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Abstract
Modern science, technology, and politics are all permeated by data that comes from people, measurements, or computational 

processes. While this data is often incomplete, corrupt, or lacking in sufficient accuracy and precision, explicit consideration 

of uncertainty is rarely part of the computational and decision making pipeline. The CCC Workshop on Quantification, 

Communication, and Interpretation of Uncertainty in Simulation and Data Science explored this problem, identifying significant 

shortcomings in the ways we currently process, present, and interpret uncertain data. Specific recommendations on a 

research agenda for the future were made in four areas: uncertainty quantification in large-scale computational simulations, 

uncertainty quantification in data science, software support for uncertainty computation, and better integration of uncertainty 

quantification and communication to stakeholders.
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Executive Summary 
Overview:

Decisions are increasingly made based on information 

derived from computational simulations or extracted 

and distilled from large collections of data obtained from 

diverse sources. Such information is inherently imperfect. 

Rational decision making is only possible if the level 

of uncertainty in the source data is both known and 

incorporated into the decision making process. Despite 

the importance of dealing effectively with uncertainty, 

existing approaches have significant shortcomings 

that will only get worse. The workshop explored these 

issues and made recommendations for a future research 

agenda that addresses the need for processing and 

presenting uncertainty in data.

Three current trends make it imperative that action be 

taken now. The decisions we must make in multiple 

areas affecting health, safety, and well being are 

increasing in complexity and consequences. The dramatic 

increases in computational resources make far more 

sophisticated models and inference systems possible, 

but increasing system complexity makes it harder 

to quantify and reason about uncertainties in these 

systems. An explosion of available data has taken place, 

providing far more information than previously available 

on which to make decisions, but bringing with it far 

more ways in which that information can be incomplete, 

imprecise, or simply in error.

Complicating the development of better methods for 

dealing with uncertainty is the fragmented nature of 

the workflow and expertise involved. Lessons learned in 

simulation science have yet to be applied to data science. 

Much of the work developing methods for communicating 

uncertainty is poorly integrated with either uncertainty 

quantification or the needs and abilities of decision 

makers or other stakeholders. As a result, success will 

require a broad based multidisciplinary effort, involving 

development of a comprehensive set of foundations for 

representing and communicating uncertainty arising from 

computational processes that accounts for all aspects of 

the problem—including the applications, the numerics, the 

visualizations, the programming languages and computer 

systems, and the comprehension by users—in a holistic, 

systematic manner.

Actionable Recommendations:

The current state of affairs in the quantification, 

communication, and interpretation of uncertainty in 

simulation and data science is creating critical challenges, 

but it also presents important opportunities. Workshop 

participants identified four directions in which the 

research and academic community can have great impact:

◗  There is growing concern that the statistical models 

currently used to quantify uncertainty in the outputs 

of simulations won’t scale, particularly to large, 

heterogenous computations models. This leads to 

a critical need to transition research in uncertainty 

quantification of computational systems from the 

analysis of components to the analysis of large-scale 

systems of interacting components.

◗  The emerging field of data science is largely lacking in 

generalizable methods for quantifying the uncertainty 

in the output of analysis systems. As a result, a major 

new research initiative needs to be initiated in this 

area. Since data science programs are just getting 

established in universities, this effort needs to be 

accompanied by relevant curriculum development.

◗  The increasing use of large-scale computational and 

data-based analyses in decision support and the 

increased importance of considering uncertainty in 

such systems will create substantial burdens for 

software developers. A major new effort needs to 

go in to the building of generally applicable, easy-

to-use software development tools supporting the 

representation and analysis of uncertainty.

◗  The fragmented nature of expertise in quantification, 

communication, and interpretation of uncertainty will 

become more and more problematic as the scale of 

problems, the scale of computational resources, and 

the scale of data continues to increase. It is essential 

that a major new research initiative be undertaken 

in communicating uncertainty about large-scale 

systems to stakeholders in a comprehensive and 

integrated manner.
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1 Introduction
In September 2008, the collapse of Lehman Brothers 

almost brought down the world’s financial system [Effect 

of Financial Crisis 2013]. It took enormous taxpayer-

financed bail-outs to shore up the financial industry, and 

the world economy is still recovering over seven years 

later. Among the many causes that led to the crisis 

was a failure among financial regulators, who relied on 

computational models that did not adequately account 

for the risks associated with contemporary mortgage 

and banking practices and consumer behavior.

In March 2011, an earthquake and subsequent tsunami 

resulted in a nuclear disaster in the Fukushima Nuclear 

Power Plant, resulting an a meltdown of three of the 

plant’s reactors, the evacuations of more than 300,000 

people, the release of nuclear materials into the 

atmosphere, and long-term contamination of land and 

water resources. It is estimated that lingering health 

effects and environmental clean up will last for decades. 

This catastrophic failure happened despite computational 

models that predicted the nuclear facility and its 

surrounding sea walls could withstand a variety of worst 

case scenarios [The Tokyo Electric Power Company].

On the morning of August 29, 2005, Hurricane Katrina 

struck the Gulf Coast of the United States. When the 

storm made landfall, it had a Category 3 rating. It 

brought sustained winds of 100–140 mph and stretched 

approximately 400 miles across. The storm did a great 

deal of damage and its aftermath was catastrophic. 

Levee breaches led to massive flooding and hundreds of 

thousands of people were displaced from their homes, 

causing more than $100 billion in damage. In the days 

prior to the storm, forecasts from the National Hurricane 

Center, aided by computer simulations of the storm, 

predicted the magnitude and position of the storm to 

remarkable accuracy [Katrina Forecasters 2005]. These 

forecasts anticipated a risk to the integrity of the 

levees surrounding the city and warned of “incredible” 

human suffering. By many accounts, these forecasts 

and warnings were not properly heeded by government 

officials and the local populace.

The links between engineered systems and 

computational estimates or forecasts are ubiquitous. In 

October, 1993, static load tests of the C-17 Globemaster 

military-transport plane showed that they failed below 

the required 130% of maximum operating load. This 

necessitated a redesign, costing tens of millions of 

dollars and affecting the load and range specifications of 

that aircraft. The problem was attributed to optimistic 

computational models, which did not properly account 

for uncertainties or unknowns in the complete system. 

In early 2012, cracks were found in the wings of several 

superjumbo, Airbus A380 aircraft, prompting European 

authorities to order the entire fleet to undergo detailed 

inspection. The original design of the A380 wing, the 

potential consequences of the cracks, and the proposed 

structural repairs [A380 Wing Modifications 2013] and 

redesigns were all evaluated using computational models.

