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Spatial Computation and its Application to Disaster Management1

Dr. Nabil R. Adam 
U.S. Department of Homeland Security, Science & Technology Directorate 

Infrastructure Protection and Disaster Management Division 

1. Introduction 
The growing trend in the use of smart phones and other GPS-enabled devices has provided new 
opportunities for developing spatial computing applications and technologies in unanticipated and 
unprecedented ways. Spatial computing technologies which provide such capabilities as sensing, 
monitoring, and analysis, result in enhanced decision making.  

For example, in a recent Intelligent Transportation project by IBM, researchers aim to help  commuters 
avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow 
[IBM11]. In this project traffic data is collected from various traffic flow sensors on roads, toll booths, 
intersections, and bridges. This information is combined with location based data from users’ smart 
phones to learn their mobility pattern. Based on their preferred routes, the participating users would 
automatically receive traffic information and alerts on their phones; thus, resulting in reducing traffic 
congestion and accidents.

This project illustrates some of the capabilities of today’s smart phones which highlight the potential of 
citizen sensors enabling the next generation of geo- informatics. An application area of such next 
generation of geo-informatics is Social Media and its application to Disaster Management.

2. Geoinformatics: application to disaster management 
Social media, such as blogs, Twitter, and information portals, have emerged as the dominant 
communication mechanism of today's society. In the context of disaster management, exploiting such 
input to gain awareness of an incident is a critical direction for research in effective emergency 
management. Dynamic real-time incident information collected from on-site human responders about the 
extent of damage, the evolution of the event, the needs of the community and the present ability of the 
responders to deal with the situation combined with information from the larger emergency management 
community could lead to more accurate and real time situational awareness that allows informed 
decisions, better resource allocation and thus a better response and outcome to the total crisis. 

DHS-S&T has just initiated the “Social Media Alert and Response to Threats to Citizens” (SMART-C) 
Program which fits within the bounds of the above DHS directive.  This program aims at developing a 
citizen participatory sensing capabilities for decision support throughout the disaster life cycle via a 
multitude of devices (e.g., smart phones) and modalities (e.g., MMS messages, web portal, blogs, twitters, 
etc.)  Specifically, the objective is to establish a bidirectional link between emergency response 
authorities and citizens that facilitates in: receiving early warning signals; detecting incidents and how 
they evolve; communicating alerts and advisories to citizens during and after the incident for response 
and recovery; and getting citizens’ feedback for post-incident analysis and reconnaissance.       

3. Challenges 
Most currently available smart phones have been equipped with a variety of sensors, including GPS, 
accelerometer, gyroscope, microphone, camera and Bluetooth. This has been supplemented by new 
sensing applications across a wide variety of domains such as social networks, health, education, weather, 

1 Submitted to: the NSF/CCC (Computing Community Consortium) sponsored visioning workshop on Spatial 
Computing which outlines an effort to develop and promote a unified agenda for Spatial Computing research and 
development across US agencies, industries, and universities. 
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transportation, disaster management, gaming and entertainment. These applications and sensors built 
around smart phones and other devices (tablets, etc..) create huge volume of data with different modalities 
and types as listed in Table 1. Integration and analysis of such diverse and multi-modal data will help in 
observing and understanding  the social media phenomena in our society and making further 
technological advances.  However, there are several challenges that need to be address. Below we discuss 
three such challenges. 

Table 1. 
Data type Embedded Information
Voice calls Audio sample;  caller/called number; date & time
SMS Message transcript; caller/called number; date & time
MMS Multimedia object (image, audio, video, etc); geo-tagged location; 

caller/called number; date & time
Social media 
feeds

Application type (e.g., twitter, facebook, etc.); type of event (e.g., posting 
or notification); media object (text message, video, audio, etc.); date & 
time

Geo-location
data

GPS measurement of current location, accelerometer samples, gyroscope 
samples

Network
connectivity data

Cell tower and WLAN access point observation and their location; 
Bluetooth observations

3.1 Event detection 
Event extraction from unstructured data is an active area of research. Data from different sources when 
viewed in isolation may appear irrelevant, but when analyzed collectively may reveal interesting events 
[Ada07]. For the purpose of illustration, consider the following scenario in the context of disaster 
management.

Scenario : Multiple residents post twitter messages about getting sick after eating at local restaurants in 
a given region (e.g., Southern New Jersey area) – the twitter feeds may reference different restaurants 
and may report different symptoms (e.g., fever, stomach ache, etc.). Based on these feeds, geo-spatial 
reasoning would be employed to automatically extract and characterize the event in both space and time. 
In this case the event is a health event and is progressing in the Southern New Jersey area. To assess the 
reliability of such event, the information from twitter feeds is corroborated with information from other 
sources such as hospitals, CDC alerts, and News feeds. This may also help in locating the source and 
likely cause of such event, e.g., outbreak of Salmonella. Based on assessed reliability of the event, local 
authorities would be alerted for further investigation. In addition, other restaurants in the region are also 
alerted as well as citizens (based on their location) who may have visited such restaurants or bought 
product from the local farm to seek medical help in case they develop related symptoms.

As illustrated in the above scenario, some of the related challenges include: 
 Integration and enrichment of multi-modal data (including unstructured data) from different 

sources. This becomes more complex when real time requirements are considered. 
 Improved data quality is essential for robust event identification and characterization.  In the 

spatial computing environment where data are often collected and assimilated automatically (e.g., 
from various type of sensors, social media) data quality (e.g., missing data, erroneous data, 
uncertainty, fidelity) issues are exacerbated.   

 Validation and reliability of data are crucial to achieve higher accuracy for event identification 
and characterization.  

 Semantic-based spatio-temporal reasoning for disambiguating events and tracking progression of 
events in space and time. 
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3.2 Data Privacy  
The geo-spatial data retrieved from smart phones, sensors, and other smart devices often contains 
sensitive personal information. This data when combined with social media data significantly increases 
the risk to individual privacy breaches. The privacy concerns need to be addressed in all phases of spatial 
computing, including data collection, storage, analysis and dissemination. In the context of disaster 
management, social media (twitter, facebook, blogs, etc.) and mobile apps could be used for situational 
awareness and disseminating customized alerts and advisories based on users’ location, language, and 
special needs. The challenge is how to achieve this targeted and customized alert and response while 
respecting individual privacy. For addressing this challenge, two inter-related issues need to be addressed: 
i) location privacy; and ii) protection of personal identifiable information (PII).  

3.2.1 Location privacy 
The current literature for location privacy can be categorized into following approaches: i) anonymization 
[Shin11, Liu09]; ii) mixing identifiers [Jad11]; iii) data perturbation [Hoh05]; iv) temporal obfuscation by 
adding random delays [Hoh07]; and v) and differential privacy [Che11]. However, such approaches have 
resulted in limited effectiveness with respect to data utility [CCC12].   The challenge here is how to 
achieve the right balance between location privacy and data utility? And how users can specify their 
privacy preference at the acceptable level while receiving the desired location based services. 

3.2.2 Protection of personal identifiable information 
There is a significant body of work addressing privacy of PII [Agg08, Zho08, Wan10, Ita09]. Most of this 
work, however, focuses on PII protection at the data storage and analysis phases. There is some work that 
addresses data privacy at the collection phase. This work is limited to specific application context, e.g., 
video surveillance [Wic04]; polling data [Gol06]. Given the large number of data sources and data 
modalities in the spatial computing environment, there is a need to develop new approaches for PII 
protection at the data collection phase. Moreover, such approaches need to take into account the real-time 
considerations for data collection. 

3.3 Smart devices and the cloud 
Today, smart devices, such as smart phones, tablets are connected to the cloud and use the cloud via 
RESTful web services for processing capabilities, storage, and security [Chr09, Art12]. This setting 
combined with the cloud constitutes a distributed global network. In this network, the cloud is aware of 
the state (e.g., idle/busy, battery, etc.) and resources (e.g., memory, computing power, etc.) of each device 
and the network topology in different geo-spatial regions. This environment present several research 
challenges, some being addressed in the context of traditional distributed computing and others are new 
that need attention, such as federated identity limitations on mobile platforms, discovering and composing 
services offered by smart devices (e.g., sensing services) [Chr09, Gar11].  

Recently, a new generation smart devices is emerging with extensive computing power and memory. For 
example, the newly introduced inexpensive (within $200 range) 7-inch Goolge Nexus2 tablet has Quad-
core Tegra 3 processor, 1 GB RAM, 16 GB internal storage, and several sensors including, camera, 
microphone, accelerometer, GPS, magnetometer, and gyroscope. The powerful computing and memory of 
such devices extend their use beyond sensing to running computing tasks, especially when combined with 
the cloud. For example, can we use these mobile devices for Map Reduce jobs with the cloud provide the 
middleware for scheduling, coordination, and job migration (incase the device becomes unavailable due 
to user activity or network unavailability). In this environment the problem of discovery and composition 
of services offered by these smart devices and identity management is more challenging.  

2 http://www.google.com/nexus 
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EarthCube – Building Cyberinfrastructure in the Geosciences 
A Whitepaper for the Spatial Data Computing Workshop 

Washington, DC, September 10-11, 2012 
M. Lee Allison, Chair, EarthCube Governance Steering Committee 

Arizona Geological Survey, Tucson, Arizona 
 
Overview 
EarthCube is a process and an outcome, established to transform the conduct of research through the 
development of community-guided cyberinfrastructure for the Geosciences as the prototype for 
potential deployment across all domain sciences. EarthCube aims to create a knowledge management 
system and infrastructure that integrates all Earth system and human dimensions data in an open, 
transparent, and inclusive manner. EarthCube requires broad community participation in concept, 
framework, and implementation and must not be hindered by rigid preconceptions. 
 
A fast-track process during spring, 2012 culminated in a Governance Roadmap delivered to the NSF-
sponsored June charrette with an aggressive timetable to define and implement a governance structure 
to enable the elements of EarthCube to become operational expeditiously.  The Governance Framework 
represents the implementation of initial recommendations laid out in the Governance Roadmap.  
We discovered widely varying interpretations, expectations, and assumptions about governance among 
EarthCube participants.  Our definition of governance refers to the processes, structure and 
organizational elements that determine, within an organization or system of organizations, how power 
is exercised, how stakeholders have their say, how decisions are made, and how decision makers are 
held accountable.   
 
We have learned, from historical infrastructure case studies, background research on governance and 
from community feedback during this roadmap process, that other types of large-scale, complex 
infrastructures, including the Internet, have no central control, administration, or management.   No 
national infrastructure that we examined is governed by a single entity, let alone a single governance 
archetype.  Thus we feel the roadmap process must accommodate a governance system or system of 
systems that may have a single governing entity, particularly at the start, but can evolve into a collective 
of governing bodies as warranted, in order to be successful.    
 
Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and more 
effectively, by providing a community endorsed Governance Framework.  The Framework, and 
corresponding community outreach, will maximize engagement of the broader EarthCube community, 
which in turn will minimize the risks that the community will not adopt EarthCube in its development 
and final states.  The target community includes academia, government, and the private-sector, both 
nationally and internationally. 
 
Based on community feedback to-date, we compiled and synthesized system-wide governance 
requirements to draft an initial set of EarthCube governance functions and guiding principles.  These 



functions will permit us to produce a Governance Framework based on an aggressive community 
outreach and engagement plan that we plan to finalize at the end of 2012. 
 
Purpose 
The overarching goals of EarthCube are to build a unified, adaptive, and scalable cyberinfrastructure 
framework for enabling transformative advances in geosciences research and education, thereby  
realizing the vision articulated in the NSF Geo Vision report.1 In the process, EarthCube aims to create a 
knowledge management system and infrastructure that integrates all Earth system and human 
dimensions data in an open, transparent, and inclusive manner. 
 
Developing a viable organizational and governance structure for any organization can be a challenge. 
Creating one for multi-disciplined, distributed, virtual collection of scientists, investigators, 
technologists, system operators, entrepreneurs, and administrators can be nearly impossible unless 
great care is taken to ensure that the proposed solution is flexible and responsive to meet participant’s 
needs and institutional goals. 
 
We believe that there is general agreement that “effective governance for EarthCube will:  
 actively engage its diverse users 
 provide leadership and oversight to forge close cooperation, coordination, and collaboration among 

distributed development activities and the principal EarthCube groups 
 facilitate alignment of funding program plans and priorities with the needs of the community 
 help the successful execution of the EarthCube mission, meeting stakeholder obligations”2 
 
To be effective, the governance framework the community adopts is likely to be for a system of 
governance (a matrix of mechanisms for different elements and groups) that accommodates different 
practices and requirements among different elements of a large and diverse community. The 
governance roadmap also allows for a variety of mechanisms for how the governance mechanisms are 
chosen and implemented. 
 
Challenges 
The challenges we considered were not just to creating the governance roadmap per se but also to the 
role and impacts of a governance process and system on the overall viability and success of EarthCube 
as a community system.   Challenges to the roadmapping process are inherent given the limited time 
frame. Among these challenges:  
 Comprehensive background research review of governance topics from the domain sciences, IT, and 

social sciences is not yet complete.  
 We identified many governance models, but have not been able to fully evaluate them.  
 Further work is needed to evaluate the pros and cons of different models and determine which may 

be suitable for EarthCube. 

                                                           
1National Science Foundation, Advisory Committee for Geosciences, “GEO Vision Report.” October 2009.  
2Mohan Ramamurthy, “Unidata Governance: A Quarter Century of Experience,” National Science Foundation EarthCube 
White Paper: Governance Category, 2011, 1. 
 



 Our knowledge of the other EarthCube Working Group and Concept Team governance issues and 
needs is not yet complete. 

 We have yet to fully engage the broader Earth, information, and IT science communities, thus our 
knowledge of their governance needs is limited.  

 There is limited information available about problems and failures of past projects that we can 
incorporate as things to avoid. 

 
Challenges to the viability of EarthCube were generated by community feedback and the governance 
research review.  We divided them into: 

 Conceptual and procedural challenges:3 Time (short-term funding decisions versus the long-term 
time-scale needed for infrastructures to grow); Scale (choices between worldwide interoperability 
and local optimization); Agency (how to navigate planned versus emergent change), intellectual 
property rights, infrastructure winners and losers, agreement on data storage, preservation, 
curation policies and procedures, incentives to share data and data sharing policies, and trust 
between data generators and data users.  

 Social and cultural challenges: Motivations and incentives, self-selected or closely-held leadership, 
levels of participation, types of organizations, and collaboration among domain and IT specialists) 

 Technical challenges: From governance use cases. 
 Trends and drivers: Federal government initiatives, cloud computing, internationalfforts such as the 

EU INSPIRE initiative, Australian National Data Service, etc, and commercial developments. 
 
Requirements 
To continue forward, we recommend building upon the process of community engagement and 
research review begun as a cornerstone of the Governance Roadmap process to identify and 
characterize the components of cyberinfrastructure.  Community engagement is expected to occur in 
four steps (for a full description and graphic showing the progression of engagement seethe Governance 
Roadmap http://earthcube.ning.com/group/governance/forum/topics/earthcube-governance-roadmap-
version-1-1): 
 Identify cyberinfrastructure components of EarthCube 
 Identify the cyberinfrastructure components’ organizational paradigms and governance need. 
 Identify the interaction among and between cyberinfrastructure components and systems within 

EarthCube. 
 Identify the interactions between cyberinfrastructure components within and outside of EarthCube, 

and the needs of EarthCube consumers (including those comprising the “long tail” of science). 
 
 

                                                           
3 Paul Edwards, Steven Jackson, Geoffrey Bowker, and Cory Knobel, “Understanding Infrastructure: Dynamics, Tensions, 
and Design - Report of a Workshop on “History & Theory of Infrastructure: Lessons for New Scientific 
Cyberinfrastructures,” 2007, 24-33. 
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This paper addresses aspects of computing related to analyzing and using spatial data.  The 
variety and volume of data with spatial content afford us many opportunities to understand 
the world.  They also challenge us to find effective means of “chaff removal” and of 
capturing and using relationships between data that is independently collected.  Meeting 
this challenge will require progress on several fronts, starting with developing new ways to 
estimate location or to verify it.  Such matters are often discussed with respect to social 
media; however, many modes of modern communication include latent, hidden, or indirect 
information that we could use—and we need to discover how to find them.   

We need expanded approaches to discovering useful patterns in large spatial data sets, 
particularly data sets that reflect activity, behaviors, or movement, and to use them with 
complex data sets comprising billions of instances, such as large, dynamic graphs or 
collections of trajectories.   One of our recent efforts reduced 400 quadrillion (1015) available 
data relationships to 10 million relationships of potential interest; we currently have larger 
data collections of comparable complexity to analyze.   We are especially interested in 
methods for parallel processing where the data contain many relationships and are not 
amenable to widely-used methods of partitioning.  

We want to record and manipulate data about people, places, and activities not directly tied 
to the surface of the earth, e.g., sub-surface data (both objects and attributes), things that 
exist in buildings, tunnels, under water, in cyberspace and in hypothetical worlds.  We need 
to capture and manipulate movement, change, and activities both by type and by instance 
(e.g., planned vs. actual routes or schedules), and to support generation and comparison of 
“geospatial narratives,” such as boats leaving and entering ports, or staging and transport of 
supply chains, along with identification and monitoring of trends in quantifiable data.  For 
many applications, all of the objects being represented (e.g., road network; transit schedule; 
vehicle trajectories) are subject to change, and we want the ability to invoke the state of 
affairs at any given point in time.   

We seek new methods for using “related data” to validate or quantify reliability of data of 
unknown provenance or uncertain suitability for a task at hand.  For example, there may be 
ways to compare volunteered place names with names used in social media and commercial 
or government publications to establish whether usage patterns are consistent with provider 
claims about connotations associated with the choice of one name over another.  Do 
empirical data support reports that residents of the D.C. metro area generally refer to “the 
District” rather than “Washington.”  It will be useful to have an inventory of established, 
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validated, methods that can be widely used, including methods to assign a “reliability score” 
to a source based on disposition of previous submissions. 

We are looking for expanded capabilities to reason about data sets and for more effective 
ways to relate “discovered meaningful data” to other known or posited data.  Such 
capabilities will support use of data reflecting different scales and accuracies, including 
changes in scale or accuracy across a single data set.  They will be essential to reducing the 
search space for computational purposes and for human comprehensibility.    

We continue to search for methods to integrate and conflate data, and some of the work 
described above might be applied to that end.   Our goals include integrating about activities 
as well as data about places and things.  We need to look at consistency across multiple 
sources at the object level, and we need to look for consistency between attributed features.  

We want to record and examine variability in geometry, topology, and attribution, whether 
they reflect observed instances or rule-governed behavior.  Examples include spatial 
footprints that vary with time of day (e.g., “high crime neighborhood” );  attributes that vary 
(e.g., “dominant language” may vary temporally);  even topology may vary (e.g.,  which side 
of the street the busses stop on may vary temporally).   Capturing “general rules” that are 
spatially or temporally dependent (e.g., rules that apply to all instances within a municipality 
or during daylight savings time), and applying them efficiently will be important for data 
maintenance and verification and for establishing relationships that are valid.   In addition to 
surmounting processing constraints, it will be important to overcome manageability issues 
that impede use of rule-based systems today.   

In order to support responsible use of complex or highly-processed data, we need improved 
understanding of how to foster comprehension or to mislead with outputs of startling 
beauty or dizzying multi-modal effects.  Progress on this front is essential not only for “end 
users” but also for researchers and analysts to view their own work critically.  We need 
sophisticated-yet-simple methods to allow users to interact with data “in context,” in large-
scale settings and small ones, where “context” may refer to uncertainty, processing history, 
social/political/cultural/ or economic events, space, or other dimensions.  

I have not addressed many important issues, such as sensors and direct exploitation of 
sensor data. Applying spatial computing to more heterogeneous collections of data will 
require algorithms to extract semantic content from “unstructured” data and translate it to 
a formal representation that supports rigorous manipulation, along with the use of relative 
as well as absolute positioning in time and space.  I have not even mentioned privacy.  I hope 
that other participants will elaborate on such topics. 

      Respectfully submitted -- 

      Beth H. Driver 
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Introduction 
Spatial computing is now widely pervasive in the engineering and science disciplines but we 
argue that there is an even bigger revolution happening in our ability to comprehend human 
behavior. Modern geo-tagged communication forms such as social media and microblogs are 
rapidly advancing the methods by which we can comprehend, and even influence, the progression 
of events as they unfold. The rise of “massive passive” data (e.g., tweets), in particular, has given 
significant impetus to being able to understand events across the globe.  
 
