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A NEW AGE OF COMPUTING AND THE BRAIN

1. Overview and Summary

Throughout its history, humankind has been fascinated by a question that is simple to pose, yet remarkably resistant to 

resolution: “How does the brain work?” Philosophers have debated the workings of the mind for centuries. Da Vinci made 

detailed sketches of the brain. By the turn of the century, scientists began to understand some of the brain’s basic structure 

and function. Today, we can image and record brain activity from the neural to whole-brain level. Yet, divining how the structure 

and function of the several billion neurons and their trillions of interconnections leads to the complexity, diversity, and 

adaptability of human behavior continues to elude us. It is indeed ironic that almost every advance in brain science has given 

us a deeper appreciation of the challenges of understanding the brain. 

The history of computer science and brain sciences are intertwined.1 In his unfinished manuscript “The Computer and the 

Brain,” von Neumann debates whether or not the brain can be thought of as a computing machine and identifies some of 

the similarities and differences between natural and artificial computation.2 Turing, in his 1950 article in Mind, argues that 

computing devices could ultimately emulate intelligence, leading to his proposed Turing test.3 Herbert Simon predicted in 1957 

that most psychological theories would take the form of a computer program.4 In 1976, David Marr proposed that the function 

of the visual system could be abstracted and studied at computational and algorithmic levels that did not depend on the 

underlying physical substrate.5 

Today, we stand at a point where exponential advances in the science and technology of computing and concomitant advances 

in approaches to brain sciences have ignited new opportunities to forge connections between these two fields. Many of these 

opportunities were not even on the horizon as little as 10 years ago. Consider the following:

◗  Data related to brain research has exploded in diversity and scale, providing unprecedented resolution of both anatomy 

and function across a growing population of individuals, but new challenges for brain sciences. EM Connectomics, MR 

Connectomics, and functional imaging are but a few of the growing number of examples.

◗  Access to enormous computational power coupled with computational data science tools has been revolutionized by the 

growth of cloud-based computing platforms. Other sciences such as astronomy and genomics have already successfully 

exploited these new resources. Brain science can be the next “big data science” to create a new computational lens through 

which to study, and connect, the structure and function of the brain.

◗  The surprising success of new models for machine learning inspired by neural architectures is reigniting directions of inquiry 

on biomimetic algorithms. These successes also will begin to provide insights and inquiries that may influence our thinking 

about the brain, how it may function, and how to test those ideas.

◗  New methods for acquiring and processing behavior data “at scale” are emerging from the mobile device revolution, providing 

new possibilities for brain scientists to connect behavior to function to structure in ways that were heretofore impossible. 

1  For the purposes of this document, we will use the term “brain sciences” to represent all disciplines that contribute to our understanding of 
the human brain, including neuroscience, cognitive science, brain imaging, psychology, and other neural and behavioral sciences. 

2  J. von Neumann, The Computer and the Brain, Yale University Press, 1958.  
3  A.M. Turing, “Computing Machinery and Intelligence.” [online]. Available: http://www.csee.umbc.edu/courses/471/papers/turing.pdf. [Accessed: 

April 20, 2015].
4  A. Newell and H. A. Simon, “Computer Science as Empirical Inquiry: Symbols and Search.” [online]. http://dl.acm.org/citation.cfm?id=360022. 

[Accessed: April 20, 2015].
5  T. Poggio, “Marr’s Approach to Vision.” [online]. Available: ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-645.pdf. [Accessed: April 20, 2015].  
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This presages a day when traditional laboratory science 

meets “data in the wild” acquired in less controlled 

real-world situations, creating new opportunities and 

challenges for data analysis, hypothesis testing, and 

behavioral modeling.

These are just a few of the opportunities that lie ahead 

if we can develop a dialog that creates synergistic 

partnerships between computer science and brain 

science.

Figure 1: Advances in computing and brain science will require increased access to data and analysis tools, the development of new computing 
concepts to advance brain science, and will ultimately lead to new insights that will advance computing as well.
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In December 2014, a two-day workshop supported by 

the Computing Community Consortium (CCC) and the 

National Science Foundation’s Computer and Information 

Science and Engineering Directorate (NSF CISE) was 

convened in Washington, DC, with the goal of bringing 

together computer scientists and brain researchers 

to explore these new opportunities and connections, 

and develop a new, modern dialogue between the two 

research communities. 