Meanwhile, computational models are being used for 

systems at global scales. As scientists, citizens, and 

policy makers consider the impact of human behavior 

on climate and the prospects of a warming planet, they 

rely on sophisticated models of global climate. These 

climate models entail a system of interacting simulation 

components including such diverse phenomena as 

ocean currents, solar flares, and cloud formation. These 

components and their interactions include dozens of 

modeling assumptions and parameters that affect the 

forecasts and their relationships to policy decisions and 

human behavior. In these circumstances, the efficacy of 

the computational models and a full understanding of 

their limitations becomes critical.

The large-scale effects of computer models are 

not limited to physical simulations. As businesses 

and governments take advantage of the very large 

databases, they look for patterns that indicate trends or 

distinct categories of behaviors in complex agents, such 

as systems or people. In many cases, unusual patterns 

are a trigger for further action, and where the stakes 

are high, as in national security, the consequences of 

acting or not acting are significant. Even beyond privacy, 

these data mining paradigms raise concerns among data 

scientists. The inherent properties of large data sets 

and the algorithms for finding patterns will invariably 

lead to the potential for false discoveries—cases where 

large amounts of incomplete or noisy data suggest a 

phenomenon or behavior which may not be true.
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We live in the data age. Modern science, technology, and 

politics are permeated by information that comes from 

people, measurements, or computational processes. Thus, 

most important decisions are made on the basis of data 

that have been processed and presented by computers. 

The greater availability of data, along with the tools to 

acquire, store, and process it, promises more informed, 

objective decision making. However, data are inevitably 

imperfect. They are often incomplete, corrupt, or lacking 

in sufficient accuracy and precision. While consideration 

of these uncertainties would seem essential to rational 

decision making, explicit consideration of uncertainty 

is rarely part of the computational and decision making 

pipeline. Indeed, the opposite is true—data that is 

processed and presented on computers often have an 

implicit connotation of precision and certainty.

It is important to recognize the difference between 

this emerging world of abundant digital data and 

the longstanding traditions of science. Most of the 

great scientists of the past were empiricists, relying 

on observations and measurements made either by 

themselves, or by people known to them and trusted. 

Now, however, the reliability of much of the data on 

which critical decisions are make is unknown. Data 

distributed by government statistical agencies such as 

the Bureau of the Census are well documented, with 

rigorous procedures of quality control. But the vast flood 

of data that is now available from groundbased sensors, 

social media, citizen science, and other unconventional 

sources is rarely well documented, often lacking in 

information about provenance, and unlikely to have been 

sampled according to any recognized sampling scheme. 

Until effective uncertainty quantification is available for 

such source data, the investigator wishing to use such 

data is left with a simple choice: reject the data, or take 

the risk of trusting them; and is unable to offer much in 

the way of confidence limits on the results of analysis.

This white paper addresses the compelling need for 

improved technology to characterize and communicate 

the inherent uncertainties in complex computational 

models and large data sets. The timeliness of this need 

is a consequence of several important, recent trends in 

technology, policy, and human behavior.

The increasing scale of problems.

The first trend in computational modeling is in the scale 

of human systems and their consequences. Not only do 

humans build and operate highly complex systems, their 

effects are widespread. Thus, a single airplane design 

can transport tens of thousands of passengers each 

day. Mortgage regulations in a few countries can affect 

the entire world economy. Nuclear power plants can 

disperse radiation for thousands of miles, making their 

reliability a global concern. Perhaps the most compelling 

example is climate, where policies and human behavior 

have the potential to dramatically change the world for 

centuries to come. As the impacts of decision making 

processes expand, the processes themselves take on 

more complexity, and the demand increases for computer 

modeling to help make informed decisions.

The increasing scale of computational resources.

Another important development that drives the increase 

in complex computer models is the rapid expansion of 

computing resources. Computational power itself has 

expanded by several orders of magnitude over the last 

decade, allowing models such as physical simulations 

to approach a level of fidelity that provides useful, 

credible input into decisions about complex systems. 

Additionally, the algorithms and mathematical models 

that describe the real world have also improved. So, 

while research and development in modeling continues, 

for many applications, modeling technology has crossed 

a threshold of realism and credibility, making it a 

practical, cost effective way to formulate and analyze 

important decisions.

The increasing scale of data.

The third important development in computer modeling 

is the availability and the power of data. As large 

amounts of data become more important in decision 

making, data science is emerging as a distinct 

discipline, with new technologies, opportunities and 

academic programs. While a great many approaches 

have already been developed for data analytics, few 

involve the systematic incorporation of uncertainty 

quantification, which has been a growing part of 

simulation science for the last decade. Thus, there is 
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an opportunity for the field of data science to include 

uncertainty in its fundamentals, in anticipation of its 

increasing role in human decision making.

2 Decisions Involving Uncertainty  
in Data Arising from  
Computational Processes
In planning the workshop and structuring the questions 

and challenges surrounding uncertainty in simulation 

and data science, the organizers developed a flow chart 

of a typical pipeline that characterizes the activities 

associated with computer-aided decision making in the 

presence of uncertainty. Figure 1 shows a diagram of 

this pipeline. On the left we see two boxes representing 

the sources of quantifiable results. For this report, 

we distinguish the two cases of data coming from 

computer simulations (simulation science) and data 

harvested from other sources such as large databases 

(data science). In both cases, analysts and modelers 

examine the output of a model or collection of algorithms 

applied to data. (Increasingly, we are seeing examples of 

simulation science operating on information originating 

from data science methodologies.) The information 

is then communicated to decision makers, and then 

possibly further digested and formatted again for the 

final consumers of the information.

To better understand this process we might consider the 

particular case of hurricane forecasting, as conducted 

by the National Hurricane Center. Meteorologists have 

forecasting models that give predictions of hurricane 

behavior including its future path, intensity, wind speeds, 

and storm surge. [National Hurricane Center 2009]. 

Hurricane forecasts, like many meteorological forecasts, 

typically consist of a collection of forecasts made by 

different computational models, sometimes referred to 

as an ensemble.

An ensemble of forecasts helps to characterize the 

anticipated error or inaccuracy in the set of predictions. 

These ensembles of forecasts are evaluated by 

computational meteorologists for consistency, 

patterns, irregularities, etc. Based on these ensembles 

and experience with the error in previous forecasts, 

modelers, meteorologists, and their supervisors meet and 

decide on the forecasted hurricane track and associated 

uncertainty, which is presented to a wider audience, and 

eventually the general public, as a track forecast cone, 

as shown in Figure 2. Policy makers use these forecasts 

to make decisions about the allocation of resources, the 

implementation of emergency procedures, and informing 

and advising the public. Ultimately, individuals living in 

an affected areas must use these forecasts and the 

associated warnings, orders, etc., to decide on how they 

will prepare and respond.