Two key trends are manifest in the above developments. First, it has become possible to use 
public-domain, seemingly innocuous, aggregated data, to infer quantitative indicators of 
population level change. At the same time, as the scope of such inference enlarges, novel 
computational methods are becoming imperative for fusing data from such high-throughput 
sources. This position paper argues for a concerted effort to use “spatial surrogates” as an 
enabling mechanism to model and forecast social mobilization across the world.  
 
Spatial surrogates are data reductions that we can exploit to aid in understanding population-level 
phenomena. As the name indicates, surrogates are cheap, easy-to-compute, statistics that are 
correlated with or that precede phenomena of interest. Surrogate modeling is an established 
practice in numerous domains such as multidisciplinary optimization and economic forecasting, 
and here we argue for its use in modeling key societal events. For instance, the idea of tracking 
flu activity geographically using search query data (in Google’s FluTrends) is a modern example 
of knowledge discovery using surrogates. A second example is using spatial luminosity data to 
quantify economic output of countries [Chen and Nordhaus, 2010]. A final example is using 
Landscan data as a surrogate for population density.   
 
 
Social Mobilization 
Our domain of interest is social mobilization, i.e., how civilian populations mobilize to raise 
awareness of key issues or to demand changes in governing or other organizational structures. 
Protests, strikes and “occupy” events are part of such mobilizations. Such events occur in a 
variety of political systems, even authoritarian ones. Most of the time governing institutions can 
ignore, repress, or respond to social mobilization in ways that do not fundamentally challenge 
public policy and the political institutions that generated those policies. Nevertheless, at times 
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governing institutions, even democratic ones, are overwhelmed by civil unrest generated by 
significant and repeated protests (e.g., Chile 1970s, Poland 1980s, Bolivia 2000-2005, Arab 
Spring 2010-present).  
 
Scholars of democracy, policymakers and most social activists are aware that significant levels of 
civil unrest make politics, economics and social relations difficult and unstable. Any efficient 
solution to civil unrest has to find ways to channel political power in the streets back into stable, 
institutionalized channels of interest representation where bargains can be negotiated. This 
requires understanding when significant social mobilization may occur and when that civil unrest 
will be of significant size and its likelihood of becoming violent. 
 
Decades of intense social science research have shed important light into our understanding of the 
root causes of social mobilization and political violence.  However, challenge for the scholars and 
policymakers alike, is the ability to forecast these events.  Traditional empirical academic 
research develops forecasting models based on past data, collected and published by various 
governmental and non-governmental agencies.  Yet, these efforts are time consuming and the 
resulting inquiries are akin to the astronomers looking at distant galaxies, which contain 
information about how they used to be rather than what they are now.  The monitoring of the 
Internet and the social media has opened up a brand new area of social inquiry that is unique not 
only in it aspiration but also its inherent need to bring together scholars from all areas of 
academia like never before.     
 
 
Studying and Forecasting Civil Unrests 
In general, computational modeling of civil unrests is in its infancy. Recent research [Gonzalez-
Bailon, 2011] has focused on how protest recruitment happens through an online network but 
comparatively little attention has been paid to forecasting civil unrests in society through 
information gleaned from online, geo-tagged, media. 

 
We have taken some initial steps along this direction by 
first organizing a dictionary of 726 terms related to 
protests, and redescribing a geo-tagged tweet stream in 
terms of frequencies of terms from this dictionary. The 
objective is to identify anomalous spatial regions based 
on Poisson mixtures. A linear time subset scan [Neill, 
2012] is applied to identify anomalous spatial regions 
which are then scored using p-values computed by 
Monte Carlo simulation. 
 

Our work focuses on countries in the Latin American 
region; the displayed map from June 30, 2012 provides 

an illustrative example where each (geo-tagged) tweet containing at least one term from our 
dictionary is plotted as a small red circle. Two anomalous spatial clusters are detected, as shown. 
One cluster is located in Mexico with 'país', 'trabajador', 'trabaj', 'president', and 'protest' as the top 
five frequent terms. These refer to the student-led protests that happened during the Mexican 
election held on July 1, 2012. The second cluster, located in Brazil, involves the high frequency 
terms: 'país', 'protest', 'empres', 'ciudad', and 'gobiern'. This cluster is related to the situation where 
approximately 2,500 people closed the Friendship Bridge linking Ciudad del Este (Paraguay) and 
Foz de Iguazu (Brazil), a demonstration held in support of Paraguay's president Fernando Lugo. 
Thus, initial results are encouraging. 



 

Research Issues for Discussion 
 
Spatial Surrogates: There are now a significant number of spatial data sources available, 
especially through the advent of location-based social networks such as Facebook, Twitter, and 
Foursquare. How can we leverage such a multiplicity of data sources to design accurate spatial 
surrogates? Although each data source by itself is unlikely to provide the desired specificity, it is 
possible that combinations of them will yield the desired quality of forecasting. 
 
Machine Learning Models of Spatio-temporal Phenomena: Traditional models of spatial and 
spatio-temporal phenomena have been prohibitively expensive, e.g., involving the estimation of 
non-stationary covariance matrices. Modern methods such as the linear time spatial scan [Neill, 
2012] promise to usher in significantly more efficient methods for detection. Can we establish an 
emphasis on both efficient and expressive algorithms for machine learning research? 
 
Spatial Event Forecasting: Most current research focuses on event detection in the form of 
spatial or temporal bursts or clusters whereas the forecasting of events has not been well studied. 
However, significant domain knowledge can be harnessed in the form of how mobilization occurs 
on a spatial or temporal scale. How can machine learning algorithms exploit such prior 
knowledge effectively for spatial forecasting of civil unrests? 
 
Geolocation: Only a small percentage of communications data harvested from social media are 
geo-tagged natively but it is possible to envision semi-supervised and transfer learning paradigms 
that enable a greater variety of data sources to be geo-tagged. What data sources provide 
corrobative and complementary evidence for geotagging purposes? 
 
Integration of Crowdsourcing and Machine Learning: Concomitant with better geotagging 
capabilities, it is instructive to examine how a modicum of “active” crowdsourcing can augment 
“passive” data assimilation, and how such a data gathering loop can be integrated with a machine 
learning loop. This can yield systems that can systematically increase specificity of modeling by 
crowdsourcing data gathering in regions of most uncertainty. 
 
Integrated Crisis Management: Finally, integrating the methodologies above for civil unrest 
modeling can lead to a powerful system for integrated crisis management, one that can quickly 
disseminate information spatially in the most efficient manner and reduce congestion and 
overload both in physical and in communication infrastructures. 
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Spatial Computing at the Topographic Engineering Center 

Dr. James Shine 

 

The US Army Engineer Research and Development Center’s (ERDC) Topographic Engineering Center 
(TEC) is located in Alexandria, VA. Its mission is to provide the warfighter with superior knowledge of the 
battlefield, and to support the nation’s civil and environmental initiatives through research, 
development, and the application of expertise in the topographic and related sciences. Since our work in 
the present day and age is largely fueled by computers, and since topographic data by definition has a 
spatial component, we perform a wide variety of spatial computing work in both the basic and applied 
research areas.  

Our basic research portfolio consists of a limited number of small projects, 1 to 3 years in length, 
involving one or two government researchers and usually a partner in academia. We had two highly 
successful efforts involving spatial computing with the University of Minnesota which are now 
completed. The first one was entitled “Modeling Spatio-Temporal Co-occurrence patterns” and looked 
for object types that were within a specified neighborhood of each other. The project required the 
development of new spatial algorithms to perform the necessary computation and search. The second 
project was entitled “Spatio-Temporal Cascade Patterns” and again looked at events in certain locations 
and at certain times. However, this effort was looking for a starter event and then other related events 
at later times that “cascaded” from the original event. Again, spatial algorithms were developed, and 
the level of complexity required special attention to be paid to efficient search, as the search space was 
very wide.  

Currently, we have several basic research projects at TEC. One involves looking at social media network 
data and trying to define a socially aware spatial spatial neighborhood. These neighborhoods allow for 
the exploration of the spatial and social distribution of communities.  A combination of geographic 
information system software and other analytical software is being used to develop new models and 
metrics to map this previously unknown space.  

Another effort seeks to store and organize large spatiotemporal data in a hierarchical fashion where 
each hierarchy corresponds to a different spatial resolution while minimizing the information loss when 
the data resolution is reduced. In order to minimize the information loss, this effort investigates new 
preservation techniques for various geographic features (e.g., topology) that are salient to tasks such as 
line of sight modeling. A related effort focuses on developing efficient techniques for mining massive 
spatiotemporal data. In this work unit, spatiotemporal data are transformed into symbolic sequences 
and techniques from statistical language processing are applied to efficiently mine patterns. Another 
effort uses spatial data from unmanned ground vehicles to compute properties of the surrounding 
terrain. There is also a work unit which analyzes spatial LIDAR data using an innovative computational 
approach.   

In the applied research area, we have several projects which employ spatial computing methods. One 



project, Grapevine, is developing a geographic information retrieval and knowledge discovery system 
that focuses on creating new relevancy ranking algorithms and scalable spatiotemporal indexing 
methods for unstructured data. The search results will be analyzed ad-hoc by statistical learning 
techniques to discover relevant patterns. New statistical learning algorithms will be developed to rapidly 
process the (potentially large) search results in a real-time environment. Another project models 
socio-cultural data based on spatial parameters. As in the basic research social network project, there is 
lots of room to explore concepts such as water geography and cultural neighborhoods. This project 
analyzes field data for spatial patterns.  
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Novel Techniques for the Generation of DEM from LiDAR Point Cloud Data 
 

LiDAR point cloud data sets are typically appreciably large such that processing them can use 

means of speeding up computer programs, including parallel processing using parallel computing 

architectures and systems like multi-core, many-core and GPU systems. The transition from 

point cloud data to a DEM comprises of a range of steps in a procedure involving a couple of 

major techniques, namely: Interpolation and surface reconstruction. There is no doubt that the 

processing of point cloud data in order to transition to a DEM can benefit from techniques for 

speeding up the algorithms for both interpolation and surface reconstruction – it is in light of this 

realization that it will be advisable to investigate the ways by which these algorithms may be 

parallelized and targeted for architectures and systems that are both requisite and apt for this 

purpose/application. 

 

This researcher plans to work towards devising a parallel programming model that will enable 

and facilitate the development of parallel algorithms and writing of parallel code for DEM 

generation from point clouds using architectures and systems that are particularly suited for this 

application, especially shared memory architectures and systems such as multi-core, many-core 

and GPU systems. This research effort should be able to make significant contributions to the 

generation of digital models, which represent 3D surfaces in real life, ranging from bare terrain 

and covered terrain (including covering by vegetation, buildings/constructions, etc.) on planet 

earth to bare terrain on other worlds, such as planets, moons of planets, etc. Other applications 

that are not so far-fetched – i.e. closer to our everyday lives – include the generation of 3D 

Computer Aided Design (CAD) models for manufactured parts, metrology/quality inspection 

and a multitude of visualization, animation, rendering and mass customization applications 

(Wikipedia, 2012). 

 

Evidence in the literature demonstrates that the trend of a shift towards the multi-core 

architecture is both real, existent and, in the foreseeable future at least, will be a key part of the 

dominant parallel processing architecture (Gepner and Kowalik, 2006), (Jin et al., 2011), (Jost 

and Robins, 2010) and (Zhang et al., 2007). Furthermore, it is envisaged and felt that the multi-

core architecture will be combined in a hybrid architecture comprising of multiple nodes (with 

distributed memory across the nodes), each of which will consist of one or more multi-core 

processors (with shared memory within a single node). The envisaged future dominance of the 

multicore and many-core architectures will be grossly under-exploited, except the effort is 

exerted in order to fully exploit the power furnished by multi-core and many-core hardware in 

applications, including the generation of DEMs from point clouds; this presents a research 

opportunity as well as an open problem or challenge. For example, Guan and Wu (2010) note 

that their parallelization of the generation of DEMs with multi-core processors demonstrates the 

great potential of this parallel architecture and system for this Spatial Computing task. 



 

This researcher imagines, envisages and hypothesizes that the contribution, to the proposed 

project on Spatial Computing, of the activity of the generation of DEMs from point clouds 

(using, particularly, multi-core and many-core systems), is not trivial – this proposed project, by 

the way, enshrines and is directed by the “unified agenda for Spatial Computing research and 

development across US agencies, industries and universities.” 
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Working in Virtual Spaces:  Spatial Interfaces and Visualizations for  
Data Analysis and Creative Design 

 
Daniel F. Keefe 

Department of Computer Science and Engineering 
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The ability to picture and interact with concepts in new ways has always been intrinsic to the process of 
discovery. Muybridge’s classic stroboscopic photographs of horses led to the discovery that all four of a 
horse’s hooves leave the ground during a gallop; at the time this hypothesis was called, “unsupported 
transit”.  Da Vinci’s hand-drawn studies of rushing water informed not only his art, but also the science of 
hydrodynamics.  Today, engineers, scientists, and artists routinely rely upon physical models and 3D 
prototypes – often it is the physical act of touching, rotating, and annotating these models that brings forth 
new insights.  Imagine if all these visual, physical, spatial human activities could take place in a virtual 
space, where powerful computational techniques could be combined with natural human interactions and 
visual communication.  This could enable exciting new methods of computing that enhance creativity, 
enable discoveries, and open up countless new applications in the sciences, engineering, art, and design. 

To realize the anticipated benefits of a powerful next generation of spatial interfaces and visualizations 
that can improve discovery across many fields, several major research challenges must be addressed. The 
following sections are organized around three of these challenges. Through describing the challenges 
along with recent examples of successful work in each challenge area, I hope to convey both the 
importance of continued research in each area and also the strong potential of new tools in this style. 

Challenge 1: Create effective new methods for visualizing multidimensional time-varying spatial 
data.   

The role of computing in society is increasingly defined by the way that computing enables access to and 
new ways of working with big data.  Large spatial datasets (e.g., climate and population modeling data; 
medical imaging collections, simulations, and anatomical models) are some of the most challenging to 
analyze.  Due to the complex spatial relationships in these data and the typical benefits of 3D 
visualization, it follows logically that visualization should be an effective tool for analyzing these data.  
However, we lack appropriate visualization tools for working with the complex spatial data that are now 
collected and generated.  One reason is that the data that are most interesting for advancing science and 
engineering typically contain not only complex spatial information (e.g., geological features in a climate 
model) but also a wealth of other complementary data values (e.g., temperatures, wind speeds, cloud 
formations, and many other quantities); and, very importantly, all of these data may change over time.  
The resulting multidimensional time-varying spatial data visualization problem is extremely complex and 
is likely to be solved only through a holistic approach to visualization that draws upon knowledge from a 
variety of computer science sub-disciplines as well as related fields, such as psychology and cognitive 
science.  Since the data are simply too large to be viewed directly, it is essential to develop new 
automated algorithms to mine these data that can work side-by-side with visualization to identify and then 
display the data to the user at varying levels, supporting overviews of large collections of data, clustered 
analysis, and detailed comparisons.  To convey these data to users, tested, effective computer graphics 
algorithms need to be developed and optimized to best leverage human perception of 3D space and time.  
This is a major undertaking since creating a 3D visualization environment to convey just one or two data 
dimensions is itself a major challenge. Currently, it is not clear how best to design interactive 
visualization techniques for working with 10’s to 100’s of data dimensions visualized in changing spatial 
contexts; new research is needed to advance algorithms and techniques for both underlying data 
mining/management and perceptually accurate 3D data graphics.  

An example of visualization research that begins to address these challenges comes from my group’s 
recent efforts to visualize data that exist in complex 3D spaces and that also change importantly over 
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time, such as the detailed moving relationships of bones and tissues studied in biomechanics.  Here 
visualization is challenging because human perception of both 3D space and motion is complex.  Figures 
1 and 2 show two multidimensional spatial data visualization systems that have resulted from this work.  
The system in Figure 1 is the first interactive computer graphics tool to provide visual overviews of 
multidimensional data for an entire database of motions with scientific relevance.  One of the primary 
goals of this system is to enable comparative analysis of large collections of motion data.  Using this tool, 
scientists can filter and query multiple dimensions of the data to identify common patterns and anomalies,  
which are then examined in detail using interactive 3D visualization windows.  This work is significant 
because visualizing just a single instance of these motions is challenging, but what scientists need today is 
a new way to visualize and compare motions across a large collection – this is much more difficult, and 
the tool shown here takes an important step in this direction. Figure 2 shows a next generation of these 
visualization strategies applied successfully to a completely different domain, motion data collected 
during minimally invasive surgery training exercises.  Another current application targets visualizing in 
virtual reality tens of thousands of frames of spinal kinematics motion collected across patients with 
varying degrees of back pain. The motions of the vertebra are so spatially complex that some form of 3D 
visual analysis is necessary, but current clinical approaches (e.g., 2D statistics and videos) are not feasible 
for today’s data-intensive studies.  

 
Figure 2: Visualizations of laparoscopic surgical training 
data.  For the first time, surgeons can “see” their use of force, 
enabling new feedback and objective, data-driven evaluations 
of skill. Video: http://ivlab.cs.umn.edu/generated/pub-
Schroeder-2012-Surgvis.php  

 
Figure 3: Designing medical devices in a virtual 
heart. Touch gestures are used to investigate a 3D 
heart model created from imaging data. Video: 
http://ivlab.cs.umn.edu/generated/pub-Coffey-2011-
InteractiveSliceWIM.php  

Challenge 2:  Enable new spatial computing workflows and boost the power of spatial visualizations 
through effective 3D user interfaces.   

A major challenge in developing effective spatial data visualizations (e.g., within virtual reality 
environments) is supporting “real work” in these environments.  This means enabling scientists to not 
only see their data in new ways but also to query, interrogate, and fluidly explore the data to both answer 
questions and generate new hypotheses.  This is a challenge because the metaphors and techniques that 
we typically use to interface with computers (e.g., windows, icons, keyboard, mouse) do not translate 
effectively to spatial visualization environments.  New spatial interfaces are needed.  Intuitively, what we 

 
Figure 1: Interactive visualization system used to analyze > 100 high-res pig chewing motions collected by 
evolutionary biologists at Brown University studying historical diversification among animals.  Video: 
http://ivlab.cs.umn.edu/generated/pub-Keefe-2009-MultiViewVis.php 
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desire in spatial visualization environments are new ways of interacting with computers that are also 
spatial, matching the dimensionality of the visualization.  In practice, new technologies (e.g., depth 
cameras, touch devices) show promise for this type of natural interface, but their application has been 
limited primarily to entertainment and home use.  For science and engineering, precise inputs are needed 
for working with complex data.  If we could create computer interfaces that are as fluid and natural as 
those we see today in games, phones, and other emerging devices but also support the precision and rich 
inputs needed to work with science and engineering applications, then our ability to work effectively with 
spatial data would be radically improved. 

Some examples of research that aim to address this gap come from current work in my group.  Figure 3 
shows an interactive visualization of a virtual heart. Imagine an engineering team, which has designed a 
new medical device and wishes to analyze the change it makes in blood flow in the heart.  The team asks, 
“Can we see a relationship between pressure and velocity in this 3D region”.  While defining “this 3D 
region” in a medical imaging dataset could take several hours using a keyboard and mouse, the novel 3D 
multi-touch visualization interface shown here makes it simple to rotate, zoom, and select anatomical 
structures or volumes of fluid flow; new 3D selections can be made in real time simply by moving ones 
fingers on top of the imaging data (see Figure 3 video).  The approach uses custom-developed virtual 
reality hardware to make 3D renderings of data (e.g., a heart) appear to float in the air above the 
interactive table.  By touching the shadow of (or a 2D slice through) the 3D data, which is projected onto 
the table, engineers can slice through the imaging data, plot 3D curves, measure volumes, and perform 
other intuitive physical operations in virtual space.  This enables scientists to perform tasks, which used to 
only be possible in offline batch modes, now in real-time via visual workflows that integrate physical 
actions with virtual spaces, supporting creative spatial thinking and design processes. 

      
Figure 4: Interactive spatial visualization tools that enable collaboration between artists, designers, and scientists. 
Videos:  http://ivlab.cs.umn.edu/generated/pub-Schroeder-2010-DrawWithFlow.php  

http://ivlab.cs.umn.edu/generated/pub-Keefe-2008-ScientificSketching.php  

Challenge 3:  Create new and expand existing exciting applications of interactive visual spatial 
computing across disciplines.   