Specifically, our objectives were:

1.  To articulate a conceptual framework for research at 

the interface of brain sciences and computing and to 

identify key problems in this interface, presented in a 

way that will attract both CISE and brain researchers 

into this space.

2.  To inform and excite researchers within the 

CISE research community about brain research 

opportunities and to identify and explain strategic 

roles they can play in advancing this initiative.

3.  To develop new connections, conversations and 

collaborations between brain sciences and CISE 

researchers that will lead to highly relevant and 

competitive proposals, high-impact research, and 

influential publications.
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The workshop was designed to drive an effective 

dialogue around these objectives. Speakers and panelists 

focused on carving out well-delineated and high-impact 

problems that could be further discussed and articulated 

in the breakout sessions, focusing on these themes:

◗  What are the barriers to progress in cognitive, 

behavioral, or neuroscience that would be targets 

of opportunity for CS-research? Where is genuinely 

new computer science needed, and where are new 

computational ideas created?

◗  What are areas of computing research that might 

benefit from or be informed by brain sciences?

◗  How can the connections between the two fields 

be enhanced through the development of common 

computational and data tools, and analysis methods?

◗  Are there grand challenges in this interface – big ideas 

that are well scoped, easily communicated, and where 

progress will be quantifiable?

Four broad topical areas were explored through panel 

discussions: (1) brain mapping, (2) connecting brain, mind 

and body, (3) challenges in data, and (4) opportunities 

in computing. Each pointed toward new challenges 

and opportunities where computer science and brain 

sciences could collaborate. 

1.  Brain Mapping: New imaging modalities are 

dramatically increasing the resolution, scale, and 

volume of brain imaging data. At one end of the 

scale, we can observe neuroanatomy at nanometer 

resolution; at the other we can now observe whole 

brain functional behavior over extended periods and 

under a variety of stimuli. Extracting meaningful 

information from this diversity, complexity, and scale 

of data can only be done via advanced computational 

tools. What are those tools? How can they be scaled 

as images continue to grow in size and complexity? 

How can correlative information be extracted from 

images of different kinds? Can we build predictive 

models that can relate stimuli to brain function? And 

at a higher level, what sort of infrastructure, training, 

and access mechanisms are needed to enable this 

type of research?

2.  Connecting Brain, Mind and Body: Studies of 

behavior are also becoming increasingly quantitative 

and data driven. In particular, studies of motor 

behavior, the visual system, hearing, speech, touch, 

taste and smell continue to advance and inform us 

of individual “subsystems.” Cognitive science and 

psychology study higher-level questions, such as 

“how do we learn,” “what is our memory capacity,” 

or “what do we attend to”. But, these are incredibly 

diverse and complex questions. How do we “connect 

the dots” through theories and methodologies 

relating low-level mechanisms of neural computation 

to more abstract information processing and 

systems to high-level behavior? What computational 

tools and environments are needed to support 

replicable, scalable science extending beyond a 

single experiment or a single laboratory? How do we 

incentivize scientists from all parts of brain sciences 

to contribute to and to unite behind these efforts? 

3.  Challenges in Data: At the heart of the brain/

computing research interface lies the great 

challenges of the volume, velocity and variety of brain 

sciences data. The challenge is to relate the many 

different scales and modalities of data in ways that 

will support new kinds of scientific collaboration. 

Data must be linked across scales, modalities, 

and experiments. Perhaps most importantly, data 

must be democratized. Just as the World-Wide Web 

created an unprecedented environment of data 

wealth available to all, so must brain sciences data 

be made universally available – by aggregating the 

“long tail” of data collected by every investigator in 

the country, and by creating tools to share, analyze, 

visualize and compare all forms of data connected to 

brain sciences.

4.  Opportunities in Computing: It is unquestionable 

that advances in brain sciences will require new 

ideas in computer science. Much like genomic 

analysis, the raw complexity of the problem 

can only be tamed by creating computational 

tools and computational models that support 

both the statement and testing of fundamental 

scientific hypotheses. Detecting patterns in neural 
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architecture and neural behavior at scale is a 

massive problem in data mining and modeling. 