Figure 1: Data-to-decision pipeline.

Simulation 
Science 

Data 
Science 

Communication Decision 
Making 
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When considering the sources of data, on the left in 

Figure 1, it is important to understand the nature of both 

simulation science and data science, which share some 

common characteristics. For instance, the overall work 

flow is similar. With both, the data needs to be analyzed, 

reformulated appropriately for end use, and then 

communicated to decisions makers. Both cases require 

analyses and formulations of uncertainty that aide 

decision makers. Both cases need ways to represent 

and communicate uncertainty about the results of large, 

complex computational processes.

However, there are some important differences between 

uncertainty in simulation versus data science. Most of 

the uncertainty in simulations results from combination 

of uncertainties or errors in the mathematical models, 

uncertainties in the parameters that underlie those 

models, or inherent variability in natural phenomena 

[National Research Council 2012]. The field of uncertainty 

quantification in simulation and numerical analysis is 

becoming well established as an area of active research, 

with dedicated journals, etc. The field of scientific 

visualization has actively pursued some of the open 

problems and challenges associated with producing 

visual depictions of uncertainty in the often complicated 

outputs of simulations, such as fields of pressures or 

velocities, or geometric paths or surfaces.

The field of data science is generally less developed 

than simulation science in its treatment of uncertainty 

(although here, too, there is active research in the 

area, e.g., [Chatfield 1995; Hammer and Villmann 2007; 

Bendler et al. 2014]). Uncertainties in the analysis of 

large data sets arise directly from the data in the 

form of errors in measurements or inputs, as well as 

missing, incorrect, or incomplete data. Uncertainties 

also arise in the modeling of data in machine learning, 

and result in inherent uncertainties regarding the ability 

of clustering, correlation, regression, classification, 

and other procedures to predict or model unseen data. 

Some of this uncertainty reflects inherent stochasticity 

(as in simulation-based forecasting) in processes being 

modeled or predicted. For instance, when studying 

human behavior, either groups or individuals, one 

would expect limited accuracy because of the inherent 

complexity of humans and incomplete observations. 

In addition to inherent stochasticity, the application 

of modeling or machine learning algorithms to large 

datasets faces important (and exciting) unresolved 

issues in the use of cross validation and testing data,  

with resulting biases and over fitting that limit their 

accuracy on new datasets. Likewise, data modeling 

algorithms include parameter or model choices that 

affect the results, and therefore need to somehow be 

accounted for when these results are used to make 

decisions.

Of particular importance in data science is the effect 

of false positives in analyses of large datasets. Many 

data science tasks entail the detection of particular, 

often unusual events through indirect measurements 

[Chandola et al. 2009]. This would be the case, for 

instance, in certain security applications, where the 

intentions of an individual or group are inferred indirectly 

through patterns of behavior. These behaviors might 

entail certain kinds of communication, purchases, or 

patterns of travel. However, as data sets and number of 

analyses grow larger, the probability of false detection 

increases, thereby leading to uncertainty about whether 

the result of a detection algorithm is actionable, given 

the decision maker’s objectives. The ability to capture 

and communicate information about false detections will 

be an important problem as the applications of machine  

learning to large data sets mature and become more 

widely used.

Figure 2: Track Forecast Cone.
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Uncertainty analysis in data science and simulation 

must ultimately serve decision maker’s needs. Effective 

decision making requires considering uncertainty both 

within and between each step, and then communication 

of relevant information about the reliability of the 

outputs of these processes to decision makers in 

authoritative, comprehensible, and actionable form. 

Uncertainty quantification for computational simulations 

is a maturing discipline, but little study has yet gone into 

the communication of its results.

Data analytics is rapidly becoming far more 

sophisticated and enjoying widespread use, but is still 

largely lacking in well principled methods for quantifying 

and communicating the uncertainty associated with 

the information contained in large data sets. While 

communicating uncertainty to decision makers has been 

studied in the geospatial, visualization, and cognition 

communities, effective and generalizable methods are 

still largely lacking. The field of decision science has 

extensively studied decision making under uncertainty 

[Fischhoff and Kadvany 2011; Howard and Matheson 

2005; Kahneman 2011; Morgan and Henrion 1990; National 

Research Council; O’Hagan et al. 2006], but this work 

has yet to be integrated with either formal uncertainty 

quantification or the explosion of computational 

uncertainty associated with data analytics.

One challenge to addressing uncertainty in data science 

is the relatively new state of the field. That challenge 

also creates an opportunity to shape an emerging field 

so as to accommodate the relevant disciplines from the 

start. Educational programs in data science are just 

now popping up in universities. The increasing demand 

for people trained in data science suggests that their 

number will increase. Thus associated fields such as 

computer science, statistics, and decision science are 

in a position to shape their curricula and influence their 

pedagogy to include training in analytical and behavioral 

aspects of error and uncertainty.

Statistics 
Machine Learning 

Data Mining 

Visualization 

Numerics 
Scientific Computing 

Cognitive and Perceptual 
Science 

Decision Science 

Simulation 
Science 

Data 
Science 

Communication Decision 
Making 

Figure 3: Academic disciplines relevant to understanding the data-to-decision pipeline.
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Figure 3 highlights an important issue in addressing 

technical challenges associated with uncertainty in 

computation, which is that the relevant research is 

fragmented and does not map well onto the individual 

steps in the data-to-decision pipeline. These current 

interactions of different fields with the work flow are 

depicted as grey ovals in the figure.

For instance, simulation science deals mostly with 

large-scale computation models, and is largely within 

the purview of numerical analysis, scientific or high-

performance computing, and application-specific 

engineering. Data science, with its emphasis on the 

analysis of existing data, draws on expertise in AI, 

machine learning, and data mining. While at a high level, 

simulation science and data science play similar roles 

in the overall data-to-decision pipeline, the associated 

disciplines share little in problem framing, computational 

tools, or mechanisms for communicating results. Of 

course, uncertainty is fundamental to the field of 

statistics, and parts of the statistics community have 

been actively involved in the quantification of uncertainty 

in both the simulation and data contexts. However, 

tighter coupling is warranted in addressing both 

fundamental problems and technologies for quantifying 

uncertainty in data and simulation science. 

The communication of uncertainty to decision makers 

and the manner in which they utilize that information 

is studied by a disparate set of academic disciplines. 

Scientific visualization focuses mostly on pictorial 

representations of uncertainty associated with the high-

dimensional outputs of physical simulations, such as 

pressure fields or velocity fields [Pang et al. 1997; Potter 

et al. 2012]. The information visualization community 

has dealt with the issue somewhat less, reflecting the 

similar situation in data science. Although cognitive and 

decision sciences have vast basic research literatures 

and substantial applications in many domains (e.g., 

health, environment, finance), they have had relatively 

little connection with computer science—outside the 

important work on human-computer interaction.