A final important challenge is to expand our thinking about spatial computing to embrace the broad 
wealth of potential applications of this area of computing.  A focus on spatial visualizations and 
interactive techniques is especially important in this endeavor because these computational tools make 
spatial computing accessible to all segments of society, including K-12 educators and students, artists, 
and other creative minds.   

Figure 4 shows two systems that combine spatial visualizations and interfaces to make computing 
accessible to artists, and have opened up new roles for artists in science.  The system pictured in the left 
of Figure 4 places the intent of a traditionally-trained illustrator within the constraints implied by an 
underlying fluid flow dataset to produce accurate stylized hand-drawn renderings of flow patterns. The 
rightmost image portrays an innovative 3D tool for creating virtual sculpture by “painting in the air”, used 
both for art practice and as a valuable sketchpad for prototyping 3D scientific visualizations.  These new 
methods enable artists and designers trained in visual depiction to work creatively with the latest 
computer graphics technologies – without any knowledge of programming.  Thus, interactive spatial 
visualizations can support scientific data analysis, creative engineering design processes, and new artistic 
explorations.  There is great potential for advances in spatial computing to impact all segments of society. 



Bridging a Spatial Data Gap: Incorporating Small-Scale Models into Large-Scale Systems 
Position Paper for CCC Workshop: From GPS and Virtual Globes to Spatial Computing – 2020 

John Keyser, Texas A&M University 
 
As spatial data has become more ubiquitous, there has been a push to have additional detail available at 
smaller scales.  Examples of this range from the desire for ever-higher resolution photos and GIS data to 
the use of “Street View” in Google Maps.    At the same time as “large scale” mapping systems and 
applications built on them have improved, geometric modeling of smaller-scale data has become more 
common, with a variety of methods being used for capturing data.  However, these two forms of data 
collection and storage have remained largely separate, with work on modeling small-scale geometric 
data staying largely separate from that used in large scale spatial data systems. 
 
I believe there are a number of interesting research opportunities, with significant potential benefits, in 
efforts to effectively bridge the gap between spatial data at the larger scale with the geometric data that 
occurs at smaller scales.  By “small-scale” geometry in this context, I am referring to information in 
scales measured from a few centimeters (e.g. hand-held objects) to a few meters (e.g. a vehicle or tree).   
 
Significant Challenges with Smaller-Scale Geometry 
There are several ways in which smaller-scale spatial and geometric data presents challenges that are 
less frequently seen as issues at larger scales.  These include: 

 True 3D Nature of Geometry:  At larger scales, 2D or 2.5D (2D plus height) data is often sufficient 
for describing spatial aspects of geometry.  However, at smaller scales the true 3D geometry of 
the spatial structure becomes more important.  The topological connections between spatial 
locations are critical to understanding the spatial structure of an object or region, and much of 
the spatial computation with smaller-scale data will need to account for actual 3D geometry, 
rather than 2D footprints. 

 Occlusion and limited data: The scale of the data, the 3D nature, and the typical positioning of 
small-scale objects and features in the world mean that spatial information will often be 
incomplete.  Even with specific attempts to scan an object or a limited region, there will often 
be certain areas that are occluded or inaccessible.  Thus, understanding the full spatial data will 
require some level of inference. 

 Changing Geometry: Larger scale features tend to change infrequently or over longer periods of 
time.  Small-scale data will often be mobile (e.g. vehicles), portable (e.g. furniture), or inherently 
changing (e.g. plants).  This has implications for not only the representation of object geometry 
itself, but also for how to describe what might be very dynamic spatial information in a larger 
region. 

 Variety of Data Sources: There are a wide variety of ways in which small-scale spatial data is 
being captured.  This includes scanners designed to capture such data (e.g. laser scanners), 
image-based capture ranging from calibrated cameras to casual photographs, implied spatial 
information (e.g. from collections of GPS coordinates in a small area), and CAD models.  Coming 
up with consistent and accurate models can be a challenge given this range of possible inputs, 
and the noise and error associated with each. 

 Size of Data Sets: The raw amount of detail that can be provided when smaller-scale data is 
incorporated is potentially much higher than that available at larger scale.  This means that 
simple data storage and access can become problematic if significant small-scale detail is 
maintained over a large region.    

  



Research Opportunities 
Combining small-scale spatial data with larger-scale systems can lead to richer, more accurate, and more 
useful spatial data systems.  As one example of how this could be useful, consider an evacuation 
scenario from a structure or region.  While some simulated behavior could be treated abstractly, having 
a better understanding of the small-scale details in the region would lead to more accurate models of 
evacuation behavior.   The same would be true for many autonomous navigation or motion planning 
tasks, thus allowing the merging of the local and global phases of motion planning and navigation that 
are typical in current systems. As another example, having small-scale detail can help provide 
orientation and realism in VR/AR applications.  To deal with the problems that this merger can create, 
research will need to be conducted from a variety of different fields.  
 
There are a variety of specific research problems and major challenges that would need to be overcome 
to effectively integrate small-scale geometric data into large-scale applications and expand the range of 
possible applications for spatial data.  A few of these are: 

 Capturing environments from massive data sets:  The expansion of sensor data (e.g. 
smartphones with both GPS and cameras) is producing very large amounts of data that could be 
mined for better understanding of spatial environments (as well as behavior within those 
environments).  This presents a number of challenges, however, ranging from collecting the data 
(with the appropriate social and ethical issues that raises), through registering the data within a 
larger world, to geometric reconstruction from partial views and inference of structure from the 
captured data. 

 Data management: The incorporation of small-scale data has the potential to massively grow 
the size of the spatial datasets that are being used.  While level-of-detail techniques already 
exist for visualization, it is not clear that such methods will scale easily to datasets such as these.  
The size of the datasets probably makes local storage infeasible, meaning that distributed cloud-
like storage and access paradigms will need to be used. 

 Simulation-ready models: With large data sets that include significant detail over a large region, 
there are many possibilities for complex environmental simulations.  This can include not only 
traditional tasks such as navigation and visualization, but also more novel techniques such as 
sound propagation, heat propagation, airflow, etc.  Significant work will be needed to both 
make such spatial datasets usable for such applications, but on the application ends to realize 
the potential that such a dataset could provide. 

 Statistical modeling of environments: Actually capturing full spatial data in various environments 
is not always reasonable, due to the way the environment can change, and the infeasibility of 
collecting a full data set.  As a result, statistical descriptions of spatial data might need to replace 
precise descriptions of locations.  Research will be needed into understanding the best ways to 
describe this data, to use the data in calculations, and to present to people the uncertainties and 
range of outcomes that such a model would create. 

 Predictive modeling of changing environments:  While much of the work in spatial data has 
assumed that locations remain basically static, this is not likely to be the case, especially at 
smaller scales.  People, animals, nature, etc. can all have an effect on the environment, 
particularly at smaller scales.  A person choosing to move one object in an environment could 
set off a chain reaction causing more significant changes elsewhere (as an extreme example, 
imagine moving a support for a building).  Moving from a static description of a region to a 
dynamic representation that responds in physically-accurate ways to the interactions is a 
challenging problem, but one that needs to be solved for spatial data systems to become more 
dynamic. 
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ABSTRACT

Thanks to today’s relatively high-speed wireless data networks,
and location/orientation-aware mobile phones, we are tantalizingly
close to realizing a common dream of Augmented Reality (AR)
everywhere. But even with appropriate content and concepts of
operation, things are not quite right: icons and annotations are mis-
registered and/or jiggle around. We can get the data to the phone
(the last kilometer) and perhaps localize the phone relatively ac-
curately (the last centimeter) but we can’t seem to realize stable
and accurate registered imagery (the last pixel). We need to mar-
shall our significant networking, modeling, computing, and other
resources to “close the loop” on AR registration.

1 THE REALITY OF AUGMENTED REALITY

Augmented Reality (AR), once offering the promise of Super
Man’s X-Ray vision, wants to be all the rage with today’s camera-
equipped smart phones and tablet computers. Even assuming ubiq-
uitous wireless data, and reasonably accurate position and orienta-
tion estimation, we are still not seeing widespread adoption of AR
on camera-equipped mobile phones. Why is this?

One problem is that of content and use concepts. We (society)
still haven’t quite figured out what we should see/show with our
AR-equipped phones. Do we need to see graphical navigation in-
dications and annotations superimposed on live imagery of the real
world around us? Perhaps. Do we want to see restaurant reviews
visually registered on the wall of the restaurant across the street?
Perhaps. Do we want to have to hold our phone up to an historic
landmark to read about it? Perhaps for information that has spatial
relevance (e.g., annotations associated with parts of the landmark),
but otherwise perhaps not. It would seem that AR is a wanna-be
commodity paradigm that we still have not quite figured out. Apps
on today’s mobile phones are more a novelty than useful tools.

A second problem is that there remain non-trivial technical chal-
lenges in getting it right. We are almost there but not quite. Despite
remarkable progress in our ability to get data to mobile phones (the
last kilometer) and to estimate the position and orientation (pose)
of a phone relatively accurately (the last centimeter), we can’t seem
to realize stable and accurate registered imagery (the last pixel).
Augmented imagery jiggles around as my hand (inevitably) shakes,
sloshing back and forth as I pan around, and/or is completely mis-
registered. (My wife, as pretty as she may be, is not a Vanda or-
chid.) Why is it that with ever-increasing accuracy and resolution,
and more sophisticated localization and orientation algorithms, we
can’t make imagery “lock on” to the appropriate objects in the real
world around us?

∗e-mail: welch@ucf.edu, welch@unc.edu

2 OPEN LOOP AUGMENTED REALITY

Part of the problem is that most AR systems today have no under-
standing of the “real world around us.” They don’t recognize the
restaurant, historic landmark, nor orchid. Why should they? We all
have a tendency to assume that new and better hardware will solve
the problem. We see things like the Kinect changing the world of
natural user interfaces (and anything else researchers can think of)
and assume that the next generation of GNSS and other technolo-
gies will provide the necessary accuracy (popularly confused with
resolution) to fix our mobile phone AR registration problems. But
we need to wake up. If we try and wait for accuracy and stability
in mobile phone pose estimates to become sufficient to make aug-
mented imagery appear “locked on” to real world objects around
us, we will be waiting a long, long time—perhaps forever.

The problem is that today’s “open loop” AR paradigm is almost
certainly doomed to never succeed like we dream it will. Compo-
nent accuracies and resolutions, delays, and dynamic variations in
the various components and parameters conspire against us. This
is compounded by errors in the models for the objects/scenes we
are trying to augment. As impressive as such models are, they are
never going to be perfect in all respects. These inevitable errors and
perturbations are magnified by distance and other factors, and man-
ifest themselves as mis-registered and/or unstable imagery. Even
in a controlled environment such as a laboratory it is exceedingly
difficult to realize acceptably accurate and stable augmented reality
imagery. The typical approach is to place specially designed visual
markers near the object of interest (e.g., next to the little AR man
we want to render on the table), or to make the markers the object
of interest (render the AR man on the marker). But we can’t put
markers all around us as we move about during our daily lives. Nor
can we expect that our municipalities will adorn our cities with AR
markers. (Would we want a plethora of markers around our historic
landmarks anyway?)

3 CLOSING THE LOOP

Aside from content and use concepts, we need to give up on the
mistaken notion that the “natural” evolution of localization and ori-
entation technology will somehow result in acceptable registration
of augmented imagery with objects/scenes. Instead we need to
recognize that for AR “everywhere,” e.g., visual annotations out-
doors with our mobile phones or magic eyeglasses, the primary goal
should be visual registration, as opposed to accurate pose estima-
tion. We know our models of the world will be imperfect—do we
really care if the estimated pose is imperfect, if in exchange the
AR annotations are locked onto the object/scene of interest? To
be clear, I’m not arguing for giving up on seeking accurate pose
estimation—of course we want that. I’m arguing for giving up on
relying on it as the silver bullet that will solve our AR registration
problems.



So how do we do this? Rather than putting visual tracking mark-
ers everywhere near the objects/places of interest, we need to make
the places of interest our markers. That is, rather than assuming our
open-loop rendering will be registered, we need to ensure it is reg-
istered via final-stage image (or audio or ...) processing that seeks
to minimize error between (a) a simulated image of the AR anno-
tations overlaid on the object/scene models, and (b) a real image
of the AR annotations as they appear on the actual imagery of the
object/scene. For example, a desired (and simulated) augmented
image might include an overlaid graphical line that correctly ap-
pears collinear with the edge of a building in the modeled scene;
while in the real final augmented image, pose estimation errors can
cause the same overlaid graphical line to intersect the edge of the
building in the real image. We humans would know that the non-
collinear lines and corresponding intersection point indicates an er-
ror, but today’s typical AR system would not. It should. It should
attempt adjust the pose (or other uncertain parameters) to minimize
the differences between the simulated final augmented image and
the real augmented image. In other words, it is the combination
(e.g., optical masking or superposition) of real and virtual imagery
that should be the “signal” that is optimized, not the real imagery
(or audio, ...) alone.

This idea is not unlike that of map matching in navigation—if my
vehicle continues to go straight in spite of the navigation system’s
belief that the road I am on is curving, most navigation systems
will recognize that a nearby straight road (that matches my straight
trajectory) is probably where I am, and will change its estimate of
my location and heading to match. (If I was going straight on a
curved road, an erroneous “correction” to my navigation path is
probably the least of my worries!)

Most navigation systems “carry” their maps with them in en-
tirety. For humans moving about arbitrarily in the world it is un-
reasonable to expect that we will be able to carry models of all of
the objects/scenes around us at all times. Instead we need to lever-
age the ever-expanding reach of high-speed wireless data and cloud
computation to deliver appropriate object/scene model data “just in
time” as we’re moving about.

This idea depends on extensive modeling of our world, dynamic
objects, etc. But that is already happening—the models are continu-
ally evolving—improving and/or expanding via controlled data col-
lections (e.g., large mapping companies) and crowd sourcing. We
need to foster these efforts, and make sure the data is available ev-
erywhere as we move around. In fact we (as AR users/consumers)
can help with the modeling as we use our AR tools. We are, af-
ter all, capturing images and comparing them to expectations based
on a combination of AR elements rendered according to them (the
models) and the effect as seen in the real augmented imagery. As
misregistration is minimized, the residuals can be attributed to both
pose and model errors in a form of crowd-sourced continuous auto-
matic calibration.

4 DYNAMIC COOPERATIVE FEEDBACK

Certainly geometric and photometric models of physical objects
and scenes (buildings, roads, etc.) should provide one source of
data for closed-loop registration. But why stop there? There is other
“ambient” information to be had all around us, and in particular the
“us” can provide information for others.

For example, moving targets (people, vehicles, robots...) that are
simultaneously attempting to estimate their own pose and enforce
their own registration, can provide information to other moving tar-
gets nearby. That information could include for example a visual
(or aural or...) model for the moving target, its estimated pose, and
associated uncertainties. That would allow one target to use another
target as a reference for pose estimation and closed-loop registra-
tion. The shared information could also include the raw measure-
ments from the sensors of another nearby moving target—the latter

target providing remote sensing capability for the former. Informa-
tion from moving targets cooperating in this way, combined with
information about static objects/scenes, can offer increased lever-
age in each system’s attempt to estimate pose and drive the regis-
tration error to zero. During the ongoing process of pose estimation
and registration minimization, targets would of course feed back
the parameters they had to adjust (to minimize the registration er-
ror) back into the cloud, as part of the continuous cloud-sourced
automatic calibration of the world models and state.

5 CONCLUSIONS

For cases where our goal is to “attach” overlaid information to ob-
jects/scenes, we cannot rely on magical improvements in pose esti-
mation technology in mobile phones to be the silver bullet that will
solve our registration woes. We need to re-define the problem as
one of minimizing the registration errors. This does not mean giv-
ing up on pose estimation (it is necessary, of course)—in fact the
optimization that seeks to minimize registration errors can itself act
as a source of feedback to adjust parameters/models in a continuous
automatic way, as we use our devices for AR. Now if only we could
figure out what we want to register and why....
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INTRODUCTION 
I am interested in how humans communicate and 
collaborate. For the most part, as I will discuss shortly, this 
is deeply entwined with environment and space.  

My principal interest vis a vis spatial computing is how the 
human communicative and collaborative practices that have 
developed in the context of proximal (i.e., face to face) 
interaction are extended to supporting interactions between 
spatially distributed (i.e., non proximal) groups. This 
involves both studying the new forms of interaction that 
arise in spatially distributed groups, as well as 
understanding how to better design systems in light of these 
new forms of spatially distributed interaction.  

In this position paper, I will suggest three opportunities for 
research, and call out one additional area for discussion. 
First, I will provide some background on human interaction. 

BACKGROUND: HUMAN SPATIAL INTERACTION 
Human interaction takes place in space. People face one 
another when they speak, and communicate not simply with 
words but with expressions, gestures and bodily postures 
and positions. Human interaction as carried out by dyads 
and among small groups has long been a topic of research 
in social science; many researchers have devoted 
considerable attention to the ways in which people use 
space (e.g., [6, 7, 9]) to structure their communication.  

It is important to recognize that such interaction embraces 
far more than conversation with known others. People 
navigate crowded sidewalks, cross streets, form queues, and 
exhibit other forms of remarkably orderly interaction with 
strangers as they inhabit urban spaces (e.g., [8, 14]). 
Architects and urban designers (e.g., [1, 5, 8, 14]) draw on 
such observations to offer design guidelines for buildings, 
public spaces, and cities. 

What ties all of this interaction together is that it takes place 
in close proximity—what is generally referred to as face to 
face interaction. In such situations, human interaction is 
governed by a combination of cues embedded in the 
environment, social norms particular to the locality, and 

interactants' mutual observations of one another. An 
example would be a crowd at a street corner waiting to 
cross the street: a crossing signal and cross walk 
(environmental cues) designate the timing and spatial locus 
of crossing; social norms having to do with obeying lights 
govern the crowd's behavior (such norms being stronger in 
some places than others); and mutual observation of others' 
behavior reinforces or undermines the norms (as when one 
person decides to cross against the light and the rest of the 
crowd follows). 

Having laid out this perspective on the spatial dimensions 
of human interaction, I will discuss three areas that seem to 
offer prospects for important research.   

NEW TOOLS TO STUDY PROXIMAL INTERACTION 
First, and most briefly, the emergence and growing ubiquity 
of technologies for tracking the spatial location of people 
and gathering other sorts of biometrics offers the prospect 
of new methods and deeper understandings of how 
traditional proximal interactions play out. I will say no 
more about this, as Pentland and his colleagues (e.g., [11]) 
have been exploring this direction, and it is not a principal 
focus of my research.  

LARGE-SCALE INTERACTION IN VIRTUAL SPACES 
Second, I am interested in how proximal interactions are 
carried out in virtual environments. While a recent wave of 
interest in such environments appears to have subsided, I 
am convinced that we have not seen the last of them. I 
believe that the combination of the pull of increasing 
bandwidth and processing power, with the push of 
increased restrictions on our ability to expend time and 
resources in travel, will result in spatialized virtual 
environments becoming a common venue for interaction. 

While I was initially skeptical about the prospects of virtual 
environments for supporting graceful human interaction, a 
few years ago I had an experience that changed my mind. 
IBM held a 500 person conference in a customized version 
of Second Life, and I took the opportunity to do a field 
study of the event [4]. While there was no shortage of 
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problems—both straightforward and subtle—some aspects 
of the conference worked remarkably well. In particular, I 
was struck by the success of the poster sessions and the 
ways in which they supported graceful interactions among 
the participants. In some cases the interactions mirrored 
those seen in face to face poster sessions (e.g., self-
organization of small groups; social navigation; 
opportunistic engagements), and in other cases they 
surpassed what was possible in their face to face analogs 
(e.g., the ability to search and navigate the space).  

I came away from the study with several of conjectures. 

• 3D avatar-based virtual environments have real prospects 
of becoming a useful mode of interaction among large 
numbers of people. 

• Such environments are not—and are not likely to develop 
into—faithful analogs of physical space. The arbitrary 
nature of their ‘physics’ destabilizes the interactions that 
occur in them (e.g., how far voices carry; teleportation), 
and we need to understand how people—particularly 
those who have come of age playing massively multi-
player online games—adjust their interactions 
accordingly. (There is, of course, already a rich vein of 
research in MMPOGs to draw upon.) 

• We do not, as a field, understand how to design such 
environments to enable ‘mundane’ interactions. The 
needs of work-a-day communication do not always fit 
well with the ludic roots of these environments. A 
combination of usage studies and design research is 
needed to remedy this.  