Computer simulations will be reference models for 

testable hypotheses. Conversely, understanding 

fundamental neural computational principles may 

open the door to new understanding of algorithms 

for learning, adaptation, as well as catalyzing new 

directions toward creating devices that assist 

humans in intuitive, synergistic ways.

The report concludes with a future vision for brain 

science that is both driven by, and informing to, 

advanced computing research. 

2. Brain Modeling

Scientists are recording the activity and mapping 

the connectivity of neuronal structures to help us 

understand how brains work. Computational analysis 

and modeling promises to extract relevant information 

from the tremendous amounts of measurement data. 

While recent advances in measurement technology 

have enabled us to map various aspects of the brain 

architecture and function, many great challenges remain. 

Going forward, technological innovations at the interface 

of computing and neuroscience will benefit greatly from 

computational methods to extract information from 

available and future data consisting of images of the 

brain structure and signals of brain activity.

Currently, several measurement modalities exist that 

provide a glimpse into the architecture of the brain 

at vastly different scales. Each modality offers its 

own advantages, but we have yet to identify a robust 

approach to answering detailed questions suggested 

by theories of brain function, or to proposing new 

hypotheses on brain organization from available 

measurements. Electron microscopy (EM) provides an 

exquisite level of detail, all the way down to synapses, 

but for very small volumes; diffusion and functional MRI 

offer low-resolution (in space and in time) images of the 

entire brain; M/EEG yields high temporal resolution of the 

brain signals but with poor spatial localization. 

As new brain mapping technologies become available, 

computational analysis and modeling promises to 

bridge the gap between theories of neuronal systems 

in the brain and measurements of these systems 

that are feasible to acquire. Moreover, many brain 

mapping experiments produce vast amounts of data 

that must be analyzed to extract concise models of 

brain organization and function. This necessitates 

development of computational tools that can handle 

large amounts of data and support modeling and 

algorithmic developments in the field. Finally, the field 

is clearly in need of computational infrastructure that 

facilitates and encourages sharing of data and  

analysis methods.

Data Analysis and Modeling: One of the biggest 

barriers to mapping the architecture of the brain are 

methods to identify general and local (system-specific) 

motifs and patterns in the acquired data (both images 

and signals). This is important at all scales of imaging 

and requires new computational methods in feature 

detection, classification, data management, visualization, 

and analytics. We need new analytic approaches to 

discover common structure and organizational principles 

in patterns of functional and anatomical connectivity. And 

it will be important to model imaging data jointly with 

other types of information available to us. This includes 

modeling at different scales, from genetic influences of 

cell function to discovery of genetic influences on global 

connectivity patterns.

To really understand the brain structure, function, and 

their interconnections will require multimodal data fusion 

with the goal of extracting a model based on more than 

one imaging modality. Examples include integration 

of EM and light microscopy for synapse detection and 

modeling, integration of M/EEG with fMRI to create 

descriptors of activation patterns at better spatial and 

temporal resolution, and relating optical Calcium imaging 

to fMRI blood-oxygen level data. To integrate this data 

requires common reference frameworks (atlases) to 

enable multimodal data fusion across scales, including 

frameworks that identify functional alignment, not just 

anatomical alignment across individuals. 
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In addition to new methods for handling large image 

and signal datasets, we need new theoretical methods 

and computational structures to handle very large-scale 

data sets. This includes new graph theoretical models 

for analysis, methods to discover and analyze large-scale 

connectivity and function in dynamic graph structures, 

and methods for describing and finding motifs in 

heterogeneous geometry and graph structures. 

The brain is a complex, nonlinear dynamical system, 

and there are likely deep connections between the 

architecture of the brain and its dynamic behavior. 

Thus, understanding brain motifs not just from 

an architectural point of view, but also from the 

perspective of dynamical behavior will be essential to 

gain insight into brain function. Current methods for 

measuring brain activity tend to suppress dynamical 

signals (EEG is low-dimensional and fMRI is slow), but 

future developments in instrumentation will dramatically 

increase the amount of dynamical information that can 

be recovered from brain measurements. At present 

there are few methods for analyzing and modeling 

complex dynamical systems with limited data. Improved 

frameworks for dynamical systems analysis would 

improve our ability to understand, model and predict 

brain function enormously.