The Difficulty in Interpreting 
Statistical Quantities
It is clear that our understanding of 

uncertainty is impacted by the statistical 

tools that are readily available for analysis 

and the difficulty that nonexperts have in 

understanding their meaning. The classic 

example of this is the p-value. For example: 

in a recent talk about the drug discovery 

process, the following numbers were given 

in a hypothetical illustration. A total of 10,000 

compounds of interest are screened for 

biological activity. Of these, 500 pass the 

initial screen and are studied in vitro. Twenty 

five pass this screening and are studied in 

Phase I animal trials. One compound passes 

this screening and is studied in a Phase 

II human trial. This scenario is consistent 

with moderately noisy testing schemes and 

a set of entirely inactive compounds, with 

screening based on significance at the 0.05 

level. With increasingly large amounts of data 

being mined, this multiplicity problem can 

easily lead to “discoveries” that are in fact just 

artifacts of noise.

Conveying and understanding the power and 

limitations of statistical analyses is no small 

task, and it becomes more difficult as we 

consider multiple related experiments on a 

given set of hypothesis or multidimensional 

outcomes. On the other hand, there is 

evidence that visualization helps convey the 

uncertainty in these outcomes. Meanwhile, 

there is a growing sense of a need for 

alternative methods for quantifying and 

communicating such results.
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The understanding of uncertainty in quantitative data 

and its use in decision making is an area of study 

in perceptual and cognitive psychology as well as 

decision science. While psychologists study the human 

capacity for reasoning under uncertainty, they rarely 

consider the kinds of complexity found in modern 

simulations and data analytics. The field of decision 

science takes a more integrated approach involving 

formal analysis of systems, empirical studies of human 

behavior, and interventions for improving design. 

However, ties with the engineering, machine learning, 

and visualization communities are lacking. Creating 

these connections will raise fundamental questions for 

all fields involved. Hence, there is a growing need for 

behavioral studies of how people deal with complex data 

types and alternative representations of uncertainty. 

Creating these connections will raise fundamental 

questions for all fields involved and will result in the 

need for fundamentally new methods for quantifying 

uncertainty in a way that dovetails with communication, 

understanding, and decision making. The current 

fragmented nature of the relevant disciplines makes 

clear the need for an intrinsically multidisciplinary 

approach that considers uncertainty in computation in a 

holistic, end-to-end manner.

3 Challenges and Opportunities
In this section we describe the challenges, technical 

and otherwise, facing improvements in the use of 

uncertainty in computation, as well as opportunities that 

will result from solutions to those challengesand the 

efficient and effective use of uncertainty in computer-

aided decision making.

3.1 Simulation Science—Complexity, Scale, and 
Verification

While the field of uncertainty quantification in simulation 

science is somewhat advanced, effective, widespread 

use is limited by several factors. One important factor 

is complexity. Large systems that are subject to 

simulation-based design and testing, such as airplanes 

or power plants, are extremely complex systems with 

thousands of interacting components. The state-of-

the-art uncertainty quantification technologies deal 

primarily with a single, physics simulation, such as the 

mechanical or thermal behaviors of a part or a relatively 

small collection of parts in proximity. The interactions 

of thousands of parts, connected by physical proximity, 

electrical connections (wireless or wired), energy 

conduits, or a dependence on a common physical 

resource (e.g., air, water), are still well beyond the state 

of the art in uncertainty quantification. The importance 

of these interactions became especially critical in the 

case of the Fukushima disaster, where the failure of 

separate primary and backup energy systems (from the 

same cause but different mechanisms) interacted to 

facilitate the core failure.

Several challenges are important in dealing with 

complex, multicomponent systems. First is the 

computational scale, and the limitations this places on 

the ability for simulations to span the appropriate set 

of possible outcomes of these systems. One strategy 

is to encapsulate systems, characterize their error or 

uncertainty separately, and then model their interactions 

and the associated propagation of uncertainty. 

This strategy entails thousands of interactions and 

significant heterogeneity in the types of interactions. 

These interactions are not merely additive, and they will 

demand new numerical, statistical, and computational 

tools for representation and computation. These 

interacting subsystems inevitably include feedbacks and 

nonlinearities that can lead to emergent behaviors that 

are not easily modeled by the same approximations for 

each system. Thus, this massive and complex data may 

require new statistical tools, beyond the capabilities of 

current well researched tools.

Another important aspect of complex systems is 

verification. Verification entails the evaluation of 

computational models against empirical data. For 

isolated, physical systems, such verification would 

typically entail laboratory experiments—for example, 

to verify that the difference between mechanical 

behavior of a part and its computational model are 

within predicted uncertainty. More complex systems 

do not easily lend themselves to controlled, laboratory 

experiments, and therefore other verification methods 

must be pursued. For instance, in fields such as 
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meteorology and finance, hindcasting is used to 

validate computational models against historical data. 

Thus, given initial and boundary conditions, hindcasting 

validates new prediction mechanisms with prior events, 

for instance, validating weather forecasting models with 

data from the summer of 1984. This strategy becomes 

more challenging when considering design of artifacts, 

systems, or policies, or in cases where recorded history 

does not readily provide a sufficiently general set of 

examples or sufficient data. This concern has been 

raised in the issue of climate modeling, for example, 

where comparisons against several decades of climate 

data are used to verify a phenomenon which varies, 

arguably, on much larger times scales. This use of 

historical data is also a concern in economics, where 

both rare events and changing operational regimes (e.g., 

political or cultural changes) challenge the ability of 

models to generalize into the future. While progress has 

been made, the technical challenges for verifying large, 

complex either man-made or natural systems remains 

an important problem.

The complexity of the systems and the reliance on 

historical data for modeling and verification raise other 

important issues in the quantification of uncertainty. 

Many statistical models include characterizations of 

outcomes that entail typical or representative outcomes 

with an associated notion of variability or deviation from 

this typical outcome. This philosophy is encoded in the 

typical formulation of a forecast (e.g., from a simulation) 

and an error, which assumes some deviation from the 

forecast with a decrease in probability as potential 

outcomes deviate dramatically from the forecast. 