LARGE-SCALE INTERACTION IN REAL SPACE 
For most of their history humans have interacted in face to 
face situations. It is only with the emergence of modern 
technologies like the printing press, telephony and now the 
internet that people have been able to interact across 
distance. Most recently, the growing ubiquity of mobile 
devices equipped with locative sensors is enabling 
distributed groups of people to communicate and coordinate 
in real time from wherever they happen to be. From flash 
mobs to crowdsourcing, we need to understand how 
humans are successfully interacting in distributed spatial 
contexts. 

One domain that illustrates these issues is what I call 
geocentric crowdsourcing. Crowdsourcing is the use of the 
perceptual, cognitive and enactive abilities of a distributed 
group to achieve some purposeful end (e.g., Wikipedia; 
Mechanical Turk). Geocentric crowdsourcing is when the 
locations of the members of the crowd matter, as they do 
when crowdsourcing is applied in domains like smart cities 
or citizen science.  

Two examples illustrate the concept. FixMyStreet [3] is an 
application that allows urban inhabitants to report potholes 
and other street-related problems on a publicly visible map, 
which are then brought to the attention of the appropriate 
governing body. As individuals’ reports appear on the 

shared map, it creates a powerful aggregate representation 
of the state of the streets—areas with lots of problems 
become quite apparent. Another example is Cyclopath, a 
user-editable street map intended to help bicyclists find 
bicycle-friendly routes around the city (e.g., [2, 10, 13]. 
Cyclopath relies on the cycling community to add data – 
road surface conditions, off-road paths, location of coffee 
shops – that is useful in determining a good bike route, but 
not found on conventional maps. Both of these systems 
have been quite successful, and rely on both the local 
knowledge and local motivation of their users. 

However, these sorts of systems are in their infancy, and 
they would be more useful if the behavior of their crowds 
could be orchestrated. For instance, it would be useful to be 
able to assess how well-covered a particular region was, 
either by repeated sampling by users, or via integration with 
other digitally-sourced data. Similarly, if a particular area 
needs work, it would be useful to understand how to focus 
the work of the crowd on a particular area (e.g., [12]). 
These, and similar ends, could be achieved by a variety of 
means ranging from enabling sub-groups to purposely 
collaborate to providing global incentive mechanisms to 
shape crowd behavior to particular ends.  

Crowd orchestration is just one example of the issues that 
large scale interaction raises. As cities get smarter and 
inhabitants are increasingly connected, new possibilities 
arise for mining and shaping mass behavior. Might we be 
able to detect concerns about the level of public safety of a 
neighborhood by tracking changes in pedestrian behavior 
over time? Might the distribution and dynamics of a taxi 
fleet serve as a distributed sensor of economic growth or 
contraction in particular areas of a city? In the event of 
traffic congestion, how might a flow of commuters be re-
routed over multiple routes to ameliorate the problem (even 
while assuming that not all will simply follow instructions 
issued via their smart devices)?  

A CLOSING QUESTION: WHAT ABOUT ROBOTICS? 
In wrapping this up, I’ll raise an issue that I hope the 
workshop will address. While I have no particular expertise 
in the area, I was surprised that there was no mention of 
robotics. Surely autonomous devices that can move and act 
in spatial environments are relevant to spatial computing. 
And with the growing popularization of robotic toys, the 
consumer acceptance of robotic utility devices, and the 
advent of drones for domestic and foreign  
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SPATIAL SIMILARITY 
Mike Goodchild, UC Santa Barbara 
 

Measurement of similarity is a time-honored practice in science, forming the basis of all 
taxonomies. Placing things into categories is one of the most basic and elementary 
scientific functions, based on minimizing differences between things in the same category 
and maximizing the differences between things in different categories. Nevertheless the 
measurement of similarity between locations is remarkably under-exploited, in part 
because we normally expect locations to be grouped contiguously into regions based on a 
combination of proximity and similarity, rather than similarity alone. Groupings of 
locations based only on similarity are likely to be fragmented. 

   It seems appropriate at this point in the development of GIScience to consider the 
question of similarity anew. It is easy to identify use cases for geographic analogs, 
locations which are similar on one or more dimensions to a location of interest; proposed 
here is a research program to support search for analogous locations based on similarity, 
with the user exercising control over how similarity is measured. Analogs are commonly 
used in marketing, where an assessment of a potential site for a retail outlet is made by 
searching for existing outlets with similar marketing-oriented attributes, on the argument 
that performance of the potential site will be similar. Researchers might use such a 
service of analog search in the early stages of a project, when it might be important to 
identify similar locations. Analogs might be useful in marketing to tourists (“This 
location is like…”) or in location scouting for movies.  

   Research on spatial analogs would be timely, given the very rapid growth in the volume 
of available geospatial data that could be used for defining similarity. The fact that so 
much of these data are online is another advantage, since it would allow search to be 
conducted rapidly. 

   Geographers have long distinguished between two somewhat orthogonal perspectives, 
those of space and place. A spatial perspective is characterized by coordinates, distances, 
geometry, and the functions commonly found in GIS. A platial perspective on the other 
hand is dominated by placenames that may or may not be well defined, static, and 
spatially bounded. The planimetrically controlled maps of a spatial perspective become 
the schematic maps of a platial perspective. Interest in place and in the space/place 
duality has grown rapidly in recent years because of the rise of consumer-oriented 
geospatial services and practices, including volunteered geographic information (VGI), 
point-of-interest databases, and online wayfinding aids. A research program on spatial 
similarity and analogs should include both spatial and platial perspectives: search for 
similar locations, and search for similar named places. 
   The research will need to address several key issues: 

• How to identify the set of dimensions on which similarity will be measured, how 
to present the set to the user, and how to allow the user to build similarity metrics. 

• How best to organize the vast amount of relevant information to support similarity 
measurement and search for analogs. How should scale be addressed, how should 
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data be organized (by layer, by feature type, etc.), and how should it be indexed 
for rapid search? 

• How is the problem of search for analogs distinct from the problem of similarity 
measurement, and what aspects of the latter literature are relevant? 

• What is the full set of use cases? How are general trends in spatial computing 
likely to affect the problem in the next few years? 

• What previous work has been conducted on the problem? One PhD dissertation at 
Penn State addressed some aspects of it in 2008 (Banchuen, 2008). 
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Background

Geographic Information Science (GIScience) is a field that emerged roughly 20 years ago 
(Goodchild, 1990) with the inclusion a cognitive principles as a fundamental component of the 
science (Mark, et al.1999).  This philosophy came about from earlier precursors, including the 
specialist meetings of the National Center for Geographic Information and Analysis (NCGIA) 
and the Conference on Spatial Information Theory (COSIT), both of which explicitly brought 
together geographers, computer scientists, cognitive psychologists, among others, to examine the 
nature of spatial information. 

The inclusion of spatial cognition as part of the larger GIScience movement has resulted in two 
distinct benefits.  First, there has been a large scale effort to identify and to quantify the cognitive 
elements of spatial knowledge and spatial communication.  That is, the notions of regions, 
landmarks, hierarchical reasoning, geographical scale, the interplay of visual, verbal and spatial 
knowledge into a cognitive collage, and other cognitive elements, have been identified as crucial 
to human understanding of space (Hirtle, 2011; Kuipers, 2000; Montello, 2009; Tversky, 1993).  
Second, modern spatial tools have been built upon the knowledge that we have gained in 
studying the cognition of spatial concepts.  This include the use of multiple modalities and 
selective information presentation that are found in at the heart of current navigation systems and 
route-finding algorithms, as well as crowd-sourcing solutions to spatial problems and the 
spatialization of large datasets (Agrawala, Li, & Berthouzoz, 2011; Goodchild, 2007; Jones, 
2007; Skupin & Fabrikant, 2008) 

Open Problems and Research Opportunities 

Given the advances of the past two decades of research, in addition to the current state of 
technology, one can identify several open problems and research opportunities that have 
emerged.  These are listed below in no particular order and together make up a grand challenge 
of providing real-time, spatially relevant information on integrated platforms for spatial planning 
and decision making. 

Acquisition of geographical knowledge.  Recent studies have shown that people not only use 
GPS navigation systems, but also become dependent on them for navigating repeated times to 
the same location (Parush, Ahuvia, & Erev, 2007). This raises an interesting question about how 



technology can present accurate geographic information to a user, but at the same time support 
the acquisition of geographic knowledge.  Ideally, the repeated use of the technology would 
increase geographic awareness, rather than leading to impoverish knowledge of the surrounding 
environment.   

Communication of geographical information. Spatial communication involves the matching 
the description of the environment with the physical environment (Hirtle, Richter, Srinivas, & 
Firth, 2010).  In human-to-human communication this might involve landmarks, road objects and 
topography, such "Turn left at the stop sign, just past the McDonalds at the top of the hill."  The 
ability to automatically extract landmarks, visible objects, and difficult navigational maneuvers 
is an open problem for the development of user-friendly navigation systems.

Attributes of space. Related to the previous challenge is the identification of salient objects in 
the environment.  Unique or useful objects for identifying spatial locations vary from region to 
region and depend on both cultural norms and the variation within the environment (Klippel, 
Hansen, Richter, & Winter, 2008).  Ongoing work on geographic ontologies could provide a 
theoretical framework, but additional research is needed on how to automatically extract salient 
objects and how to best use those objects in the development of navigation systems.  

Cognition of dynamic phenomena.  Environments are not static and particularly in mission-
critical applications, such firefighting and public safety, there is a need to comprehend, represent, 
and model dynamic phenomena in real-time (Hornsby & Yuan, 2008).  Not only is the modeling 
of dynamic geographic phenomena critical, but the communication of the parameters is also of 
great importance. 

Crowd-sourcing and VGI.  The ability to use crowd-sourcing and other forms of volunteered 
geographic information (VGI) will lead to a new generation of spatial tools (Goodchild, 2007) 
For example, while it is theoretically possible to identify potentially safe and efficient bicycle 
routes in the United States from road network data, a more profitable approach might be to 
automatically track routes taken by bicycle riders over a period of time. This approach would 
generate the preferred paths, regardless of the underlying database constraints on the space 
(Panciera, Priedhorsky, Erickson, & Terveen, 2010).  The explosion of crowd-sourced data along 
with the growing number of explicit VGI projects will lead to vast new data sources, many with 
an implicit cognitive bias, which can be data-mined for new and useful information. 

Together, these five specific topics are examples of the kind projects that would link the spatial 
cognition of the user with technological tools.  In each case, additional work would be needed to 
understand (1) the explicit cognitive constraints on the user, (2) the required computational 
models to incorporate these constraints, and (3) the user interface issues to implement a 
cognitively-aware geographical information tool. 
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Spatial Cognition for Robots

Benjamin Kuipers∗

3 August 2012

Spatial Knowledge is Everywhere

Spatial knowledge is fundamental to almost all of human knowledge. This is easily seen by considering how
ubiquitous spatial metaphors are in human thought and communication [8]. (Note that the meanings of the
words “fundamental” and “ubiquitous” in the previous sentences both involve spatial metaphors!)

Since spatial knowledge is so central to human knowledge representation and problem-solving, it will be
important to provide similar capabilities for spatial knowledge representation and inference for intelligent
computational systems. A robot is a special case of an intelligent computational system, in that it is situated
in, and interacts with, the physical world, so spatial knowledge is particularly important for robots.

Representations for spatial knowledge that are quite different from human representations, such as GPS
coordinates, can certainly be useful computational tools. However, to solve problems as formulated by
humans, and especially to communicate effectively with humans, human-like knowledge representations
are essential.

Scales of Spatial Knowledge

The knowledge an agent (human or robot) may have about the spatial structure of a situation depends on
the relation between the agent’s sensory capabilities and the scale of that spatial structure. This leads to a
variety of quite different representations, with quite different learning and problem-solving capabilities.

At the bottom, spatial knowledge starts with 2D sensor structure. The receptors in the human retina,
or the pixels in a camera, have a physical 2D structure. Likewise, touch sensors on the skin have a locally
2D structure. The camera’s pixel structure has a simple specification and is engineered in. The biological
structure of receptive fields or touch sensors is partly innate and partly learned or calibrated from experi-
ence. Connections among sensory modalities such as sight, sound, and touch must also be learned, and can
demonstrably be re-learned as circumstances change. Useful models of these adaptive capabilities will be
important for long-lived robots and other computational systems [11].

3D object shape and appearance models help factor the highly variable sensory images of an object
perceived over time into a relatively constant shape model and relatively simple time-varying pose and
configuration variables. (In the early months of life, babies spend a lot of time observing their own hands as
they move them and change their shapes. Surely they are learning something very important about space, as
well as about hands.) Computer vision researchers have developed multiple approaches to representing 3D
object shape, ranging from compositions of 3D primitives such as generalized cylinders or geons [2], to the
view-sphere, a 2D manifold of 2D images as the object is perceived from any surrounding pose [3].

Small-scale space is the nearby space within the sensory horizon of the agent, described in terms of re-
lations among objects, and between objects and the observer. Relations among objects can include near/far,
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right/left, forward/back, above/below, and so on. Solid objects participate in simple relations such as sup-
port and touching, and make up more complex assemblies such as a clock [4]. Methods such as the Region
Connection Calculus [12] categorize the ways that 2D regions can relate, including overlapping and con-
tainment. Configuration space methods such as probabilistic road-maps [5] make it possible to compute
trajectories involving closely fitting parts, but it is not clear what relation these methods have to human
spatial knowledge.

Large-scale space is knowledge of spatial structure beyond the sensory horizon of the agent, such as
the cognitive map of a building or a city [9, 7]. Knowledge of large-scale space must be acquired and
integrated over time and travel. The Spatial Semantic Hierarchy [6, 1] is an integrated hierarchy of different
representations for large-scale space, supporting a flexible set of states of incomplete knowledge.

Abstract spaces are spaces whose structure is not observed directly by the agent, but is inferred from
other sources of evidence. These include both very large spaces such as the structure of the solar system,
and very small spaces such as the shape of the DNA molecule.

These different spatial scales do not have sharp boundaries. However, knowledge in each scale has
enough common spatial structure to be worth considering as a separate type.

Communicating Spatial Knowledge

In addition to having spatial knowledge of its own, an agent must also be able to communicate its spatial
knowledge to other agents, and to understand spatial knowledge that is communicated to it. This applies
to all three scales of space discussed above. The problem of communicating spatial knowledge can be
decomposed according to the medium of communication.

• linguistic description, including route directions and assembly instructions;

• graphical communication, including displays and drawn and printed maps;

• gesture, sound, haptic, and other communication modalities.

Technology certainly exists (e.g., Mapquest and Google Maps) for generating graphical and linguistic
route directions, though significant improvements remain possible. The more challenging problem is under-
standing natural human-generated route directions and other spatial instructions [10]. This is partly due to
the fact that people shift seamlessly between different representations for spatial relations when describing
a situation [13].

Grand Challenges

These challenges require learning, problem-solving, and communication in both directions with various
media.

Learning and using a cognitive map of large-scale space. Certain mobile robots (e.g., an intelligent
wheelchair or autonomous car) have a job to do, taking a human from one place to another. Can it learn a
useful cognitive map from observations obtained while it is doing its job, without the opportunity to explore
the environment autonomously? Can it represent the states of incomplete knowledge it will necessarily have?
Can it learn parts of the cognitive map from natural human instructions given to it, as verbal directions, as
sketch maps, or as joystick guidance? Can it provide useful feedback to a person about inadequate, incorrect,
or incomplete instructions?

2



Building complex structures from jumbled parts in small-scale space. Consider a jumbled collection
of parts from which a complex assembly can be created, for example a water pump for a car or a LEGO toy
structure. The robot’s task is to sort through the collection, learning the appearances, shapes, structures, and
properties of the individual parts, and experimenting with how they might fit together. Instructions may be
provided as verbal language, as written text, as diagrams, or as a multi-modal combination. Can the robot
learn to understand references in the instructions? Can it learn the skills required to create the specified
assembly? Can it learn fundamental skills that make it easier to create other assemblies in the future? What
does it learn about the properties of objects and their relation to the object’s shape?
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Representation and Analysis of Spatial Dynamics in the Era of Ubiquitous and Abundant Spatial 
Information 
 
Focus: Spatial Databases 
 
Position paper by May Yuan, University of Oklahoma 
 
Spatial dynamics has long been a topic of interest to geographers, geoscientists, ecologists, and 
many other disciplines because a system understanding of the complex interactions of processes 
in space and time is central to scientific inquiries. There is a wealth of literature in spatial or 
space-time representation, which is most common categorized as field-based or object-based. 
However, spatial dynamics cannot be simply modeled in schemes of fields or objects alone due 
to its needs to address multi-level structures, multi-scalar processes, and the interactions across 
scales.  
 

Two open questions are fundamental to representing and analyzing spatial dynamics 
with ubiquitous and abundant geospatial information: (1) analytical methods for data collected 
without any statistical sampling schemes; (2) representation and analysis for individuals, 
aggregates, agglomerates, and spatial narratives (spatial stories).  
 

1. How to develop analytical methods for data without statistical sampling schemes? How 
to remedy potential data biases, under- or over-sampling issues, and other data errors? 
 
Many analytical and computational methods have been developed for spatial dynamics, 

such as system analysis, Monte Carlo simulation, spatial diffusion models, spatial interaction 
models, cellular automaton, and agent-based modeling, just to name a few. Generally speaking, 
these existing analytical and computational methods are subject to specific assumptions of data 
representation, sampling schemes, or expected relationships among variables. In the era of 
ubiquitous and abundant geospatial information, ever-growing spatially aware devices and 
sensors provide ambient spatial data free of any systematic sampling schemes. For example, 
some spatial data are geocoded from social media, such as site characterization at flickr or web 
blogs, travel of dollar bills at Where is George site, or personal whereabouts at Four Square, 
Facebook, or Waze.  

 
Since these data are created socially, there is no assurance for unbiased and representative 

samples to satisfy data requirements in established spatial statistics. Moreover, the proliferation 
of spatially aware technologies also provide wealth of individual data with great potential for 
real-time  modeling of population dynamics (the number of occupants in a building at any given 
time of a day), analysis of human activities at a micro scale (such as entering and existing 
patterns at a store entrance), or  human-oriented environmental monitoring (such as temperature 
sensors on GPS vehicles for monitoring heat island effects).  Most current applications of such 
data appear common in identifications of clusters, outliners, and network connections in space 
and time.  While exploration of space-time patterns is important, analysis of spatial dynamics is 
critical to a deeper understanding of what is going on.  How do surges of shoppers relate to 
different types of store sales events? How do different groups of people utilize a building 
throughout a day or a week? Existing methods can identify space-time patterns and clusters. A 



logical next step is to develop methods that can reveal how patterns or clusters relate and 
interact.  
 

2. How to represent, query, and analyze spatial dynamics with individuals, aggregates, 
agglomerates, and spatial narratives in space and time seamlessly in a database?  
 
Volumes of data are from environmental sensor networks, such as in-situ observation 

networks, satellite systems, or mobile sensor networks. These sensor networks are designed to 
monitor environmental events and processes. While massive data have been collected, the events 
and processes of interest are rarely organized into a database for query and analysis at a level 
beyond observations.  The lack of database representation schemes is one key barrier to develop 
a database for events and processes.  Also lacking are mechanisms to assemble observation data 
and structure the data in ways to reflect: (1) when and where all necessary components, as 
observed in the data, are in place and the respective process emerges; and (2) when and where 
the process develops into different phases. With databases capable of representing events and 
processes, analytical methods can then be developed to explore when and where processes 
interact with other features and processes, what environmental settings may be facilitating or 
constraining the process development, and how human behaviors and activities may influence or 
be influenced by environmental processes.  We need databases that can represent high level 
space-time abstracts by forming aggregates, agglomerates, and narratives from space-time data.  
 

Aggregates are space-time clusters based on the objects of the same type. For example, 
traffic jams are clusters of vehicles stopping or moving at a snail pace on roads. Data models 
should have the ability to represent these identifiable clusters and to reference individuals, when 
appropriate, to their respective clusters. Another form of aggregates is based on activities or 
routines. GPS tracks of individuals are composites of daily journeys to work, weekend outings, 
seasonal vacations, and other activities. Data models for spatial dynamics needs capabilities to 
represent the periodicity over space and compute patterns of life or meaningful aggregates of 
activities, events, or processes from disaggregate space-time data.  Database representation of 
spatial dynamics needs to connect individuals to levels of aggregates in space and time and 
resolve properties which are common to all or are only associated with individuals or distinct 
levels of aggregates. 
  