Finally, we will need new statistical approaches that 

improve inference and prediction accuracy in complex 

neuroscientific datasets. In particular, we must develop 

better methods for modeling individual variability 

and for accounting for measurement and statistical 

error in the data. For example, statistical methods for 

testing hypotheses on neural graphs, or methods for 

assessing the similarity of dynamical models recovered 

from recordings of brain activity will be needed. Better 

methods for identifying and reducing the impact of false 

positives and false correlations, which are inevitable in 

large data sets, are also needed.

Computational Tools and Infrastructure: The need 

to computationally identify motifs and patterns and the 

accumulation of ever-greater amounts of brain data 

poses major infrastructure challenges for computer 

science. On one hand we need better data repositories 

and structures to facilitate management (storage, 

curation, sharing) of heterogeneous large-scale data 

acquired in diverse brain mapping experiments. At the 

same time, we need tools for large scale processing 

that are well suited to brain data. In contrast to many 

other data-intensive fields that produce vast numbers 

of small data records (finance, geomodeling, etc.), brain 

mapping problems involve large collections of large 

observational elements. This motivates the development 

of different type of computational infrastructure and 

different (often data specific) data access  methods 

than what has been developed for many other  “big 

data” applications. 

In addition to new methods for handling large image and 

signal datasets, we need new theoretical methods and 

computational structures to handle graph and geometric 

data. This includes new graph theoretical models for 

analysis, methods to discover and analyze large-scale 

connectivity and function in dynamic graph structures, 

and methods for describing and finding motifs in 

heterogeneous geometry and graph structures. 

Many of the graph theoretic concepts and techniques 

used in neuroscience currently were actually developed 

in the 1990s in response to the advent of the 

Internet. These approaches aren’t really optimized for 

representing biological data, which have very different 

signal and noise properties. Furthermore, once large-

scale connectivity and functional information are 

available, new computational systems (software and 

hardware) to simulate large-scale networks based 

on theoretical models of neuron populations will be 

required. All of this requires optimization methods 

and supporting computational infrastructure to 

perform large-scale parallel computation for extracting 

computational models from data.

3. Connecting Brain, Mind, and Body

The study of “Brain, Mind, and Body” recognizes the 

importance of grounding studies of the brain in the 

physics of bodies and sensory information, in the 

behaviors that are to be generated by a living being, 

as well as in the information processes that can 

facilitate cognitive processes. These studies make 
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connections between brain sciences and topics of 

cognitive psychology, computational motor control, 

artificial intelligence (AI), machine learning (ML), and 

robotics. In some sense, a classical claim by Richard 

Feynman is addressed in that “What I cannot create 

I do not understand”.6 AI, ML, and robotics are largely 

about synthesizing systems that accomplish some form 

of autonomy and competence in real world tasks. The 

information processing in these tasks is often based 

on information emitted from a physical environment, 

similar to what has to be processed by living beings. 

Action with a physical body becomes the evidence of 

successful behavior, and many components of physics 

in biological and synthetic systems are the same. 

Cognitive psychology, computational motor control, 

and related fields address the computational interface 

between synthetic and biological systems, maybe 

something that could be called the level of “theory and 

algorithms” in the spirit of David Marr. But it is often 

difficult to connect this more abstract computational 

thinking to neuroscientific data that are measured at 

the implementation level. What is the role of these more 

abstract theories of information processing in brain 

sciences? How can collaborative projects be initiated, 

how can they be successful? How can it be assured 

the US BRAIN initiative is not only about low-level 

observations of the brain, but rather also connects to 

behavior and higher level information processing?

Computational Theories and Models: The 

presentations during the workshop illustrated such 

problems from four different viewpoints, all inspired 

by behavior and/or computational theories, and 

all interested in how more top-down thinking can 

connect to the low level mechanisms of information 

processing in the brain. For instance, when observing 

motor behavior, how can one discover structure in 

this behavior, the decision-making processes behind 

it, and the intent of the behavior (often formalized 

as an optimization criterion). Computational theories 

address such processes often in terms of reinforcement 

learning. The current wave of “deep learning” has some 

interesting mechanisms to discover structure without 

making many explicit assumptions, but the domain of 

behavioral analysis is not really addressed by deep 

learning research yet.