Thus, events that are extremely different from the 

forecast are considered to have negligible probability, 

and are often considered inconsequential. However, 

these, so-called rare events are often the events that 

pertain to catastrophic outcomes when considering 

decisions about policy or design—thus, they are the 

most interesting cases to evaluate. Closely related to 

this phenomenon is the idea of a tipping point in the 

behavior of a complex, nonlinear system, where events 

(usually rare) force components of a system outside of 

their normal operating ranges, resulting in very unusual 

(often undesirable) behaviors. This observation suggests 

a need for new paradigms in modeling behaviors of 

systems to account for rare events. For instance, instead 

of discounting rare events as not probable, one might 

instead study the situations (e.g., external events or 

parameters) that would cause a system to fail and then 

quantify, in a systematic manner, just how possible such 

events might be—using not only historical data but first 

principles of the physical phenomenon that govern the 

inputs to these systems. Thus, in the case of Fukushima, 

one might ask what size of tsunami would result in 

catastrophic failure, and then simultaneously study 

the nature of that failure and whether such a wave 

is possible, in principle, given the oceanographic and 

tectonic context of that region. The development of such 

new paradigms, as well as understanding their theory 

and practical instantiations, is critical for the successful 

use of simulation science for large-scale systems and 

decision making.

Dealing with the challenges above entails computation 

at a scale that grows with both the complexity of the 

systems and the widening range of events that one is 

considering. Thus, one can imagine not only large scale 

simulations, but a large number of simulations in order 

to discover situations that produce nonlinear behaviors, 

tipping points, and catastrophic behaviors, with enough 

frequency to be able to characterize their behavior. 

Thus, there is a growing need for computational 

resources and software infrastructures that allow data 

scientists and statisticians to readily acquire the data 

they need. While this challenge will continue to grow 

as simulations become more sophisticated, there is an 

opportunity to establish the infrastructure for studying 

these issues with state-of-the-art sized problems, so 

that these new capabilities in simulation science will 

grow as the field develops.

3.2 Uncertainty in Data Science

The field of data science is, of course, vast. Here we 

consider the recently developing trends toward analysis 

of large data sets with an eye towards:

◗  detecting events, signatures, and patterns (based 

on training data or based on predefined patterns or 

anomalies),



12

◗  discovering the underlying relationships between 

data points or parameters (e.g., clustering, correlation, 

dimensionality reduction),

◗  transforming data (processing data into another form, 

such as summary statistics), or

◗  making queries (often approximate) within very  

large databases.

The class of tasks, types of data, and challenges 

in dealing with uncertainty in data science are 

heterogeneous and complex. Here we try to put some 

structure on the challenges and opportunities, with the 

understanding that the field is in its very early days.

The uncertainty in the estimates or findings derived 

from large-scale data analyses typically derive 

from several factors. The first contributing factor 

is the source data itself, which is subject to typical 

measurement noise (e.g., the physical location of an 

entity or sensor fidelity), but is also incomplete and 

suffers from certain kinds of replacement noise, where 

some data points are simply “wrong” (e.g., some data 

is corrupted). Furthermore, much of the data which is 

considered source data, is actually derived data, from 

preprocessing, such as the extraction of keywords 

or semantics from text documents. The algorithms 

that perform these transformations are not entirely 

robust, and thereby introduce their own kinds of noise 

into large databases. Certain kinds of queries on very 

large, possibly distributed, databases, will be tractable 

only if they are processed in an approximate manner. 

Queries such as aggregate statistics on subsets of 

data or proximity queries, such as nearest-neighbor 

lookups, will be most efficiently answered in an 

approximate fashion with error bounds that typically 

decrease with execution time. Coherent, general, 

statistical models of these various phenomena, which 

result in uncertainty in data bases (and data queries) 

remains an open problem. The consensus is that such 

models or methods are essential to propagating these 

uncertainties through various analyses that result in 

quantitative outputs.

The typical data analytics pipeline processes databases 

to derive quantitative results in one of several different 

ways. One pipeline relies on classifiers that are trained 

and tested on specific datasets, often before or during 

deployment in the wild. Classifiers are essentially 

regressors on noisy data with nondeterministic 

outcomes, and therefore have expected rates of error—

which can, in principle be estimated from test data. 

However, there are fundamental problems with the 

construction of realistic training and testing data, and 

these data sets can introduce biases that may result 

in optimistic estimates of error. A significant amount 

of research has addressed the problem of biases in 

training data and online training to address shifts 

in data sets over time [III and Marcu 2011]. However, 

while machine learning algorithms are maturing and 

computational resources are improving tractability, data 

sets are expanding in size, scope, and application. As 

each progresses, the inherent limitations of the data, 

the training methods, and the uncertainty in the outputs 

will be a critical component of practical uses of these 

methods in important applications.

Another class of data analysis pipeline entails the use 

of unsupervised algorithms, that infer structure in 

datasets or relationships between data objects, without 

explicit examples of correct or incorrect results. In 

these kinds of analyses, data integrity and inherent 

stochasticity of the underlying phenomena continue 

to play a role. However, the absence of training data 

exposes a greater sensitivity to modeling choices. For 

instance, the result of a clustering or dimensionality 

reduction is not a stand-alone answer to a question, 

but depends on a set of choices on the types of models 

and parameters within these models that one uses. 

As people interpret outputs from an unsupervised 

algorithm, it will be important to understand the extent 

to which these are features of the data or results of 

modeling choices. Some work has been done in the area 

of clustering, for instance in analysis of ensembles of 

clusters [Topchy et al. 2005], but this very important 

work is quite early, and there is neither a general 

methodology that applies across different types of 

algorithms or systematic methods of summarizing and 

presenting these types of uncertainties.

Data analysis pipelines are often used to discover 

relationships between data, such as group differences 
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(e.g., the p-value example in Section 2), correlations, or 

anomalies. Such discoveries are a critical part of the 

trend toward data-driven science, but they present 

the field with some important technical challenges. As 

the p-value example presented earlier demonstrates, 

typical methods for examining the significance of 

hypotheses are not well suited to very exploratory 

analyses. While correction factors for multiple 

comparisons may be well developed, they often do 

not scale in a satisfactory manner to thousands or 

millions of “hypotheses.” Likewise, the detection of 

irregularities or anomalies in very large (and noisy) data 

sets is prone to false positives, and the uncertainty 

of the results must be carefully weighed in many of 

the very serious scenarios (such security and public 

health) where these methods are beginning to see 

more widespread use. The challenge is a set of new 

paradigms or methodologies that change the way 

we think about and quantify our uncertainties about 

these types of detections. Decision makers have an 

opportunity to prioritize decisions, resources, and 

actions; to learn from their experiences to best utilize 

resources; to preserve the privacy and integrity of 

innocent individuals and groups; and at the same time, 

to detect important opportunities and threats.

The development of large-scale data science will depend 

not only on the development of new methodologies and 

computational methods, but also on the availability of 

data against which to test and validate these methods. 

Much of the current work is based on either very 

small or homogeneous datasets or limited access to 

restricted-use private or protected databases. The lack 

of availability of sufficiently large, diverse, data sets 

is an impediment to progress. The challenges are that 

most real data sets have concerns regarding inherent 

commercial value and/or privacy, while synthetic data 

sets often lack the desired, size, noise properties, 

and heterogeneity needed to explore uncertainty. 