An agglomerate consists of many types of functionally related objects. The ability to 
represent spatial agglomerates is to capture the component objects and functions that hold these 
spatial objects to operate synergistically. An airport is an example of spatial agglomerate with 
flight control tower, runways, terminals, and gates.  The concept of spatial agglomeration applies 
commonly in the study of urban growth and industry clusters. Agglomeration economies take 
advantages of spatial clustering of complementary business sectors that support each other. 
Socially, spatial agglomeration of a group is the spatio-social network of its members and their 
functional connections. The Occupy Wall Street movement can also be considered as a spatial 
agglomerate in which event organizers and participants work together for coordinated activities. 
Each type of spatial agglomerates has minimal members and necessary organizational structures. 
Therefore, representation of spatial agglomerates will serve a foundation to identify additional 
spatial agglomerates, such as automatic recognition of airports in imagery or detection of 
emergence of spatial social groups or activities in text analytics. In addition to the examples of 



spatial agglomerates in human environments, natural processes are also spatial agglomerates. A 
hurricane, for example, consists of an eye, an eye wall, cyclonic winds, and rainbands, each of 
which has distinct properties.  

 
Spatial narratives emphasize sequences of events in space and time. The history of a 

place (the city of Norman history), a person’s journey (a vacation in the Yellowstone), the 
development of a process (hurricane), the workflow of a plan (Mardi Gras parade), and the 
procedure of an operation (boats entering or leaving a port) are all examples of spatial narratives 
with distinct narrative components and structures.  Narrative databases and computational 
methods for narrative generation and narrative analysis can help elicit preconditions, precursors, 
evolution of activities, consequences, and spatial histories as a high-level knowledge synthesis 
for space-time data from multiple sources.  



Spatial Computing 
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Digital Cityscapes: Challenges and Opportunities

Ming C. Lin and Dinesh Manocha
University of North Carolina at Chapel Hill

Abstract

In this position paper, we examine the algorithmic and com-
putational challenges in real-time modeling and simulation
of digital cityscapes. We outline the areas of research chal-
lenges in digital cityscapes that can benefit from more ad-
vanced computational techniques and algorithms. We briefly
survey some of our recent progress as part of our early at-
tempt in adopting multi-agent plannning and simulation for
digital cityscapes and highlight some of the remaining chal-
lenges.

1 Introduction
With industrial revolution, recent economic and social de-
velopment, increasingly more people are leaving rural areas
and migrating to cities, thereby leading to rapid urbanization
of the world population in the last century. Today, more than
50% of the global population live in urban areas, with the
figure projected to rise to 60% by 20301. Given the ubiqui-
tous urban development across all advanced and developing
countries, modeling and simulation of cityscapes is clearly
emerging as an important topic for city planning and urban
development that require interactive visualization to evalu-
ate various alternatives and options for design and planning.
The scale and complexity of the problem demand a new set
of algorithms and methodologies for visualizing rich, intri-
cate, and dynamic urban landscapes with constant flows of
crowds and traffic.

Numerous efforts have been devoted in acquiring and vi-
sualizing “urbanscape”. Over the last decade, there has been
considerable progress on multiple fronts: acquisition of im-
agery and 3D models using improved sensing technologies,
real-time rendering, and procedural modeling. For exam-
ple, aerial imagery of most cities is used in Google Earth
and Microsoft Virtual Earth. The problem of reconstructing
3D geometric models from videos and scanners has been
an active area of research in computer vision and related
areas. Similarly, many efficient techniques have been pro-
posed to stream the imagery and geometric data over inter-
net and display them at real-time rates on high end work-
stations or handheld devices. However, all these efforts are
limited to capturing, displaying, or modeling predominantly

1“World Urbanization Prospects” by United Nations Population
Division, Department of Economic and Social Affairs, 2005.

Figure 1: An example of simulated crowds at Shibuya crossing in Japan

static models of urbanscapes and do not include dynamic
elements, such as crowds or traffic. In many aspects, the re-
alism of models shown in Google Earth or Microsoft Virtual
Earth is lacking due to the absence of dynamic behaviors.

In addition to high-rise buildings and architectural scenes
on city landscapes, moving pedestrians and vehicle traffic
are an integral part of any metropolitan region, yet they have
not received sufficient attention. Aggregates of numerous
entities, such as a group of people and fleet of vehicles, form
complex systems that exhibit interesting biological, social,
cultural, and spatial patterns observed in nature and in so-
ciety. Modeling of the collective behaviors remains an open
research challenge in artificial intelligence, computer vision,
architecture, physics, psychology, social sciences, and civil
and traffic engineering, as complex systems often exhibit
distinct characteristics, such as emergent behaviors, self-
organization, and pattern formation, due to multi-scale inter-
actions among individuals and groups of individuals, despite
of decades of observation and studies.

2 Research Challenges
The challenges in real-time modeling and simulation of dig-
ital cityscape stem from its extremely large scale, i.e. in the
range of hundreds of thousands or even millions, crowds and
vehicle traffic commonly encountered in metropolitan areas
across the globe. We refer to such a physically vast scale
of computational challenges as “metropolitan scale.” Below
we briefly list a few problems in realizing this vision and
provide pointers to some recent progress toward this goal:



Figure 2: An example of reconstructed traffic in an European cityscape

• Modeling of intricate pedestrian dynamics that leads
to better understanding of complex crowd pheonom-
ena: Recently we have developed a new trajectory plan-
ning algorithm for virtual humans. Our approach focuses
on implicit cooperation between multiple virtual agents in
order to share the work of avoiding collisions with each
other. Specifically, we extend recent work on multi-robot
planning to better model how humans avoid collisions by
introducing new parameters that model human traits, such
as reaction time and biomechanical limitations. We vali-
date this new model based on data of real humans walking
captured by the Locanthrope project. Extending such ap-
proach to many thousands or millions of people in a large
crowd remains a significant challenge. See:

http://gamma.cs.unc.edu/RCAP

http://gamma.cs.unc.edu/PLE

• Real-time reconstruction metropolitan-scale traffic
flows given discrete temporal-spatial sensor data: We
introduce a novel concept, Virtualized Traffic, to visualize
reconstructed continuous traffic flows from traffic sensor
datas. Given the positions of each car at two recorded
locations on a highway and the corresponding time in-
stances, our approach can recreate the traffic flows (i.e.
the dynamic motions of multiple cars over time) in be-
tween the two locations using a priority-based scheme
for multiple agents. Our algorithm is applicable to high-
density traffic on highways with a small number of lanes
and takes into account the geometric, kinematic, and dy-
namic constraints on the cars. Although our framework
can process a continuous stream of input data in real time
by reducing the search space for planning, extending such
approaches to a large number of lanes with finer dis-
cretization to better approximate contiuous motion makes
this approach quickly intractable. More efficient tech-
niques would be needed. See:

http://gamma.cs.unc.edu/TRAFFIC-RECON

• Data-driven personality models based on perceptual
studies for simulating crowd and driver behaviors: To

generate heterogeneous crowd behaviors using personal-
ity trait theory, we adopt results of a user study to derive
a mapping from crowd simulation parameters to the per-
ceived behaviors of agents in computer-generated crowd
simulations. We establish a linear mapping between
simulation parameters and personality descriptors corre-
sponding to the well-established Eysenck Three-factor
personality model. Furthermore, we propose a novel
two-dimensional factorization of perceived personality in
crowds based on a statistical analysis of the user study
results. Extension to this approach to establish dynamic
mappings and factorizations for generating heterogeneous
crowd behaviors in settings with external factors (such
as interaction with other agents, environments, and other
stress factors) would need to be considered as well. See:

http://gamma.cs.unc.edu/personality

• Applications to traffic rerouting and congestion man-
agement: While state-of-the-art systems take into ac-
count current trafc conditions or historic trafc data, cur-
rent approaches ignore the impact of their own plans on
the future trafc conditions. We introduce a novel algo-
rithm for self-aware route planning that uses the routes it
plans for current vehicle traffic to more accurately predict
future traffic conditions for subsequent cars. Our plan-
ner uses a roadmap with stochastic, time-varying traffic
densities that are defined by a combination of historical
data and the densities predicted by the planned routes for
the cars ahead of the current trafc. We have applied our
algorithm to moderate-scale traffic route planning, and
demonstrated that our self-aware route planner can more
accurately predict future traffic conditions, which results
in a reduction of the travel time for those vehicles that use
our algorithm. Extension of such planning and simulation
framework to metropolitan-scale traffic that incorporates
dynamic sensing and real-time traffic prediction would in-
troduce new challenges to multi-agent simulations. See:

http://gamma.cs.unc.edu/TROUTE

Other applications including emergency response and
planning, architecture and engineering design evaluation,
etc. should also be investigated. In addition, validation of
such techniques should be also addressed in the context
of applications.

3 Conclusion
We have suggested a list of problems in developing digi-
tal cityscapes that can benefit from applications of more ad-
vanced multi-agent planning and simulation algorithms and
techniques. Addressing these problems can lead to attain-
ing plausible explanations of the behavior and motivation
of individual agents (e.g. pedestrians or vehicles) and how
they interact with each other under different settings, across
varying scales and levels of social organizations, from in-
dividuals to groups, with applications ranging from urban
planning, civil and traffic engineering, transportation system
design, architectural layout, training of first-responders elec-
tronic commerce, to education and entertainment.
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Data	  Prospecting	  Framework	  for	  Geoscience	  
Dr. Rahul Ramachandran (rahul.ramachandran@uah.edu) 

Information Technology & Systems Center, University of Alabama in Huntsville 

Vision	  	  
Decade-long, big-science projects, such as the Human Genome project, Large Hadron Collider, Sloan 
Digital Sky Survey, and Earth Observation System have significantly advanced our understanding and 
revolutionized domains by collecting and analyzing datasets of unprecedented size. Due to advances in 
sensors, computation and storage, the cost and effort required to produce datasets of comparable scale is 
decreasing significantly.  As a result, we are seeing a proliferation of large amounts of data being 
assembled in almost every science field, from the core sciences to physical sciences and engineering, to 
social sciences. The scientific opportunities inherent in these large datasets are enormous: novel 
hypotheses become evident by combining and analyzing large amounts of data, and data-intensive science 
is now considered the fourth paradigm of science [1]. In a data-centric approach, scientists typically first 
explore data using standard statistical analysis tools and visualization, and then perform sophisticated data 
mining to extract deeper information and create knowledge [2].  

In geosciences, given ever-increasing data volumes, scientists often find themselves conducting more data 
storage and management tasks rather than entirely focusing on data exploration and data mining.  Most 
providers of large datasets provide simple mechanisms for data exploration, such as search based on 
metadata. Consequently, scientists first have to download and manage large volumes of data before 
undertaking any meaningful data exploration and data mining. For many scientists who fall in the "long 
tail" of science and are resource-constrained [3], focusing significantly on data storage and management 
tasks affects productivity; such tasks become the rate-limiting step towards making impact-worthy 
science contributions.  

We believe a drastic reduction in scientists’ data management tasks can be achieved if providers of large 
data improve the mechanisms for data exploration, and in particular, allow scientists to conduct statistical 
analysis-based data exploration on large-scale data as part of the data selection process. Such enhanced 
exploration will provide immediate interaction with and feel for the data through histograms, similarity 
searches, and visual analysis.  Scientist can then isolate and download portions of some potential datasets, 
which are often smaller in size, and analyze them deeply using their favorite analytical algorithms and 
progress towards new hypotheses.  This enhanced data exploration process is akin to geophysical 
prospecting, in which mineral sites of interest are first identified over the vast landscape through 
appropriate screening methods and then more expensive ore-extraction methods are employed. Based on 
this metaphor, a data prospecting approach that enables statistical analysis on the content of the data can 
lead to improvements in storage, management, and selection of large datasets within scientific disciplines. 

This vision and rationale leads to an effective business model. The proposition of data prospecting 
creates utility for both the scientists and the big data centers serving geospatial data. By enabling data 
prospecting as a service, big data centers reduce costs of data transfers and improve their data discovery 
process. Scientists improve productivity by eliminating time-consuming tasks that arise due to movement, 
storage and management of data of various types and formats. In addition, the proposition is of 
tremendous value to the NSF EarthCube initiative, which is transforming the conduct of geosciences 
research through community-guided knowledge-management cyberinfrastructure. Towards this goal, 
EarthCube established the Data Discover, Mining and Access (DDMA) community workgroup [4] to 
create a roadmap, through community consensus, for the current and future data needs within the 
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geosciences. The roadmap called for integrative approaches that discover geoscience data, enable efficient 
access, and allow core capabilities for analysis and mining.  In addition, it highlighted the universal needs 
(i) to collocate computing with data, (ii) to develop scalable data access methods, and (iii) for “scientist-
friendly” approaches and environments to fully exploit data mining technologies. 

Example	  Prototype	  
In the DISCOVER project1, one science objective is to isolate atmospheric phenomena such as a cumulus 
cloud, a thunderstorm shower, a rogue wave, a tornado, an earthquake, a tsunami, a hurricane, or an El 
Niño within a large dataset. In general, detecting these phenomena requires scientists to download very 
large datasets from data providers and conduct data exploration and data mining analyses on their own. 
However data prospecting can substantially improve data exploration by summarizing events, which are 
episodes of geoscience phenomena. An event has a finite duration and an associated geo-location as a 
function of time and can be viewed as an entity in four-dimensional (4D) spatiotemporal space. 
Summarizations build representations of a given type of event, by studying the characteristics and 
distribution of a large number of events, such as spatio-temporal distribution, intensity, annual cycle, 
duration, etc. 

Towards improving data exploration, Dr. Ramachandran has developed an initial distributed client-server 
system, the Visual Data Exploration Environment2, for demonstrating data prospecting capabilities. The 
server hosts four data products derived from multiple Special Sensor Microwave Imager instruments, 
staged on a modest cluster. The client can issue 
queries of four kinds, viz., 1D and 2D histograms, 
descriptive statistics and thresholding [5]. An initial 
demonstration to geoscience researchers has met 
with very positive feedback. In one interactive 
session lasting about an hour, a researcher was able 
to identify several phenomena in the data set such as 
Mistral, Somali Jet, and Wind patterns around the 
Hawaiian Islands. Similarly, another researcher was 
able to identify Tehuantepecer in the data set within 
minutes.  Tehauntepecer is a gap wind that is 
triggered by a synoptic scale high pressure system 
over the Great Plains of North America that pushes 
air through a narrow Sierra Madre mountain range 
gap.  The analysis of such events is important 
because of their significant regional climate impact. 
A screen shot showing the results of this analysis is 
presented in Figure 1. 

While the current prototype is very preliminary both in design and capabilities it has clearly demonstrated 
the value of data prospecting to the geoscience research community.  Data prospecting capabilities need 
to be inherent part of any spatial computing road map to support data intensive science. As such 
infrastructure requirements to support this capability such as suitable data organization methods, scalable 
data processing, enhanced data content-based searches, etc. must addressed. 

                                                        
1	  http://discover.itsc.uah.edu	  
	  
2	  http://jurassic3.itsc.uah.edu/vdee	  

Figure 1.  Data prospecting prototype showing 
visual analysis results. 
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Eight years ago, along with bio- and nano- technologies, geospatial technologies were touted as 
one of the three defining technologies in the 21st century (Gewin, 2004).  Compared to bio- and 
nano- technologies, geospatial technologies are obviously still the underdog among three.  As a 
geographer interested GIScience and GeoComputation, I am pleased to notice colleagues in 
multiple other fields are increasingly drawn to the spatial turn, as evidenced by the growing 
interests in spatial humanities or spatially integrated social sciences.  It is also gratifying to 
notice a growing numbers of computer scientists are interested in dealing with geo- or spatial 
aspects of computing.   
 
After reading the workshop proposal, one question instantly came to mind – what is the meaning 
of the term “spatial computing.” Without sounding too pedantic, spatial computing immediately 
reminds me of multiple other labels/words we have used so far: GeoComputation, context-aware 
computing, pervasive computing, ubiquitous computing, ambient intelligence, sentient city, and 
smart planet etc. As most of the critical scholars often argue that new world creation always 
starts with creation of new words.  My position paper outlines some preliminary thoughts on 
what this new word – spatial computing – means to me, followed by discussions on what kinds 
of new worlds this new word will create and what kinds of research we should be focusing on in 
the years ahead.     
 
The question I have been struggling with after I read the spatial computing workshop proposal is, 
if I can borrow Luc Anselin’s (1989) early phrase, what is special about spatial computing?  By 
special I mean to move above and beyond what has been done during the past two decades 
related to spatial data handling. To me, I believe the discussion on the meaning of the term 
“spatial computing” should be conducted in the context of ubiquitous computing and the 
emerging metaverse1.     
 
Back in 2005, I wrote a short piece in CEUS discussing the implications of ubiquitous computing 
on GIS (Sui, 2005).  It is interesting to notice the great asymmetry of the literature: very few 
researchers in the geospatial communities have paid due attention to ubicomp whereas more 
folks in the ubicomp communities have started working on locational and spatial aspects of 
ubicomp. I am sure that CCC’s workshop on “spatial computing” will promote more meaningful 
interactions between GIScientists and ubicomp researchers. 
 
While speculating about the future of computers in the 21st century, Mark Weiser (1991) argued 
that ‘‘the most profound technologies are those that disappear. They weave themselves into the 
fabric of everyday life until they are indistinguishable from it (p. 94).’’ Although the computer as 
we know it has not completely vanished as Weiser (1991) predicted, advances in ubiquitous 
computing (ubicomp) during the past two decades have accelerated the pace toward embedding 



more and more computer chips into the devices and our surroundings, e.g. mobile phones, car 
navigational systems, gas pumps, ATM machines, electronic road/bridge tolls, and smart home 
products in sentient cities. Additionally, radio chips, led by the radio frequency identification 
(RFID) technology, are designed to replace barcodes on manufactured objects. RFID, along with 
existing location technologies, will be able to make the location of every single entity on earth 
trackable (NRC, 2001, 2003). Hand-held communication media such as smart phones or iPads 
can easily mutate into wearable remote-control devices for the physical world.   Instead of the 
traditional distinction on hardware and software, we have witnessed the emergence of everyware 
(Greenfield, 2006) as ubicomp replaces the traditional mainframe and desktop computers to 
become the dominant paradigm for computing.   
 
Concomitant with the growth of ubicomp and everyware, we are also rapidly entering a new age 
of metaverse – a hybrid world in which the virtual world based upon bits is increasingly linked to 
the atom-based physical world (www.metaverseroadmap.org). Nowadays when I think about 
GIS in general and spatial computing particular, I cannot separate it from the emerging 
metaverse. I believe that metaverse roadmap developed by the cross-industry foresight group 
could serve as a possible roadmap for us to think about the challenging issues related to spatial 
computing.  
 
The rapidly evolving metaverse is a result of several converging technologies. According to the 
metaverse road map report, the browser for engaging this metaverse will be based upon a 3-D 
Web that brings together the following four technologies:  
 
● Mirror worlds – digital representations of the atom-based physical world, such as Google 
Earth, Microsoft Virtual Earth, NASA’s World Winds, ESRIs ArcGlobe, USGS’s National Map, 
and the massive georeferenced GIS data bases developed during the past fifty years.  
● Virtual worlds - digital representations of the imagined worlds, such as Second Life, World of 
War Craft, computer games, various cellular automata models, and agent-based models;  
● Lifelogging - the digital capture of information about people and objects in the real or digital 
worlds, such as twitter, blogs, flickr, YouTube, social networking sites such FaceBook or 
MySpace.  
● Augmented reality – sensory overlays of digital information on the real and virtual worlds 
using head-up displays (HUDs) or other mobile/wearable devices such as cell phones or sensors 
via participatory sensing.  
 
Viewed from a metaverse perspective, the workshop proposal for spatial computing seems to 
have focused almost exclusively on the components of mirror worlds. For this workshop, I hope 
we can shift the discussion on spatial computing from the mirror worlds to the broader field of 
ubicomp/everyware in the emerging metaverse. By making this shift, we will inevitably enter 
into a world where space or spatial may have a different meaning. For example, Kitchin and 
Dodge (2011) made a distinction between coded space (where information is inscribed digitally 
that enhances the functioning of a particular environment) and code/space (where information 
and space are so fused that the space cannot function without the information and there is no 
uncoded, manual alternative).  Will spatial computing be capable of analyzing and model the 
ontogenetic process Kitchin and Dodge (2011) outlined for the ubicomp (everyware) 
environment we are in right now?  I think so.   



