curricula. While
research universities should lead this effort, they must collaborate with
teaching-focused institutions and community colleges to share their curricular materials
and ensure that SPE expertise does not remain a niche or esoteric skill.

3. Upskilling the existing workforce: The current workforce must acquire and practice
SPE skills. Industry standards should be developed to report the performance and
energy consumption of applications and systems, particularly those produced by the
government’s supply chain. Additionally, regulations or economic incentives should be
implemented to promote software efficiency.

) Q)
“' 2024-2025 CRA Quadrennial Paper

CRA CccC

- Computing Community
Computing Research Consortium
o

Association Catalyst



The types of research, education, and workforce development for software performance that
we recommend below complement the national investment in the CHIPS and Science Act
(“CHIPS”, Pub.L. 117-167). CHIPS authorizes investments in industries and their workforces to
position the U.S. competitively and secure the semiconductor supply chain. It also invests in
future research into post-Moore’s law architectures. Since the modern semiconductors
produced in the U.S. under CHIPS will have leading-edge complexity, they will inherently
possess a high degree of parallelism, making them difficult to program effectively with current
software technology. A complementary effort focused on SPE will ensure that the CHIPS
investment is not undermined by producing ostensibly high-performing hardware that cannot
be effectively programmed to produce efficient, resilient, and secure applications.

Recommendations

Addressing the challenges above will require significant national investment in research,
education, and industrial training. We propose the following recommendations:

1. Promote Research into SPE

SPE encompasses many techniques across computer science, including algorithms, Al, parallel
computing, concurrency, caching, networking, databases, file systems, and GPUs. However,
performance-engineered code is often complicated, which can conflict with other desirable
software properties, such as correctness, security, modularity, maintainability, debuggability,
portability, modifiability, robustness, and reliability. Research is needed to understand how
programmers can structure fast and energy-efficient code while preserving these properties.
Additionally, research is required to simplify and instrument systems so that their performance
properties can be easily understood by programmers and end users.

2. Invest in Software-Productivity Tools for Performance

Software productivity tools for performance are outdated. Compilers, profilers, race detectors,
scalability analyzers, memory-footprint analyzers were largely designed decades ago, during
the Moore era, when software performance was less critical. Research is now needed to
develop a new generation of performance tools that provide feedback to programmers about
the resources their code consumes. Performance counters should be incorporated into chip
architectures so tools can provide developers fine-grained performance feedback. Al tools,
including large-language models, should be leveraged to accelerate the writing of
high-performance code and optimize legacy code.

) Q
“ 2024-2025 CRA Quadrennial Paper

- Computing Community
Computing Research Consortium
Association Catalyst



3. Pursue Research into Efficient Software for Heterogeneous Systems

Modern computing hardware is becoming increasingly complex as diverse components, such
as multi-core CPUs, GPUs, and specialized accelerators, are integrated into traditional
architectures to speed up computation. Current development tools, such as programming
languages and compilers, are not optimized to structure or execute code efficiently for these
systems. Investment in tools to simplify and optimize software development on heterogeneous
computing architectures will improve and accelerate software development, making it easier for
non-experts to program diverse computing systems. From multi-core CPUs to specialized
GPUs, software solutions must be flexible and resilient, supporting the variety of architectures
that will define the post-Moore era. As nonclassical architectures, including quantum and
neuromorphic systems, are developed, research into writing software for these systems should
include performance as a key metric.

4. Educate and Train the IT Workforce

Research universities should be encouraged to develop and offer SPE curricula within their
full-time degree programs. Since these programs have a strong track record of placing
students into engineering jobs that leverage their skills, widespread adoption across research
universities will rapidly enhance the workforce. Additionally, these programs will create
curricula, materials, and expertise that can be shared with other institutions of higher
education, particularly teaching-focused colleges, community colleges, and professional
education providers. The development of online courses, badges, and certificate offerings in
the field of SPE should also be supported.

Conclusion

Science today relies on the availability of fast computing, as does the economic health of our
nation. Moreover, in the face of growing global competition, the United States must act
decisively to maintain its technological edge in the post-Moore era. To sustain a competitive
advantage, we need a concerted national effort to invest in SPE research and to educate a
workforce of programmers with SPE expertise. Without immediate investment, we risk
jeopardizing the benefits of an economically strong and free society for ourselves and future
generations.

) Q
“ 2024-2025 CRA Quadrennial Paper

CRA cccC

- Computing Community
Computing Research Consortium
.

Association Catalyst



This quadrennial paper is part of a series compiled every four years by the Computing
Research Association (CRA) and members of the computing research community to inform
policymakers, community members, and the public about key research opportunities in areas of
national priority. The selected topics reflect mutual interests across various subdisciplines within
the computing research field. These papers explore potential research directions, challenges,
and recommendations. The opinions expressed are those of the authors and CRA and do not
represent the views of the organizations with which they are affiliated.

This material is based upon work supported by the U.S. National Science Foundation (NSF)
under Grant No. 2300842. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
NSF.

BlNe
" 2024-2025 CRA Quadrennial Paper 5

Computing Community
Computing Research Consortium
Association Catalyst