The opportunity in developing such data sets is the 

development and characterization of entirely new 

paradigms for quantitative analysis the advances that 

will help the field of data science to develop a mature 

set of robust, reliable tools to aid in practical, every-day 

decision making.

The relatively young status of data science presents 

another important opportunity with respect to research 

in uncertainty. Academic institutions are beginning to 

respond to the growing demand for data scientists 

with associated curricula and/or academic programs 

and degrees. Universities are hiring new faculty with 

expertise related to data science, while textbooks and 

publication venues proliferate. The foundations of the 

field of data science are just now being established, 

and these foundations are likely to become codified 

and more stable in the next three to five years. Thus, 

this represents an important time for the research 

community to influence and shape this burgeoning field, 

and establish the quantification and communication of 

uncertainty as a key component of thinking that goes 

into the design of any analytics system. Systemically 

incorporating uncertainty will require research 

investment, sponsorship of venues and tutorials, and the 

promotion of academic programs that include uncertainty 

as first-class element of data analysis together with a 

more holistic understanding of the role of data analysis 

in computer-aided decision making.

In addition to the computer-aided, decision making 

pipeline described in Section 2, there are, of course, 

a wide variety of ways in which computers help in 

making decisions, at both the large scale and the small. 

For instance, there are already computer systems that 

automatically act on uncertain data, for instance, in 

search and navigation applications, speech recognition, 

and anomaly identification. These kinds of fine-

grained, low-level data analysis tasks are ubiquitous. 

Meanwhile the programming and software systems 

used to build these applications (i.e., programming 

languages, compilers, run time code, etc.) generally ignore 

uncertainty, making it very challenging for data scientists 

to develop applications that make systematic use of 

uncertainty. Programming systems ignore uncertainty 

because they are typically unable to efficiently represent 

or reason about this extra information, and therefore 

provide little help to data scientists in expressing or 

computing with uncertainty in their data or models.

While researchers have developed some foundations 

for computing with uncertain values in programming 

languages [Giry 1982; Ramsey and Pfeffer 2002; Vajda 
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2014], the theory is incomplete and popular programming 

languages have not yet adopted these strategies. 

Currently, the burden on programmers is very high, 

requiring substantial machine learning and/or statistical 

expertise as well as significant development effort 

to program these complex systems correctly. Some 

recent, domain specific approaches to address this 

problem for databases [Dalvi and Suciu 2007] and 

artificial intelligence [Wingate et al 2011] show promise. 

Meanwhile more general solutions have been proposed 

that treat uncertain data values as first-order types 

[Bornholt et al. 2014]. However, substantial additional 

programming systems research is needed to deliver 

languages, automated systems, and tools that will 

help data scientists to develop correct applications 

that consume and characterize uncertain data, create 

uncertain models, compose models, and act on 

the results.

3.3 New Computing Paradigms and Uncertainty

As the size and scope of the computational problems 

we take on grows, uncertainties are introduced in the 

underlying models, assumptions, and data. Meanwhile, 

several important trends in computing architectures 

and scalable algorithms promise to compound the 

challenges in dealing with uncertainties in the 

computations that aide decision making. These 

trends in computing take several different forms, 

but all lead to the same conclusion: important new 

computational paradigms will introduce uncertainty 

or error into otherwise deterministic computations 

or algorithms.

A important recent trend in computer architecture design 

is approximate computing [Han and Orshansky 2013]. 

The strategy of approximate computing is generally 

to perform lower-precision computations using either 

a subset of available hardware (e.g., reduced number 

of bits in an arithmetic operation) or fewer cycles. 

Approximate computing designs are proposed primarily 

for computer architectures that face power constraints, 

but the approach can address compute-time constraints 

as well. The strategy applies to both low-level operations, 

as well as approximate solutions to higher-level 

algorithms. The approximate nature of the results of 

these computations introduces an error or uncertainty 

that accumulates, affecting resulting computation.

Stochastic computing is a related computing paradigm, 

which was first proposed in the 1960s but is now 

seeing renewed interest. Stochastic computing takes 

advantage of the representation of numbers as random 

bit streams in a manner allowing simple, fast, and 

approximate algorithms for arithmetic operations. The 

stochastic nature of the strategy produces an expected 

error for each computation, which decreases as one 

considers longer random strings (more computation). 

Uncertainty in stochastic computations compound 

as low-level operations are combined in higher-level, 

algorithmic tasks.

Related to these approximate or stochastic computing 

technologies are a range of approximate algorithms for 

large-scale computational problems that are otherwise 

deterministic. One example is approximate queries 

on large and/or distributed databases, which entails 

using sampling strategies to produce approximate, 

aggregated outputs of database searches or queries. 

Such algorithms often come with theoretical or empirical 

estimates of uncertainty.

While the CCC visioning workshop did not focus on 

these very specialized computing paradigms, they 

represent important trends that compound the inherent 

uncertainties associated with simulations and data 

analytics at large scales. We anticipate that these 

factors will contribute to the degree and complexity 

of uncertainties and uncertainty quantification and 

communication associated with advanced decision 

making tools. An important aspect of these uncertain 

computational paradigms is that otherwise deterministic 

computations may have associated uncertainties or 

errors. This suggests a need for software support for 

uncertainty computation. For instance, it is likely that 

there will be a need for programming languages (or 

extensions) that support estimating, propagating, and 

reasoning about the errors or uncertainties that arise in 

basic, low-level operations, so that software engineers 

can instrument algorithms for uncertainty with relative 

ease (or perhaps, automatically).
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As in all of the uncertainty computations described in 

this paper, uncertainty introduced by new, efficient, 

approximate computing paradigms will need to be 

properly accounted for within software/algorithms and 

communicated effectively to decision makers. In this 

sense, the challenges associated with uncertainty in 

large computational models align with those introduced 

by new, approximate computing paradigms. However, 

these new paradigms introduce an additional, different 

perspective into the uncertainty process, which is the 

need to support uncertainty computation in a wider 

variety of problems and with greater (programmer) ease 

and efficiency at the system software, programming 

language, and application layers.