 
Endnote:  
 

1. First coined by Neal Stephenson in his 1992 science fiction novel Snow Crash, metaverse 
refers to a fictional virtual world where humans, as avatars, interact with each other and 
software agents, in a three-dimensional space that uses the metaphor of the real world. 
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1 Introduction

We are living in the era of ‘Big Data.’ Spatiotem-
poral data, whether captured through remote sen-
sors (e.g., remote sensing imagery, Atmospheric Radi-
ation Measurement (ARM) data) or large scale simula-
tions (e.g., climate data) has always been ‘Big.’ How-
ever, recent advances in instrumentation and compu-
tation making the spatiotemporal data even bigger,
putting several constraints on data analytics capabili-
ties. Spatial computation needs to be transformed to
meet the challenges posed by the big spatiotemporal
data. The Geographic Information Science and Tech-
nology (GIST) group has been engaged in developing
novel spatiotemporal data mining and machine learn-
ing approaches to efficiently process big spatiotempo-
ral databases to extract knowledge that is highly useful
for various stakeholders. Through this white paper we
share some of the recent advances made in big spa-
tiotemporal data analytics, specifically in the area of
remote sensing, and point the community to some of
future research challenges.

2 Data Challenges

Recent advances in remote sensing instrumentation,
and commercialization of remote sensing technology
has lead to the unprecedented growth in the acqui-
sition and archival of high resolution imagery. Fig-
ure 1 shows progression of remote sensing instruments
along three important sensor characteristics: spatial,
spectral, and temporal resolutions. Though these im-
provements are leading to increase in volume, velocity,
and variety of remote sensing data products making it
hard to manage and process, they are also enabling new
applications. For example, improvements in temporal
resolution allows monitoring biomass on a daily basis.

Spatial 

Spectral 

Temporal 

AVIRIS (20m, 224B): On demand, 
airborne, 700km/hr.  

1970’s 2000 

Landsat-1 (MSS):  
80m, 4B, 18 day revisit  

AVHRR (1KM, 5B, 1 day) 

ARIES (30m, 32B, 7 day) 

MODIS (250m-1KM, 36B, 1-2 days) 

1M (SPOT, IKONOS, WorldView) 

Sub-meter (Aerial, …) 

Figure 1. Advances in remote sensing data
products (1970’s through present)

Improvements in spatial resolution allows fine-grained
classification (settlement types), damage assessments,
and critical infrastructure (e.g., nuclear proliferation)
monitoring. Now let us consider biomass monitoring
application requirements more closely from big data
perspective.

Monitoring biomass over large geographic regions for
identifying changes is an important task in many ap-
plications. With recent emphasis on biofuel develop-
ment for reducing dependency on fossil fuels and re-
ducing carbon emissions from energy production and
consumption, the landscape of many countries is going
to change dramatically in coming years. Already there
are several preliminary reports that address both eco-
nomic and environmental impacts of growing energy
crops. These changes are not limited to the United
States alone. Developing countries like India, the rural
areas are facing increasing demand for energy. Moni-
toring biomass using daily remote sensing imagery for
identifying changes is a critical application in achiev-
ing food and energy security. Satellite data products
collected from the MODerate Resolution Imaging Spec-
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troradiometer (MODIS) sensor can provide global cov-
erage at a spatial footprint of 250 meters and a fine
temporal resolution of one day. Analyzing MODIS data
at regional and global scales poses several computa-
tional and I/O challenges. Since data at global scale
is difficult to handle, MODIS data is organized into
tiles of 10 x 10 degrees (4800 x 4800 pixels). Though
there are 460 daily MODIS tile products available, we
need to process 326 products, which contain land pix-
els, making it very hard to process the data in a day
before new data comes in. On the other hand, mon-
itoring critical infrastructure requires high-resolution
(both spectral and spatial) satellite imagery. Just to
give an understanding of data complexity, we have col-
lected more than 10 TB of data for post Katrina dam-
age assessments which included both imagery products
(Digital Otho Images, ASTER, IKONOS, LANDSAT-
5/7, Quickbird, and SPOT) and vector (digital eleva-
tion, flood contours, etc.) data. Table 1 summarizes
computational and storage requirements for major ap-
plications being pursued by our research group.

Application Computational Storage
(TFlops) (TBs)

LandScan Global 50 250
LandScan HD + 50 2000

Settlement Mapping
Global Infrastructure, 50 5
Population Mobility,
Evacuation Modeling
Biomass and Nuclear 50 150

Proliferation Monitoring,
Damage Assessments

Mobile/Trailer 10 50
Park Mapping

Table 1. Computational and Storage Require-
ments of Few Big Spatiotemporal Data Appli-
cations

3 Algorithmic Challenges

Most of the pattern recognition and machine learn-
ing algorithms are per-pixel based (or single instance).
These methods worked well for thematic classification
of moderate and high-resolution (5 meters and above)
images. Very high-resolution (VHR) images (sub-
meter) are offering new opportunities beyond thematic
mapping, they allow recognition of structures in the im-
ages. For example, consider the problem of settlement
mapping [2]. The high rate of urbanization, political

conflicts and ensuing internal displacement of popula-
tion, and increased poverty in the 20th century has re-
sulted in rapid increase of informal settlements. These
unplanned, unauthorized, and/or unstructured homes,
known as informal settlements, shantytowns, barrios,
or slums, pose several challenges to the nations as these
settlements are often located in most hazardous regions
and lack basic services. Though several World Bank
and United Nations sponsored studies stress the impor-
tance of poverty maps in designing better policies and
interventions, mapping slums of the world is a daunt-
ing and challenging task. VHR images provides the
ability to distinguish informal settlements from formal
settlements. However, per-pixel based methods do not
work well for very high-resolution (VHR) images (sub-
meter). The main problem being that the pixel size
(less than meter) is too small as compared to the object
size (10s of meters) and contains too little contextual
information to accurately distinguish between given set
of pixels. As shown in Figure 2 often do not provide suf-
ficient discrimination power between classes. One way
to alleviate this problem is to consider a bigger window
or patch consisting a group of adjacent pixels which of-
fers better spatial context than a single pixel. Unfortu-
nately, this makes all well known per-pixel based clas-
sification schemes ineffective. Multi-instance learning
approaches might be useful in moving from pixel-based
or object-based structure recognition in VHR images,
but computational complexity is too high to be practi-
cally applied for global settlement mapping.

Bare Rooftop 

Single-pixel 
(zoomed) 

Window around same 
single pixel – has more 
information 

Figure 2. Problems with pixel-based pattern
recognition methods

Now, let us consider the problem of identifying com-
plex facilities (e.g., nuclear facilities, thermal power
plants) [3] in VHR images. As can be seen from Fig-
ure 3, thematic classification is designed to learn and
predict thematic classes such as forest (F), crops (C),
buildings (B), etc., at pixel level. However, such the-
matic labels are not enough to capture the fact that the
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(a) FCC Image with Thematic class labels
(B-Buildings, C-Crop, F-Forest)

(b) Thematic Classified Image (B-
Buildings, C-Crop, F-Forest)

(c) FCC Image with Semantic Labels (S-
Switch Yard, C-Containment Building, T-
Turbine Generator, CT-Cooling Tower

Figure 3. Thematic vs. Semantic Classes

given image contains a nuclear power plant. What is
missing is the fact that the objects, such as switch yard
(S), containment building (C), turbine building (T),
and cooling towers (CT) have distinguishing shapes,
sizes, and spatial relationships (arrangements or con-
figurations) as shown in Figure 3(c). These semantics
are not captured in the traditional pixel- and object-
based classification schemes. In addition, traditional
image analysis approaches mainly exploit low-level im-
age features (such as, color and texture and, to some
extent, size and shape) and are oblivious to higher
level descriptors and important spatial (topological)
relationships without which we can not accurately dis-
cover these complex objects or higher level semantic
concepts. Figure 5 shows four different images (base-
ball and football fields, two residential neighborhoods)
where they share common objects, for example, grass
and soil across baseball and football fields, and two
(economically) different neighborhoods where in one
neighborhood buildings are colocated with cars (parked
on the road) while in the other builds are collocated
with swimming pools. Both pixel- and object-based
methods often fails to capture these complex relation-
ships. Future research requires models that explicitly
learn complex spatial relationships among the objects
to accurately predict semantic classes and scale to big
VHR image collections.

4 Computational Challenges

In general, increasing resolutions (spatial, spectral,
and temporal) and as well modeling of spatial and
temporal constraints leads to increased computational
complexity. For example, the Gaussian Process (GP)

based change detection technique [1] developed to
monitor biomass using MODIS NDVI time series sig-
nals is computationally expensive (time complexity is
O(n3)) and memory requirements are of O(n2), making
this infeasible for large study regions. At daily tempo-
ral resolution, MODIS time series contains about 3600
data points (at each pixel location). We need to pro-
cess about 7,511,040,000 time series, where each time
series contains 3600 data points. We need to process
this data in a day before new set of MODIS products
arrive. Using GP-based change detection, sequential
code requires about two days to process this data. We
developed efficient and parallel techniques using shared
and distributed memory models which make it possi-
ble to apply this technique for continuous monitoring of
biomass at regional scales. However, further research
is needed to scale these algorithms for daily temporal
resolution at continental scales by utilizing the mod-
ern computing infrastructure consisting of data stag-
ing and intelligent I/O techniques. Modern computing
architectures can be leveraged for spatial computation,
especially GPU and cloud computing. However, there
are several challenges that need to be addressed be-
fore these technologies can be widely adopted. For ex-
ample, in our experiments, widely used Gaussian Mix-
ture Model (GMM) based clustering scaled upto 70x on
GTX-285 GPU (240 CUDA cores, 1 GB), but the main
bottleneck is I/O (data transfer between host and de-
vice memory). On the other hand, many spatial com-
putation tasks are not amenable for simple data par-
allelization. For example, consider the clustering of a
large image (or set of images) stored in a distributed file
system (e.g., HDFS). GMM clustering requires costly
exchange of data samples between the nodes. We de-
veloped a novel distributed clustering algorithm (Fig-
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ure 4) which estimates local models from the data
available at each node (map task) and computes global
model (reduce task) by just exchanging the model pa-
rameters. This clustering algorithm is shown to scale
linearly in terms of nodes. Further research is needed
for efficient data partitioning.

Pair-wise 
KLDivergence 	  

Partition and 
Distribute 

Map 

Reduce 

Local Models 

Global Model 

Figure 4. Distributed GMM Clustering Algo-
rithm

5 Conclusions

Big spatiotemporal data, though opening up new
applications, posing several challenges. New ap-
proaches are required to overcome both computational
and I/O challenges, and new models that explicitly
model spatial and temporal constraints efficiently.
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1 Introduction
Contemporary information and data rich applications often have to be integrated with spatial features. In this posi-
tion paper, we illustrate the research challenges that arise in integrating spatial features in data-centric applications.
Our intent in presenting these case-studies is to underscore the importance of spatial feature integration as well as
demonstrate that this integration gives rise to significant complexity. Given that location and time information will
be an integral feature of all end-user devices, it is imperative that there is a systematic exploration of research and
development challenges in the area of spatial computing.

2 Location-based Services
The last few years have witnessed a significant increase in hand-held devices becoming location aware with the po-
tential to continuously report up-to-date location information of their users. This has led to a large number of location
based services (LBS) which customize a user’s experience based on location. Some applications—such as customized
recommendations and advertisements based on a user’s current location and history—have immediate economic in-
centives, while some other applications—such as location based social networking or location aware gaming—enrich
the user’s experience in general. With major wireless providers serving hundreds of millions of subscribers [wir10],
millions of devices registering their location updates continuously is quite common. Database management systems
(DBMS) driving these location based services must therefore handle millions of location updates per minute while
answering near real time analysis and statistical queries that drive the different recommendation and personalization
services.

Location data is inherently multi-dimensional, minimally including a user id, a latitude, a longitude, and a time
stamp. A rich literature of multi-dimensional indexing techniques—for instance, K-d trees [Ben75], Quad trees [FB74]
and R-trees [Gut84]—have empowered relational databases (RDBMS) to efficiently process multi-dimensional data.
However, the major challenge posed by these location based services is in scaling the systems to sustain the high
throughput of location updates and analyzing huge volumes of data to glean intelligence. For instance, if we consider
only the insert throughput, a MySQL installation running on a commodity server becomes a bottleneck at loads of tens
of thousands of inserts per second; performance is further impacted adversely when answering queries concurrently.

On the other hand, Key-value stores, both in-house systems such as Bigtable [CDG+06] and their open source
counterparts like HBase [hba10], have proven to scale to millions of updates while being fault-tolerant and highly
available. However, Key-value stores do not natively support efficient multi-attribute access, a key requirement for the
rich functionality needed to support LBSs. In the absence of any filtering mechanism for secondary attribute accesses,
such queries resort to full scan of the entire data. MapReduce [DG04] style processing is therefore a commonly used
approach for analysis on Key-value stores. Even though the MapReduce framework provides abundant parallelism, a
full scan is wasteful, especially when the selectivity of the queries is high. Moreover, many applications require near
real-time query processing based on a user’s current location. Therefore, query results based on a user’s stale location
is often useless. As a result, a design for batched query processing on data periodically imported into a data warehouse
is inappropriate for the real-time analysis requirement.
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Figure 1: Architecture of MD-HBase.

RDBMSs provide rich querying support for multi-dimensional data but are not scalable, while Key-value stores
can scale but cannot handle multi-dimensional data efficiently. Our solution, called MD-HBase, bridges this gap by
layering a multi-dimensional index over a Key-value store to leverage the best of both worlds.1 We use linearization
techniques such as Z-ordering [Mor66] to transform multi-dimensional location information into a one dimensional
space and use a range partitioned Key-value store (HBase [hba10] in our implementation) as the storage back end.
Figure 1 illustrates MD-HBase’s architecture showing the index layer and the data storage layer. We show how this
design allows standard and proven multi-dimensional index structures, such as K-d trees and Quad trees, to be layered
on top of the Key-value stores with minimal changes to the underlying store and negligible effect on the operation of
the Key-value store. The underlying Key-value store provides the ability to sustain a high insert throughput and large
data volumes, while ensuring fault-tolerance and high availability. The overlaid index layer allows efficient real-time
processing of multi-dimensional range and nearest neighbor queries that comprise the basic data analysis primitives
for location based applications.

We evaluated different implementations of the data storage layer in the Key-value store and evaluate the trade-offs
associated with these different implementations. In our experiments, MD-HBase achieved more than 200K inserts
per second on a modest cluster spanning 16 nodes, while supporting real-time range and nearest neighbor queries with
response times less than one second. Assuming devices reporting one location update per minute, this small cluster can
handle updates from 10 − 15 million devices while providing between one to two orders of magnitude improvement
over a MapReduce or Z-ordering based implementation for query processing. Moreover, our design does not introduce
any scalability bottlenecks, thus allowing the implementation to scale with the underlying Key-value data store.

3 Spatio-temporal Trends in Online Social Networks
Information that is shared in a social network may have certain semantic properties such as the location and time. For
instance, one might be interested to know the trends in California alone or short/long term trends . Such queries cannot
be answered using trends analysis at the scale of the entire network. Therefore we believe there is a need for trend
definitions that explore such dimensions. Our belief is also supported by the growing body of research in this field
[TLP+08, SST+09].

Spatial trends can be defined in various ways. For instance, the goal can simply be to detect heavy hitters for
each location. However, such a technique fails at identifying topics of true geographical nature since a topic of global
importance incidentally also has a high frequency of occurrence in various localities without really being related to
such locations. Distinguishing such a topic from ones that are trending in only certain localities is not possible without
considering the correlations between places and topics. Therefore, we need to focus on the problem of identifying the
correlation of information items with different geographical places. We propose GeoWatch: an algorithmic tool for
detecting geotrends in online social networks by reporting trending and correlated location-topic pairs. GeoWatch also
captures the temporality of trends by detecting geo-trends along a sliding window. With the use of different window

1The name MD-HBase signifies adding multi-dimensional data processing capabilities to HBase, a range partitioned Key-value store.
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(a) Tweets in Cities (b) Tweets about Cities

Figure 2: Heat Map for # of tweets in/about cities of the world
sizes, trends of different time granularity can be detected. Our analysis on a Twitter data set shows that such geo-trend
detection can be very important in detecting significant events ranging from emergency situations such as earthquakes
to locally popular flash crowd events such as political demonstrations or simply local events such as concerts or sports
events. The fast detection of emergency events such as the March 11 Japan earthquake indicates the possible value of
GeoWatch in crisis management. In Figure 2, we present a heat map of tweets for a period of approximately 2 months
of tweets (March 9 to May 8, 2011). More particularly, we capture the volume of tweets originating from various cities
in Figure 2(a) and tweets about cities in Figure 2(b). In these plots, every city associated with more than 10 tweets is
marked– color and size is proportional to the number of tweets. Our approach helps identify various characteristics
of the social network usage. The two figures resemble each other but there are certain interesting distinctions. It is
worthwhile to note that the part of the map corresponding to Japan is denser in Figure 2(b). This is mostly due to
the Japan Earthquakes that took place within the time period captured in our data set. This important event spanned a
long time period due to the after effects and was an important headliner, making it a trending topic in Twitter. On the
contrary, a drop in significance can be observed for countries such as Indonesia when comparing the tweets in cities
to tweets about cities. This big difference originates from the fact that Indonesia is a highly active country for Twitter
[ind], while there are no important events taking place in its cities that would result in people mentioning them.

Formally, given a stream S of location-topic pairs of the form (li, tj), a window size of N , and three user defined
frequency thresholds θ, φ, and ψ in the interval [0, 1]; our goal is to keep track of all locations li s.t. F (li) > �θN�
alongside their frequencies as well as all topics tx and their frequencies F (tx). In addition, in order to detect the
correlations, we aim to find all pairs (li, tx) s.t. F (li) > �θN�, F (li, tx) > �φF (li)�, and F (li, tx) > �ψF (tx)�;
where F (li, tx) is the number of information items on topic tx from location li in the most recent N items in S; F (li)
is the aggregate number of occurrences of all the items from li in the current time window; and F (tx) is the aggregate
number of items on tx. The window size can be set in terms of maximum number of elements or an actual time
window such as an hour or a day. In the latter case, the number of elements N in the current window is variable.

We now explore a sketch-based structure for GeoWatch to detect correlations between locations and topics. As
can be seen from Figure 3, GeoWatch consists of two main components. Location-StreamSummary-Table contains
a StreamSummaryli structure for each location li that has a current estimated relative-frequency of at least θ. In
order to provide a solution in a sliding window where deletions as well as insertions of elements need to be supported,
Location-StreamSummary-Table also needs to include a sketch structure. This sketch structure is maintained to keep
track of frequencies of locations in a sliding window by allowing both insertion and deletion operations [JQS+03].
In general GeoWatch uses sketches to keep track of the frequencies of tracked elements. The second component
is the Topic-StreamSummary-Table, a hash table that monitors the topics that are potentially correlated with at least
one location and a sketch structure to keep track of the topic frequencies. For each tracked topic this structure also
keeps track of the number of locations the topic is trendy for. Once this value reaches 0, the topic is removed from
Topic-StreamSummary-Table.

Spatial properties of trends are crucial to capture many trend detection problems. One of the challenges associated
with trend detection in general is the large number of possible topics. This problem intensifies in the case where we
introduce yet another dimension of space. In the same vein, detecting spatial trends at different temporal granularities
poses another challenge in the context of this type of analysis. Indentifying topics that suddenly become popular, i.e.,
a topic that is not necessarily a heavy-hitter in the traditional sense but exhibits a sharp increase in frequency over a
short period of time poses another challenge. Solutions to discover such trends, it is necessary to consider bith the
frequency and temporal order of elements in a data stream.
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Figure 3: Overview of Data Structure: The two main sub-components are Location-StreamSummary-Table (on the left)
and Topic-StreamSummary-Table (on the right). Location-StreamSummary-Table keeps track of φ-frequent topics for
each of the θ-frequent locations. Topic-StreamSummary-Table keeps track of ψ-frequent locations for each topic that is
φ-frequent for at least one location. Here the third most important topic for Loc1 is T2 and the second most important
location for T2 is Loc1

4 Discussion
Spatial computing is likely to pay an important role in a variety of applications. With our reliance on Navigation sys-
tems and maps, next-generation transportation system will greatly benefit from a tighter integration of spatio-temporal
data and computing. Similarly, as latency-sensitive applications such as distributed gaming, many-to-many interactive
video applications, and synchronous multi-user sessions in online social networks become prevalent, the traditional
cloud computing platforms will likely integrate computing, storage, and networking resources at the network edge. In
this context, the integration has to be not only be based on network metrics such as latency and bandwidth but also
on the basis of spatial metrics such location of the resource. Our preliminary investigation indicates that this poses a
formidable research and development challenge.
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There has been a tremendous investment in spatial computing from both academia and industry, yet, 
from two different angles.  While they trust their fellow researchers in academia and rest assured that 
industry will benefit from the topnotch research, industry professionals are held accountable for helping 
set up the right stage for research. Industry provides real world challenges for research. Industry builds 
systems, services and tools to help researchers scale their effort to the appropriate level. Finally, 
industry shoots for opportunities to productize research.  