3.4 Communication and decision making

In an article in Science, Spiegelhalter et al. [2011] lament 

the absence of research in presenting uncertainty 

and conclude: “Given the importance of the public 

understanding of health, economic, and environmental 

risk, it may appear remarkable that so little firm 

guidance can be given about how best to communicate 

uncertainty.” The consequences of failing to account for 

uncertainty are significant. Decision makers often face 

risks and tradeoffs, with significant ramifications for 

financial assets, economic development, public safety 

and health, or national security. These risks must be 

weighed against the integrity of the model in a way that 

allows decision makers to include appropriate margins 

that reflect their priorities. In other cases, the results 

of these decisions must be conveyed to a broader class 

of stake holders, who may not have access to the 

computational models themselves, but are often prone 

to ask “How certain is your prediction?” Furthermore, the 

credibility of the process itself—of using forecasts based 

on computational models to make decisions—depends 

on proper evaluation of models and outcomes in 

relation to expected levels of error. If the expectations 

of policy makers and stake holders are not calibrated 

to appropriate levels of uncertainty in computational 

models, the effective use of these models and their 

results will be jeopardized. This dilemma has recently 

made international news in the context of climate 

science, and a panel examining the work of the Climate 

Research Unit concluded [Lord Oxburgh 2010]: “Recent 

public discussion of climate change and summaries and 

popularizations of the work of CRU and others often 

contain oversimplifications that omit serious discussion 

of uncertainties emphasized by the original authors.”

Although there is much potentially relevant research in 

the behavioral and decision sciences, it has yet to be 

applied and extended to create a systematic approach to 

communicating the intrinsic uncertainty in the outputs of 

a simulation or other complex data to users making high-

stakes decisions based on such data. Current practice 

either ignores uncertainty, or in a few cases uses ad hoc 

techniques to present uncertain data. Considering this 

problem narrowly, as simply the development of a set 

of description or illustration methods, is bound to fail. 

This is because understanding and using uncertainty 

is notoriously difficult for both trained users and 

novices [Belia et al. 2005; Tversky and Kahneman 1974]. 

Furthermore, solutions must apply to a wide variety of 

situations in which uncertainty plays a role and must 

account for large differences in user training and skills. A 

successful approach to communicating uncertainty must 

create tools and procedures that span the process from 

initial modeling and quantification of uncertainty to end-

user decision making, using systematically validated  

and methodologically sound procedures to determine 

their effectiveness.

Psychological studies of decision making focus on the 

cognitive and affective processes underlying choices 

under risk or uncertainty, including intuitions and 

heuristics, computational processes of weighing risks 

and rewards, and combinations of these processes 

[Loewenstein et al. 2001; Reyna 2004; Todd and 

Gigerenzer 2007]. In many studies of decision making, 

people are asked to reason about simple decision 

scenarios stated in in verbal or numerical form, with 

minimal if any information provided about the source 

of the information, including uncertainty in the data. 

Other studies are concerned with the communication 

of scientific information about health risks, natural 

disasters, and global challenges such as climate change 

to consumers. These challenges have prompted decision 

scientists to question how to best communicate 

scientific data to the general public [de Bruin and 

Bostrom 2013; Fischhoff and Scheufele 2013; Weber and 
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Stern 2011]. Current approaches emphasize the need to 

match scientific communications to people’s existing 

mental models, and to the abilities, and skills of the 

consumer. However they focus on communicating the 

results of scientific investigations, rather than the 

scientific processes that lead to these results, and there 

is currently much controversy about whether to even 

present information about uncertainty of the results (e.g., 

[Joslyn and LeClerc 2013]).

The current failure to systematically account for 

uncertainty in interpreting complex data stems, in 

large part, from a lack of knowledge, strategies, and 

tools for effectively depicting uncertainty. Information 

about uncertainty can be presented as text, numerical 

expressions, static images, animations, interactive 

visualizations, and more (Figure 4). We know that 

the way in which uncertainty is depicted affects the 

way in which it is understood [Correll and Gleicher 

2014; de Bruin et al. 2013; Finger and Bisantz 2002; 

Garcia-Retamero and Cokely 2013; 2013; Stone et al. 

1997]. The literature is burgeoning on topics such as 

the effectiveness of alternative displays; the role of 

trust in communication; and individual differences in 

decision-making competency [Fischhoff and Kadvany 

2011; Fischhoff and Scheufele 2013; 2014]. Although much 

of that research has been prompted by concern over 

complex, uncertain decisions (e.g., medicine, technology), 

it has had little contact with the simulation and data 

science communities. As a result, there is an opportunity 

to leverage the progress in these fields.

We also know that the nature of the people performing 

those tasks have a major impact on which forms of 

communication are most effective [Galesic et al. 2009; 

Okan et al. 2012; Reyna et al. 2009]. It is also likely that 

effective communication of uncertainty will depend on 

the nature of the tasks that need to be performed with 

uncertain information. Categories of tasks can range 

from the need for a general understanding of a data 

set to the prediction of a specific value. The need for 

persuasion creates a different set of requirements for 

effective communication than does the need for decision 

making. The temporal urgency of the situation also 

matters (e.g., wildfire vs. ebola vs. climate change). We 

are still far from having useful, prescriptive theories of 

any of these effects.

A significant body of literature on visually communicating 

information about uncertainty has come out of the 

geospatial and visualization communities [Bonneau et 

al. 2014; MacEachren et al. 2005]. One key problem in 

the presentation of geospatial information is that most 

users expect maps to be perfect, and so resist even 

the concept of uncertainty. A number of key technical 

challenges are outstanding as well. There is typically 

positive spatial autocorrelation in errors, complicating 

modeling, calibration, and the specification of metadata. 

Uncertainty causes significant difficulties for data 

provenance, interoperability, and the choice of basic 

representational frameworks (e.g., raster vs. vector). 

Open problems relevant to scientific and information 

visualization include how to communicate uncertainty in 

Figure 4: Ways of communicating uncertainty.
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relational data, the potential benefits of using ensemble 

representations as a communication tool, how to deal 

with uncertainty in high-dimensional data, and how to 

communicate information about error propagation.

Complicating the situation is the fact that relatively 

few comprehensive studies have been done on how 

well various techniques for presenting information 

about uncertainty affect final judgments. Instead, the 

literature is replete with ad hoc user studies with no 

systematic choice of tasks, scenarios and problem 

framing, participants, or response measures  

[Kinkeldey et al. 2014]. These user studies rarely rest 

on sound scientific principles or careful evaluation. 

In addition, the populations on which they are 

performed are rarely representative of the stakeholders 

associated with high-stakes, real-world problems 

involving substantial uncertainty.

Critical to the problem is the fact that judgments about 

the effectiveness of alternative approaches to modeling 

and communicating uncertainty cannot be based purely 

on the intuitions of users, domain experts or visualization 

experts. People’s intuitions about what makes a good 

display or information do not always conform to what 

is objectively a good display for their task [Hegarty 2011; 

Hegarty et al. 2012; Smallman and St. John 2005], so that 

designers of user interfaces speak of a performance-

preference dissociation [Andre and Wickens 1995; Bailey 

1993]. For example, users often prefer more complex 

displays but in fact are better served by simpler displays 

[Smallman and St. John 2005]. Clearly, more attention 

needs to be paid to validation of how uncertainty is 

conveyed to stakeholders, beyond the validation of 

uncertainty quantification methods themselves.

The field of decision science has made important strides 

in understanding and facilitating human decision making 

in real-word settings (e.g., [Fischhoff et al. 2012; Fischhoff 

and Davis 2014]). The research addresses three issues 

central to making best use of analytical methods. 

One is communicating with decision makers, so that 

analyses are as relevant as possible to their needs 

and so that their results (and attendant uncertainties) 

are properly understood, with respect to their decision 

making implications. The second is translating behavioral 

research into analytical terms, so that models make 

realistic assumptions about human behavior affecting 

system performance (e.g., how people respond to 

evacuation or quarantine notices, how vulnerable 

individuals are to phishing attempts, how consistently 

operators maintain equipment). The third is assessing 

and improving the human element of modeling (e.g., 

how teams are constituted, how expert judgments are 

elicited, which sensitivity analyses are performed, how 

scenarios are chosen and models validated). Bringing 

decision scientists together with computer scientists 

would be highly productive for both fields.

4 Recommendations for action
The workshop generated calls for action in four 

critical to the dealing with emerging challenges in the 

quantification, communication, and interpretation of 

uncertainty in simulation and data science:

4.1 Uncertainty quantification in large-scale 
systems

Transition research in uncertainty quantification 

of computational systems from the analysis of 

components to the analysis of large-scale systems of 

interacting components.

Existing methodology and current research efforts 

have focused primarily on individual analyses of small 

to moderate size. In order to meet the challenge of 

uncertainty quantification for large-scale systems, 

a transition is needed to address both very large 

analyses and large-scale systems of interacting 

components. A key initial step in addressing uncertainty 

in large systems will be to develop a representation 

of uncertainty that can be used to quantify and 

communicate uncertainty across a broad set of 

computational problems in large-scale settings in 

a manner that can be carried through multiple 

computational processing steps. A framework for 

addressing uncertainty is needed that can capture 

at least some level of the distributional behavior of 

interest beyond that normally captured by simple 

summary statistics to convey both typical behavior 
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as well as extreme/rare behavior and abrupt changes 

or tipping points. The framework must facilitate 

meaningful capture and transfer of information that 

can be processed efficiently and carried throughout 

all subsequent computations. In some cases, shared 

infrastructure may be required to capture all relevant 

pieces of a large-scale analysis or process, and it will 

be critical that data be available in a usable form and a 

timely manner. Both input data and calculated results 

will require validation processes to ensure data quality 

and integrity. In predictive settings, discrepancies 

between actual data values and predicted values will 

need to be characterized and monitored to provide 

feedback on unexpected or unexplained results that may 

require additional investigation.

4.2 Uncertainty quantification in data science

Initiate a major new research and academic initiative 

in uncertainty quantification for data science.

There is a clear need to foster work on establishing 

generalizable methods, standards, and tools for 

uncertainty quantification for data science, patterned 

after work that has been done in uncertainty 

quantification for simulation science. This will require 

significant progress in four areas: (1) Critical to 

appropriate handing of uncertainty in data science 

is the development of methods for measuring and 

quantifying the various sources of uncertainty in 

large data sets. These methods must be able to 

represent and analyze uncertainty due to measurement 

error, missing data, erroneous data, biased data 

collection, errors incurred via data integration, and 

more. As a result, progress in this area will require 

close cooperation between data scientists and 

those collecting original source material. (2) New 

techniques need to be developed for scaling uncertainty 

quantification in data mining and machine learning to 

very large data sets. For example, Bayesian methods 

are far harder to scale than models using simple, linear 

regression. (3) Principled methods for composing 

uncertainty across multiple tools used in a processing 

pipeline are needed. Each step of the processing 

pipeline introduces additional uncertainties to the final 

outputs, and these uncertainties need to be correctly 

propagated so that their cumulative effect is known. (4) 

Many universities now offer degrees or concentrations 

in data science. Topics related to the quantification of 

uncertainty, such as Bayesian statistics, basic models 

of errors and uncertainty, theory for quantification of 

the uncertainty induced by approximation techniques 

such as sub-sampling need to be included in these 

courses of study. Funding agencies should encourage 

adequate training through a combination of direct 

curriculum support and the inclusion of meaningful 

educational outreach in supported research efforts.

4.3 Software support for uncertainty computation

Create programming systems and tools that facilitate 

the developed of software involving the representation 

and analysis of uncertainty.

The trend will be for greater use of large-scale 

computational and data-based analyses to aid in 

decision making. This increased use of computationally-

aided decision making will result an a significantly 

greater demand for programming systems that 

accommodate uncertainty and error in systematic 

ways. Substantial research on programming language 

foundations and practical programming systems is 

needed to help data scientists develop efficient and 

correct applications. Thus, we anticipate programming 

systems and tools that provide frameworks for 

incorporating uncertainty into existing algorithms, 

as codes get revised, refactored, updated, etc. The 

challenges to the development of such systems are both 

technical and conventional. Technical challenges are the 

representation of uncertainty in a variety of applications 

and circumstances as well as the efficient propagation, 

composition, and estimation of probability distributions 

and associated parameters. Conventional challenges 

are exacerbated, for example, when designing software 

interfaces and developing tools that give developers 

access to appropriate representations of uncertainty at 

various levels in the computational process.
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4.4 Effective communication of uncertainty to 
stakeholders

Launch a major new research initiative in 

communicating uncertainty about large-scale systems 

to stakeholders.

To deliver better decisions, all stages of the data-

to-decision pipeline must be tightly integrated 

with improved ways of quantifying uncertainty in 

both simulation and data science. The importance 

of accommodating human behavior in models of 

uncertainty in complex systems needs to be recognized. 

Uncertainty quantification must be informed by the 

needs of the users who consume the information and 

there are at least three critical stakeholder categories: 

(1) scientists and engineers developing computational 

models and using such models in their research; 

(2) policy makers and others charged with making 

evidence-based decision, and (3) the general public. 

Differing levels of expertise, experience, and goal will 

require differing ways of modeling and communicating 

uncertainty to each group. To implement this new 

initiative in communicating uncertainty, funding 

agencies should provide resources that make genuinely 

collaborative research attractive. To achieve this goal, 

we recommend both: (a) creating a fund for simulation 

and data scientists to add decision scientists to their 

research groups for the extended periods of time needed 

to create common language, and (b) creating a center 

dedicated to integrating decision, simulation, and data 

science, at a single institution where conversations will 

happen naturally and frequently.
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