Spatial computing has been advanced by the state of the art technologies in GPS devices and wireless 
communications. These technologies enable the real time streaming of location data. Hence, spatial 
computing would be advanced even more by the investment in software systems that monitor, process 
and analyze streams of location data. This paper addresses the ongoing effort at Microsoft to build such 
a system. This paper raises awareness of the Austin project and its Ingress Data Layer within the spatial 
community. The Austin project provides the system, the services and the tools for researchers so that 
their effort in advancing the field is magnified. 

Background 
Microsoft StreamInsight [1, 2] is a platform that supports building Complex Event Processing (CEP) 
applications. It allows analyzing streaming event data at high throughputs from multiple sources with 
low latency. Its computations are event-driven, such that results are delivered instantaneously in near-
real time.  

Ali et al [3] present two approaches (the extensibility approach and the native support approach) to 
enable spatiotemporal query processing in DSMSs and, more specifically, in StreamInsight. The 
extensibility approach has been further investigated [4, 5, 6] to extend StreamInsight with the 
capabilities of the SQL Server Spatial Library [8]. Using the extensibility framework proposed by Ali et al 
[7], incremental streaming-oriented versions of spatial operators are developed and integrated with the 
query execution pipeline. 



Project Austin 

 

Figure 1. High level architecture of Project Austin and Ingress Data Layer. 

Project Codename “Austin” makes Microsoft StreamInsight’s complex event processing capabilities 
available as a service on the Windows Azure Platform (Figure 1). This allows Microsoft’s customers and 
partners to build event-driven applications where the analysis of the events is performed in the Cloud. 
Such a deployment becomes relevant in scenarios where event data needs to be collected from globally 
distributed assets or equipment such as connected cars and cell phones.  The output of the event 
processing is also consolidated and made globally available.  

Project Austin also addresses the needs of customers to scale out and to deal with distributed systems 
with occasional loss of connectivity. Customers will be able to monitor, collect telemetry and gain real-
time insights from highly distributed assets such as mobile devices, process and control devices & 
manufacturing robots, etc. Instead of pulling data into an on-premise analytics environment and then 
possibly distributing it again, it can be processed in the Cloud using StreamInsight’s event-driven 
computation framework, providing cloud computing benefits for many application scenarios. Beyond 
the core StreamInsight functionality, Austin will provide built-in connectivity to common data sources 
and sinks (Azure Storage, SQL Azure) with a consistent developer experience, deployment experience, 
manageability and monitoring experience. 

The Ingress Data Layer gives the ability to collect data from a wide variety of client devices and is a key 
value proposition of Austin. Data ingress functionality in Austin leverages the ubiquity of HTTP 
connections and can accept any HTTP request (GET, PUT, POST). Data ingress endpoints can also accept 
and de-serialize OData encoded payloads, based on a .NET type description. The variability of endpoints 
would enable a wide range of communication protocols (REST, XML, JSON) to co-exist and to interface 
with Austin. In parallel to the event-processing pipeline, Austin allows for the recording of the raw data 
stream into Azure blob storage for off-line processing, replay, and data mining. 



Project Goals 
The high level project goals can be summarized as follows: 

Connectivity. Real time data collection from connected devices (Servers, Tablets, Phones) through 
standards compliant endpoints (REST, XML, JSON) with the ability to enrich and transform data (e.g., 
geo-tagging). 

Analytics. Rich temporal analytical models through dynamic, flexible query and data management 
experience. 

Scale. Multi-tenant cloud service with flexible, elastic capacity and federated scale out collection and 
analytics. 

Security. Secure data transfer through secure endpoints and secure storage of data. 

Monitoring. Automatic restarting of Austin instances and analytics upon node failures with notifications, 
alerting and explorative Troubleshooting.  

Tooling. Logging and tracing infrastructure for user code through diagnostic tools and frameworks. 

Uptime. Higher availability through redundant instances. 

Spooling. Enabling historical data analysis and replay through archives of raw received data in Azure 
Storage. 
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Challenges for Very Large Graphs 

Dr. Siva Ravada, Oracle Spatial 

Graphs are rapidly becoming the next big challenge in the spatial DB industry. Graphs can be found in 
simple road navigation applications to finding connectivity patterns in social networks. Graphs have a 
very simple representation to model very complex relationships. And the general graph tracing and path 
computation algorithms are very well understood. But the size of today’s graphs makes it hard to scale 
the traditional solutions to new and emerging applications. A graph that is familiar to most Spatial 
database experts is the road network. Traditionally, the graphs are used in road network navigation are 
built on a static road network. With the proliferation of mobile devices, various classes of dynamic 
content like traffic can now be added to the road network. The complexity of graph tracing algorithms 
increases with the addition of this dynamic content to the road network. In addition to this dynamic 
content, some road networks can also be augmented with historical traffic patterns which can be used 
in the navigation systems. This adds the temporal element to the graph tracing algorithms.  In the social 
networks world, the graphs tend to be much larger in size,  and with more complexity in terms of 
connectivity. In this paper, I describe 3 graph problems which are very challenging due to the size and 
complexity of the graphs. 

Multi-Modal Network Tracing: Spatial Graphs are very common in today’s mobile and navigation 
systems. In addition to the complexities described above, there are new requirements from the industry 
for multi-modal networks where a single logical network can be used to navigate across multiple 
transportation networks.  For example, a user might want to find the best possible way to go from an 
address in Boston to an address in San Francisco. Such a trip would span at least 2 different types of 
transportation modes (Car to and from the airport and the flight). If the person wants to take the public 
transportation to and from the airport, there will be another mode of transportation added to the mix. 
With mobile devices, sometimes the users want to include foot paths along with some type of public 
transportation in finding the shortest path. And when you include public transportation or commercial 
flights, you also need to consider the temporal aspect of these systems. Thus finding a shorted path 
would need to consider different modes of transportation in addition to the published time tables for 
these transportation systems. And this gets even more complex if you add the historical time delays and 
traffic patterns to the network. A route finding system should be able to consume all of these types of 
input to find the best possible route between two points. With the current systems, there is no standard 
way to represent all of these types of transportation systems and the corresponding temporal data 
associated with them. There is a strong requirement to define a data model that can capture all the data 
in such a system. There is also the requirement to define standards so that different transportation 
systems can exchange the temporal information like time tables and delays with a route guidance 
system. 

Network Analysis with Map-Reduce:  Data is growing very rapidly to increase the sizes of these graphs.  
Network tracing algorithms combining most of these different types of attribute (as described above) 
data are available today. But the biggest drawback of most of these existing solutions is that they are all 



memory based solutions. That is, all the network data has to be loaded into memory before the network 
tracing algorithms can be executed. There are some solutions where this memory management is 
handled by the system (Oracle Spatial Network Model) so that only portions of the network are loaded 
into memory while doing the network analysis. This still poses problems when the networks are large 
and the latency of loading different parts of the network into memory is much more expensive than the 
actual network tracing cost. With clustered systems where many machines can be used to solve a 
problem, the total memory of a system is usually sufficient to hold most of the network in memory.  
With several nodes in a cluster, different nodes can hold different pieces of the network in memory. And 
if there are enough nodes, the whole network can be kept in memory.  With the advent of Hadoop and 
other map reduce technologies,  these clustered systems can be easily programmed to solve different 
tasks. But this architecture is not suitable for solving network tracing type problems as many of these 
algorithms assume the whole network can be accessed in one place. So there is real need to develop 
map reduce based algorithms for network tracing applications. For example, a network tracing algorithm 
like A* can be done in such a way that each node in the cluster solves part of the problem and the 
reduce phase can be used to combine these partial traces to build a complete solution. Some problem 
like finding all pairs shortest paths, network clusters are more suitable for these map reduce 
environments. While some others like single source single destination shortest path are not harder to do 
in map reduce environments. Thus this provides a very challenging opportunity to build new algorithms 
for solving these complex problems on a very commonly used platform. 

Visualization: Network visualization is one area that has been neglected by the industry. All the existing 
network visualization technologies work very well for small networks (with thousands of nodes and 
links). But once the networks grow to be millions of nodes and links, there are no solutions available for 
visualizing these networks. Consider the well known facebook social network map.    

 

Source: http://motherboard.vice.com/2010/12/14/facebook-world-a-map-of-the-social-graph 



This is a network with 10 million nodes and many more edges. But this is a static map. Imagine the 
possibilities if this map can be made interactive so that when you click on a link, you can get other 
attribute data about each of those links. For an interactive visualization application, this amount of data 
is not practical. So we first need a way to abstract (aggregate) the representation for this large network.  
This is similar to the aggregation concepts used in normal maps where the small scale maps show less 
detail and large scale maps show more detail. We need the ability to create aggregate representations 
for large (spatial and non-spatial) networks.  The typical requirement is to be able to drill down a 
network when users click on certain links and get a more detailed view of the network. This can apply to 
both the links and nodes. That is, both links and nodes have to be aggregated to provide a concise 
representation of the large network. Since these networks tend to be very dynamic, these aggregation 
methods should be aware of such changes as well. For a given Spatial network, such aggregation 
methods may be able to use existing Spatial clustering techniques. But for a logical network, this 
problem is much harder to solve. 

 

 

 



Managing Competition in Spatial Computing 
Ouri Wolfson,  

University of Illinois, Chicago 

A lot of work has been devoted to collaboration among distributed computing devices. Sensor networks 
and crowdsourcing are prominent examples of distributed collaborative computing. Much less attention 
has been paid to competition among computing devices, particularly competition for space. An example 
of such competition is drivers, guided by their smartphones, attempting to park; they are competing for 
a limited number of parking spaces. Similarly, car navigation systems compete for road space, 
commuters compete for seats on a bus, taxi cabs compete for customers, and customers compete for 
taxi cabs. In other words, spatial competition abound.  
 
In this paper we use parking to illustrate the challenges of information systems that manage spatial 
competition. Cruising for parking by driving around an urban area looking for available parking slots has 
been shown to be a major cause of congestion. For example, studies conducted in 11 major cities 
revealed that the average time to search for curbside parking was 8.1 minutes and cruising for these 
parking slots accounted for 30% of the traffic congestion in those cities (see [1]). This means that each 
parking slot would generate 4,927 vehicle miles traveled (VMT) per year [2]. That number would of 
course be multiplied by the number of parking slots in the city. For example, in a big urban city like 
Chicago, with over 35,000 curbside parking slots [5], the total number of VMT becomes 172 million 
per year due to cruising for parking. Furthermore, this would account for waste of 8.37 million gallons of 
gasoline and over 129,000 tons of CO2 emissions.  
 
The proliferation of mobile devices, location-based services and embedded wireless sensors has given 
rise to applications that seek to improve the efficiency of the transportation system. In particular, new 
applications to help drivers find parking in urban settings are becoming available. For example, wireless 
sensors embedded in parking slots are used to detect the availability of slots in some area, and the 
locations of currently available parking slots are disseminated to the mobile devices of drivers that are 
looking for parking in the area. A municipality that uses sensors embedded in the streets is San Francisco 
(see SFPark [3]). When a user is looking for parking in some area of the city, the application shows a map 
with the marked locations of the open parking slots in the area.  
 
We propose that smartphone apps that navigate drivers to parking slots be developed. Furthermore, 
they have a focus on a conceptual gap between two notions of parking, which is a spatio-temporal 
matching between mobile agents (drivers) and spatial resources (parking slots). The two matching 
notions are optimality and equilibrium. Ideally, we would like the matching to be optimal, i.e. minimize 
the total time driven to park by all vehicles. However, achieving this optimality requires a central 
authority that can eliminate competition by dictating the slot in which a driver should park, even if that 
driver can do better. Figure 1 below illustrates this point by an example.  
 
 
 
 

s2 

s1 

v1 v2 

5 

8 

1 

2 



Figure 1: A parking example with two vehicles and two parking slots 
 
Suppose that the edge labels represent travel times in minutes, i.e., vehicle v1 is 1 minute away from slot 
s1, 2 minutes away from s2 and so forth.  To achieve minimum total driving time, v1 will have to park in 
s2, and v2 will have to park in s1. This parking configuration, called minimum, has a total time of 7 
minutes.  However, this requires v1 to drive to a farther slot, s2, i.e. an inferior slot from her point of 
view because s1 is closer. There is no central authority that can dictate this parking configuration to v1. If 
v1 drives to s1 (and captures it since she is closer than v2), then v2 must settle for s2. The total driving 
time of this configuration, called equilibrium, is 9 minutes, i.e., higher than the minimum. However, in 
an equilibrium configuration no driver d can unilaterally deviate and improve d's cost. In other words, if 
there is no competition then v2’s parking app should navigate her to s1, the closest slot; whereas if there 
is competition from v1, the app should navigate her to s2. This means that the parking app P should 
navigate differently in the face of competition for spatial resources. Furthermore,  P usually does not 
know whether there is competition, and where the competing devices are located. In [4] we introduced 
a method of competitive parking, Gravitational Parking, that is provably superior to the one that simply 
goes to the closest slot, i.e. ignores competition. The superiority reaches 30%. This means that the price 
of using a noncompetitive algorithm in competitive situations in Chicago would be 25 million 
Vehicle/miles traveled per year, over 1.2 million gallons of wasted gasoline, and over 19,000 tons of CO2 
emissions. 
 
Gravitational Parking works by having a vehicle be “attracted” to available parking slots, i.e., slots 
applying a “gravitational force” on vehicles. Each force is represented by a vector, and the vehicle moves 
in the direction of the vector-sum of the forces. This means that the vehicle v does not always pursue an 
available parking slot because the slot may become unavailable by the time v reaches it. Instead, it  
moves in a general direction that is promising in the sense that contains multiple available slots.  Figure 
2 shows the gravitational force field generated by five available slots. The arrows represent the direction 
in which a vehicle will move when it is located at the start point of the arrow, and the small dots 
represent the slots. This diagram indicates how vehicles move across the map when using Gravitational 
Parking, and it shows that they will eventually converge to a slot. 

 
Figure 2: Field force generated by 5 slots 

 



How should Gravitational Parking be extended to account for competition in routing? In other words, 
the shortest-distance path to a destination is inferior if it is congested. And a shortest-time path will also 
be inferior if many drivers are led to it by their car navigation systems. This situation becomes 
increasingly likely as car navigation systems with traffic information proliferate, leading to the 
phenomenon called herding.  Similarly, what is the equivalent of Gravitational Parking in competing for 
other spatial resources? To address these questions we propose competition management as research 
direction for the emerging spatial computing community. 
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Introduction 
Fusion of spatiotemporal data is a difficult process that is often required for many of today’s data-
intensive spatial computing applications [1].  While much work has been done in this area, the problem 
has not yet been fully addressed.  In fact, given the continuing proliferation of geospatial data, data 
fusion is both more complex and more urgent.  For example, data collection and analysis workflows can 
feed into each other, with each stage of the process generating data products which must be managed, 
converted to different formats, and fused together for the next stage.  Figure 1 shows an example of a 
cyclic, data-intensive workflow framework for collecting, processing, exploiting, and disseminating 
spatiotemporal data.  Opportunities for data fusion should be explored at each of these stages.  

 

Figure 1.  Example of a cyclic, data-intensive spatiotemporal application workflow framework 

Data Fusion Approaches and Challenges 
There is no single, best approach to spatiotemporal data fusion that will solve all spatial computing 
problems.  A key preliminary step is specifying and gathering appropriate data to be fused.  Fusion can 
be accomplished directly by combining data products or indirectly by using them as a part of a 
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knowledge discovery process.  In order to illustrate the varied nature of data fusion and the inherent 
difficulties and requirements, we discuss several data fusion problems, along with approaches 
implemented at the University of Alabama in Huntsville’s Information Technology and Systems Center 
(ITSC), for projects funded by NSF, NASA, NOAA, DoD, DoE, and other agencies. 

Preliminary Data Fusion 
A preliminary aspect of data fusion is the process of gathering multiple observations or models of the 
same geophysical area or spatiotemporal phenomenon.  To streamline the timely delivery of targeted 
data to users and processes, ITSC has prototyped an Event-Driven Data Delivery (ED3) system that 
provides users the ability to subscribe for the delivery of specific data products, triggered by the 
occurrence of a specific event.  For instance, a weather researcher might want to subscribe for the 
automatic delivery of several observational datasets based on the occurrence of a tropical storm in the 
Gulf of Mexico.  ED3 is able to “listen” for occurrences of matching events based on advisories issued by 
the National Hurricane Center and then initiate the requested data retrievals, processing, packaging and 
notification of the user that the data is ready for pickup.  This approach is applicable to any events with 
spatial and temporal characteristics and can greatly shorten the time involved with accessing and 
utilizing data for analysis and decision making.  ED3 performs the first stage in spatiotemporal data 
fusion, acquiring and staging temporal and spatially matched data that can be used for further analysis. 

Challenges in this area include: 

 Further automating the acquisition of relevant data, 
 More intelligent and precise data selection, 
 More widely available preprocessing capabilities to subset, subsample, regrid, and/or reformat 

data in preparation for subsequent fusion and analysis. 

Direct Data Fusion 
Data can be combined or fused at a variety of levels, from raw observations to features within the data, 
to decisions inferred from the data.  Raw sensor data level fusion requires the sensors to be observing 
the same phenomena. These fusion techniques involve statistical methods such as principal component 
analysis, band ratios within spectral data, etc.  Feature level fusion involves extraction of representative 
features from the sensor data.  These features, extracted from multiple sensor observations, are 
combined into a single feature vector, which is then input into pattern recognition tools such as 
classifiers.  Decision level fusion involves fusion of sensor information after each sensor has made a 
preliminary determination of a phenomenon’s identity, location and attributes.  The best approach to 
take depends on the properties of the data sources and the application.  A set of broad capabilities is 
required in order to accommodate the varied nature of the data and applications.   

GLIDER [2] was developed as an integrated geospatial image display and analysis framework with data 
mining [3] and workflow capabilities, and has been used to support research for NASA, DoD, and DoE.  
As part of GLIDER, ITSC has developed data fusion approaches for geospatial imagery that allow co-
location of imagery of different projections or geographic grids.  Imagery from different physical sources 
can be fused together as either a common grid or a common native sensor view.  This approach allows 
for one image to be transformed, matching the other without transforming both images into a standard 
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projection model, minimizing resolution degradation and preserving the original swath view of the 
data.  The software also supports gridding imagery to a common projection.  Combined with ED3, 
GLIDER allows an analyst to import, manage, process, and analyze data from a variety of sources.  

Challenges to direct data fusion include: 

 Proliferation of data formats often requires custom software interfaces and makes data import 
and fusion difficult 

 Varying sensor properties (orbital characteristics, spatial resolution, projections, etc.) require 
sophisticated software for spatial reprojection of data 

 Reprojection is computationally expensive and can result in loss of spectral information 

Indirect Data Fusion 
In some cases, there may be observations of a particular phenomenon that are fundamentally 
incompatible with one another, making it impossible to directly combine the observations.  In other 
cases combining the observations may simply be undesirable due to large differences in spatial or 
temporal resolution.  A model-based approach to sensor fusion may be appropriate in these cases.  In 
this approach, a model is constructed for the objects or phenomena of interest that describe the 
possible states of those phenomena.  Models are also constructed for each type of sensor to reflect the 
expected range of values for each sensor for given object states.  For example, the maximum likelihood 
model works by exploring the space of possible object states and finding the one that is the most likely 
given the set of observations.  The observations from the highest fidelity sensors are naturally weighted 
more highly than those of low fidelity sensors.  General purpose search techniques such as stochastic hill 
climbing, simulated annealing and genetic algorithms are used to generate candidate object states.  
Each state generated by the search procedure is then evaluated using the state and sensor models to 
see how likely it is given the actual observations. 

An example of the model based maximum likelihood approach has been used in the Vantage tool [4] for 
tracking of aircraft.  Vantage contains models for various classes of sensors.  Each of the sensor classes 
has different properties, which makes direct fusion difficult.  All sensor models have probabilistic 
detection based on the range to the target and its properties such as radar cross-section or infrared 
signature, as appropriate to the sensor.  Using the maximum likelihood model approach to data fusion, 
the Vantage system is able to track aircraft in real time. 

Challenges to indirect data fusion include:   

 Indirect fusion requires integration of powerful visualization and analysis software  
 Algorithmic analysis is problem specific so a method for encapsulating analysis workflows is 

needed 
 Visual analysis tools are needed to evaluate and refine results 

Progress toward a Data Fusion Framework 
In an approach that combines direct data fusion with decision level or indirect fusion, ITSC is 
investigating techniques for correlating and fusing data from a number of disparate data sources in 
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order to provide improved information on characteristics of phenomena.  Examples of the types of data 
that could be used include are infrasound data, overhead remotely sensed measurements such as 
environmental data, weather satellite imagery, infrared observations, and telemetry.  The technical 
objective of this research is to demonstrate an analysis framework and techniques for integrating these 
data sources, resulting in an improved understanding of events of interest.  Spatiotemporal imager data 
of different spatial resolutions must be fused together and analyzed in conjunction with vector-based 
data in a 3D geospatial domain.  This analysis requires not only fusion, but also 3D visualization and 
analysis capabilities.  The Globally Leveraged Integrated Data Explorer for Research (GLIDER) is being 
used as the visualization, fusion, and analysis framework for this study. 

Conclusions 
Data fusion is a complex and difficult problem that has not been fully addressed.  Both direct and 
indirect data fusion approaches are needed to solve specific problems, depending upon the properties 
of the data sources and the application.  GLIDER and other tools developed at ITSC represent progress 
toward an integrated framework for fusion, visualization, and analysis of data products from a variety of 
remote sensing sources, but much work remains.  ITSC’s involvement in the NSF EarthCube initiative 
informs our work in data fusion and other technologies for data-intensive spatial computing.  For 
example, ITSC researchers played a lead roles in the EarthCube Data Discover, Mining and Access 
(DDMA) community workgroup [5] to create a roadmap, through community consensus, for current and 
future data needs within the geosciences.  Data fusion will likewise be a key set of technologies for NSF’s 
new DataWay initiative. 

References 
[1] Graves, S. and T. Berendes, “Meeting the Challenges of Data-Intensive Science,” IGARSS 2012: 

IEEE International Geoscience and Remote Sensing Symposium, 22-27 July 2012. 
[2] Ramachandran, R., S. Graves, T. Berendes, M. Maskey, C. Chidambaram, S. Christopher, P. 

Hogan, T. Gaskins, “GLIDER: A comprehensive software tool to visualize, analyze and mine 
satellite imagery,” IGARSS 2009: IEEE International Geoscience and Remote Sensing Symposium, 
vol.3, no., pp.III-781-III-784, 12-17 July 2009. 

[3] Rushing, J., R. Ramachandran, U. Nair, S. Graves, R. Welch, H. Lin, “ADaM: A Data Mining Toolkit 
for Scientists and Engineers,” Journal of Computers and Geosciences, Vol. 31, Issue 5, pages 607-
618 (June 2005). 

[4] Lin, H., J. Rushing, S. Graves, E. Criswell, “A data fusion algorithm for large heterogeneous sensor 
networks,” International Conference on Wireless Algorithms, Systems and Applications, Chicago, 
1-3 August, 2007. 

[5] The Earthcube Data Discovery Mining and Access Group, "The DDMA EarthCube RoadMap," 
2012. Available from: https://docs.google.com/document/d/1RtR8A0h0HFhZP9kIPFlfCChFIYLIf-
G-TZMbNSzw58M/edit. 

 



A Study Program in Urban Computing that Leverages Machine Learning and 
Social Media 

N. Sadeh, J. Cranshaw, J. Hong, R. Schwartz 
School of Computer Science 

Carnegie Mellon University 
sadeh@cs.cmu.edu 

 
Abstract 

With the rapid proliferation of smart-phones in recent years and the subsequent rise of 
location-based applications producing and consuming geospatial data about the world 
around us, there is great potential for the development of computational methods that can 
harness this data to solve a plethora of problems, potentially opening a whole new range of 
uses and applications.  Of particular interest is the application of this data towards the goal 
of better understanding the intricacies of the urban landscape.  In this work, we layout a 
program of study in urban computing, which uses new modalities of ubiquitous and social 
computing systems and machine learning to help us better understand the urban 
environment, improve the efficiency of the complex systems that operate it, and enhance 
the well-being of those that live there.  To illustrate the potential opportunities of this field, 
we discuss the Livehoods project, which uses geospatial check-in data to study the 
neighborhood structure of a city.  

 

Introduction 
Large and dense cities are often characterized by their intricacy and by the vast array of 
interdependent complex systems that enable them.  Municipal systems for transportation, safety, 
public health, housing, waste removal, and energy all interact with each other and with the equally 
complex private sector economy to meet the everyday demands of the millions of inhabitants of a 
large city.  At the same time, the forces that shape the movements, preferences, and demands of the 
populous are equally complex; cultural perceptions, economic factors, municipal borders, 
demography, geography, and resources—all shape and constrain how people make use of the 
resources of the city.  Understanding how these opposing dynamic systems—the needs of the 
citizens, and the resources of the city—relate and interact with one another is critical to improving 
the efficiency of the city and the overall well being of those that live in it.  To that end, although 
methodologies for accurately studying the city are essential to improving it, it can be extremely 
difficult to convey the intricate social realities of a city to an outsider.  When outsiders, such as 
researchers, journalists, or city planners, want to learn about a city, it can require hundreds of hours 
of observation and interviews.   Although existing methods offer a way to gather deep insights 
about certain aspects of city life, they can never offer large-scale insights or produce real-time 
analyses of the inner workings of the city. 

 

To illustrate this challenge we offer two examples demonstrating the difficulty of collecting and 
analyzing such data. Our first example is from the perspective of transportation engineers, who 
study how and when people travel [1] to optimize traffic flows and public transportation. This 
information is typically gathered through a Travel Behavior Inventory (TBI) of diaries from 
thousands of people, and GPS from a few hundred over a few days.  However, given the cost and 
effort of data collection, TBIs are only done once every ten or twenty years [3]. Our second 
example is quality of life surveys undertaken in various disciplines such as sociology, urban 
studies, architecture, and by city governments. These surveys are often deployed at the 



neighborhood level and require research assistants to go door-to-door interviewing residents about 
issues related to their daily life, e.g. access to fresh produce. Although this methodology can offer 
deep insight into the socio-economic demands on a region, because of the costs associated, they can 
only ever be conducted on a select few neighborhoods and over infrequent time spans.  

 

The widespread adoption of smartphones and social networks opens the door for a new era of 
urban computing, where large and dynamic collections of public data makes it possible to ask a 
wider range of questions and develop a deeper understanding of urban activity than ever before. It 
also calls for the development of new algorithms and tools to help diverse groups of individuals and 
organizations better understand the urban ecosystem, and find new ways to anticipate and respond 
to the needs of complex and ever-changing urban communities.  More specifically, we argue that 
there is an exciting opportunity for creating new ways to conceptualize and visualize the 
dynamics, structure, and character of a city by analyzing the social media its residents 
generate.   Leveraging such rich sources of data with new and expressive techniques in spatial 
modeling and machine learning will yield new kinds of analytics tools that will let urban planners, 
policy analysts, social scientists, and computer scientists explore how people actually use a city, in 
a manner that is relatively cheap, highly scalable, and insightful. These tools would shed light onto 
the factors that come together to shape the urban landscape and the social texture of city life, 
including municipal borders, demographics, economic development, resources, geography, and 
planning. 

 

 

 
Figure 1. The Livehoods project (www.livehoods.org) allows users to visualize neighborhoods identified by 
clustering public Foursquare check-ins based on measures of social and geographic distance. The product of 
this analysis has been shown to often coincide with the mental maps of local residents and to offer a highly 
scalable way of organically identifying a city’s neighborhoods. 

 

The Livehoods Project 
The Livehoods Project is an urban computing tool that we have built and deployed that exemplifies 
the case for how social and ubiquitous computing technologies can be used to better understand the 
urban environment [2] (see Figure 1). The problem that we've focused on with Livehoods is 
studying the idea of a neighborhood.  There are at least two perspectives one can take in thinking of 
city neighborhoods.  First, you can think of neighborhoods as the area enclosed by fixed boundaries 
set by city and local governments.  These fixed, municipal, historical boundaries are essential to 



providing order to the chaos of the city, serving as a common frame of reference for the various 
people and organizations that operate within a city.  However, the city is always changing, and 
neighborhoods evolve much more rapidly than the boundaries that delineate them do.  Often these 
fixed city boundaries do not necessarily reflect the cultural perceptions people have of the area.  
Our research hypothesis is that the character of an urban area is defined not just by the types of 
places found there, but also by the people that make it part of their daily life. To explore this idea, 
we crawled 18m check-ins from the location-based social network foursquare, and applied 
clustering algorithms that grouped nearby venues into areas (which we call Livehoods) based on 
geographic distance and the particular mix of the people who check-in to them. To evaluate our 
work, we conducted numerous interviews with locals, including city planners, business owners, and 
local residents. We asked them to draw parts of the city that they were most familiar with (before 
they saw our maps), describe characteristics of the areas they were most familiar with, and examine 
the Livehoods that our system generated and offer feedback. In many cases, our Livehoods matched 
the mental models of locals, and also provided new insights about how neighborhoods were 
organized and were changing over time.  Livehoods demonstrated to us the strong demand for 
urban analytics, as well as the power of combining data mining with user-centered design to 
develop tools for diverse stakeholders.  Our long term goal is to extent the various spatial 
computing algorithms currently being used in the construction of Livehoods, so that we can build a 
suite of tools that might be useful to the various stakeholders of the city. 

 

Conclusions 
In this short article, we made the case for a new form of spatial computing that leverages social 
media data and machine learning techniques to overlay socio-economic data on top of traditional 
geographical data. This additional layer of information opens the door to a much richer view of 
spatial information. In particular, in an urban context, social media data allows for the dynamic 
generation of models that combine both geographic information and social information and provide 
dynamic snapshots of activities in a city, ways in which resources are being used at different points 
in time, and more. Combined with historical data, this type of information can be used to spot new 
trends (e.g. changes in patterns of activities, spread of contagious diseases [4], and much more) as 
well as identify one-off events that would otherwise elude identification.  Work in this area will 
lead to new algorithms and metrics for processing and refining large sets of social media data that 
will give insights into various characteristics of a city and its inhabitants.  It will also require new 
algorithms and architectures for managing privacy issues, to minimize the potential for re-
identifying individuals based on the filtered and aggregated data that is made available by our tools, 
and also new methodologies for evaluating and interpreting algorithmic results.  
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As stated in the workshop proposal spatial computing is a set of ideas and 
technologies that will transform our lives by understanding the physical world, knowing 
and communicating our relation to places in that world, and navigating through those 
places. 
  
One important “kind of places” are cities.  Cities are places where people, meet, 
exchange and interact. They bring people with different interests, experiences and 
knowledge close together. They are the centres of culture, economic development and 
social change. They offer many opportunities to continually innovate with technologies, 
from the infrastructures that underlie the sewers to computing in the cloud [1]. 
According to a United Nation report [2] every second the global urban population grows 
by 2 people. Therefore the urban population is expected to increase from 3.6 billion 
people in 2011 to 6.3 billion in 2050. In 2020 more than 700 cities will exists with 
populations of +1million; today we have just 500 cities with populations of +1million. 
The exploding urban population growth creates unprecedented challenges, among 
which provision for water and sanitation are the most pressing and painfully felt when 
lacking [2]. This opens a wide space for spatial computing within future cities. In this 
abstract I focus on the research questions that arise for the area of spatial computing 
within future mega cities.  
 
From my point of view one overarching goal of my spatial computing in the near future 
is to integrate the technological, economic and social needs of cities in ways that are 
sustainable and human-centered. Thereby it provides fundamental enablers for all 
technologies that will be targeted towards increasing the quality of living and lowering 
the barriers for mobility in our future cities. 
 
My own main research interests lie at the intersection of the foundations of human-
computer interaction (HCI) [3], geographic information science (GI-Science), and novel 
interface technologies (e.g. hardware such as stereoscopic displays and depth 
cameras). To address the challenges in this space, I aim to contribute novel HCI- and 
geography-oriented adaptations of methods from ubiquitous computing [4,5] to 
improve the state of the art in the area of intelligent user interfaces (IUI). 
 
In the short position paper I would like to highlight four upcoming research topics the 
from a human-centred perspective that have growing importance within my research 
area: 
 

§ New User Interfaces for Spatial Information [6]: Assuming highly developed 
technical urban infrastructures there is a need of multimodal user assistance [cite 
multimodal] and support within future mega cities. This includes research on 
multimodal navigation systems, as well as on novel augmented reality 
technologies [cite AR paper] to improve human’s daily experiences and activities 
in future cities. 
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§ Big Data: Also this topic is covered within other computer science disciplines it 
will be very important for future cities. In them tons of data will be produced 
every second. To handle this data stream, highly developed infrastructure will be 
needed. In addition efficient and fast algorithms and data processing are needed 
to generate valuable information out of this data [7].  

 
§ User generated geo data and content: In addition to the data, which is coming from 

the technical infrastructure from a city user generated geo data and content will 
have a growing importance. New ways are needed how to incorporate this 
information into current systems and how to prove and constantly check the 
quality and consistence of this information [8,9,10]. 

 
§ Supporting Sustainable behaviour through IT systems: Overall all approaches should 

help citizens adapt their behaviour in order make cities more sustainable involves 
increasing their awareness of how they live and then encourage changing habits, 
at an individual, family, local community and city level. This requires adopting a 
broad unit (ranging from the individual to communities at large) of analysis: 
considering the needs of the individual city dweller, families, whole 
neighbourhoods, councils, and communities at large [11,12,13]. 
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Qualitative	  representation	  and	  reasoning	  in	  the	  context	  of	  big	  
data	  	  

(Position	  Paper	  for	  the	  Spatial	  Computing	  Visioning	  Workshop,	  
Washington	  DC,	  2012)	  

Mike	  Worboys	  
School	  of	  Computing	  and	  Information	  Science,	  	  

University	  of	  Maine,	  Orono,	  ME	  04473	  	  	  	  
	  
This	  position	  paper	  proposes	  qualitative	  spatio-‐temporal	  representation	  and	  
reasoning	  as	  a	  solution	  to	  some	  of	  the	  problems	  posed	  by	  the	  volume,	  diversity,	  and	  
dynamism	  of	  big	  data	  sets.	  It	  has	  long	  been	  recognized	  that	  for	  many	  human	  
activities,	  qualitative	  representations	  provide	  both	  concise	  and	  intuitive	  means	  of	  
moving	  up	  the	  food	  chain	  from	  data	  to	  knowledge	  to	  action.	  For	  example,	  Beck’s	  
1933	  map	  of	  the	  London	  underground	  transport	  system	  was	  a	  topological	  (and	  thus	  
qualitative)	  distillation	  of	  salient	  information	  on	  connectivity	  that	  travellers	  need,	  
abstracted	  away	  from	  voluminous	  and	  irrelevant	  metric	  and	  Euclidean	  information.	  	  
	  
To	  be	  clear,	  by	  a	  qualitative	  representation	  we	  mean	  a	  representation	  or	  model	  of	  a	  
domain	  that	  is	  primarily	  non-‐numerical.	  This	  debars	  representations	  based	  on	  
Euclidean	  space,	  reals,	  rationals,	  and	  large	  integers.	  Included	  are	  representations	  
based	  upon	  set	  theory,	  finite	  topologies,	  graph	  theory,	  and	  natural	  language.	  In	  
general	  terms,	  a	  qualitative	  representation	  can	  provide	  a	  concise,	  relevant,	  and	  
intuitive	  representation	  of	  big	  data	  that	  can	  be	  used	  as	  a	  basis	  for	  decisions	  and	  
maybe	  more	  precise	  quantitative	  analysis.	  To	  be	  useful,	  there	  needs	  to	  be	  an	  
alignment	  s	  between	  a	  domain’s	  qualitative	  representation	  and	  our	  cognitive	  
models	  of	  it.	  Furthermore,	  qualitative	  representations	  need	  to	  be	  complemented	  
with	  appropriate	  reasoning	  and	  computational	  tools.	  The	  topic	  of	  qualitative	  
reasoning	  is	  a	  well-‐established	  branch	  of	  artificial	  intelligence,	  and	  its	  subdomain	  of	  
qualitative	  spatial	  reasoning	  is	  part	  of	  the	  GIScience	  research	  agenda.	  Approaches	  to	  
qualitative	  representation	  and	  reasoning	  are	  usually	  based	  upon	  formal	  languages	  
that	  may	  be	  founded	  on	  ontologies.	  	  
	  
It	  is	  now	  widely	  accepted	  that	  the	  domain	  of	  spatial	  computing	  embraces	  
information	  related	  to	  dynamic	  geospatial	  phenomena,	  and	  thus	  requires	  treatment	  
of	  temporality	  and	  process.	  Furthermore,	  such	  phenomena	  are	  situated	  in	  fully	  
three	  (and	  not	  just	  2.5)	  spatial	  dimensions	  of	  space.	  With	  integration	  of	  diverse	  data	  
sets	  being	  one	  of	  the	  preoccupations	  of	  big	  data	  research,	  we	  should	  also	  include	  a	  
principled	  treatment	  of	  uncertainty.	  Thus,	  the	  vision	  of	  qualitative	  representation	  
and	  reasoning	  needs	  expansion	  to	  cater	  to	  current	  and	  emerging	  requirements.	  
	  
	  
	  



When	  these	  extensions	  of	  qualitative	  representation	  and	  reasoning	  are	  considered	  
in	  the	  context	  of	  big	  data,	  they	  lead	  to	  a	  rich	  research	  agenda.	  The	  overarching	  item	  
for	  research	  is	  the	  development	  of	  expressive	  and	  scalable	  languages	  and	  reasoning	  
mechanisms	  that	  target	  spatio-‐temporal	  phenomena.	  A	  prerequisite	  here	  is	  the	  
principled	  treatment	  of	  spatial	  change,	  including	  3-‐D	  spatial	  change,	  in	  the	  presence	  
of	  uncertainty.	  
	  
While	  the	  development	  of	  such	  scalable	  approaches	  provides	  the	  core	  of	  this	  
research	  area,	  there	  will	  be	  many	  more	  specific	  issues.	  Examples	  of	  such	  more	  
specific	  items	  for	  the	  agenda	  are:	  
	  

1. Investigations	  of	  similarities	  and	  differences	  between	  qualitative	  
representations	  of	  indoor	  and	  outdoor	  spaces,	  vehicular	  and	  pedestrian	  
spaces,	  urban	  and	  rural	  spaces.	  

2. Ensuring	  that	  qualitative	  approaches	  to	  representation	  and	  reasoning	  	  within	  
specific	  domains	  accord	  with	  our	  cognitive	  models	  of	  said	  domains.	  

3. Surveying	  the	  great	  body	  of	  existing	  qualitative	  representation	  and	  reasoning	  
(including	  QSR)	  and	  assessing	  how	  it	  can	  be	  extended	  to	  3-‐D	  and	  dynamic	  
spaces.	  

4. Application	  of	  process-‐algebraic	  methods,	  used	  in	  computer	  science,	  to	  the	  
phenomena	  ranges	  above.	  

5. Investigation	  and	  application	  of	  qualitative	  uncertainty,	  including	  treatments	  
of	  vagueness	  and	  levels	  of	  granularity,	  in	  this	  context.	  

6. Qualitative	  representations	  of	  dynamic	  spatial	  fields	  (two	  and	  three	  
dimensional).	  

	  

Some	  background	  
	  
A	  synopsis	  of	  the	  principal	  elements	  of	  qualitative	  reasoning	  may	  be	  found	  in	  [2].	  
Spatial	  aspects	  of	  qualitative	  representation	  and	  reasoning	  are	  surveyed	  in	  [3].	  
There	  have	  been	  some	  attempts	  to	  integrate	  time	  with	  space	  (see,	  e.g.	  [4	  ]).	  Issues	  
that	  arise	  with	  extremely	  large	  and	  diverse	  data	  sets	  are	  surveyed	  in	  [1].	  Early	  work	  
on	  a	  qualitative	  representation	  of	  dynamic	  fields	  is	  reported	  in	  [5].	  
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