Another topic is how computational approaches can 

be used to develop models to understand cognitive 

processes of the mind, for instance, as in language 

processing and speech production. While some ideas for 

such high level cognitive computational models exist, 

their connection to neural implementation remains 

rather vague. Another example of computational 

thinking revolves around the question of how the brain 

processes uncertainty. The representation of uncertainty 

has been a long-standing question in computational 

neuroscience, and there are currently insufficient data 

to constrain existing models. 

Finally, there is an overarching question as to whether 

or how biological data can lead to normative theories 

that can be verified in experiments. That is, what 

constitutes a computational model of a biological 

process, and what level of measurement and testing 

constitutes verification? What level of mechanism should 

a model expose? A “black box” that is able to replicate 

some type of “input-output” behavior (e.g. predict a 

measureable subject response from a visual signal) is 

intriguing and highly measurable, but does it provide real 

insight? A model that is built on a complex neural model 

may seem more valuable, but how would (or should) 

one measure, compare or verify that the artificial neural 

structure is consistent with brain activity?

Future Research Directions: the current brain 

initiative focuses largely on collecting low level and 

detailed data of the brain, with little emphasis on 

behavior and computational theories. The discussions 

above indicate some ambiguity as to how behavioral 

and cognitive research can be connected directly to 

this initiative. As a middle ground, suggestions were 

developed that a “Big Data” approach for motor science, 

cognitive science, and behavioral science could provide 

a foundation, which could enable future research 

6 “What did Richard Feynman mean when he said, “What I cannot create, I do not understand”?.” [Online]. Available: http://www.quora.
com/What-did-Richard-Feynman-mean-when-he-said-What-I-cannot-create-I-do-not-understand. [Accessed: April 20, 2015].

6 “What did Richard Feynman mean when he said, “What I cannot create, I do not understand”?.” [Online]. Available: http://www.quora.
com/What-did-Richard-Feynman-mean-when-he-said-What-I-cannot-create-I-do-not-understand. [Accessed: April 20, 2015].
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developments towards a combination of low level brain 

sciences and behavioral sciences. The methods needed 

to collect, process, and distribute such data provide 

several significant challenges.

What Kind of Data? One critical issue is what data one 

should actually try to collect for neurobehavioral studies, 

and what efforts are associated with this data collection. 

Three complementary options present themselves:

1.  Experimental Data: Design experiments to measure 

as complete data as possible, for instance, including 

movement data, eye movements, interaction forces 

with the environment, physiological measures, EMG, 

EEG, environmental data and context, social context, 

etc. The required instrumentation would be quite 

significant and costly, and would most likely resemble 

an “intelligent house” for neuro data collection. 

2.  Found Data: Collect as much data as possible, from 

cell phones, wearable devices and the Internet. 

While highly incomplete, such data, when collected 

massively, may allow uncovering hidden state and 

discovering interesting issues. As an analogy, fMRI 

data provides a very coarse and incomplete snapshot 

of brain processing, but nevertheless, has allowed us 

to make numerous discoveries. 

3.  Simulated Data: Create elaborate simulators that 

can create essentially endless amounts of data, and 

which would serve as a test bed for what data is 

actually useful to collect.

Data Analysis: Assuming the existence of such data 

repositories, depending on the realm of interest, many 

different goals for data mining could be pursued, 

including general data mining and structure detection in 

neurobehavioral data. Among those, one can distinguish 

between functional analyses and clinical analyses.

1.  Functional analyses aim to uncover principles 

of information processing of the brain. Those 

include theories of optimization (optimal control, 

reinforcement learning), the extraction of a formal 

description of behavioral intent, biometrics and 

variability of behaviors, decision making processes, 

behavior prediction, emotional analyses, etc.

2.  Clinical analyses aim to detect diseases, potential 

risks (e.g., as in early detection of oncoming 

dementia), correlations of behavior with quality of life, 

correlations of biometrics with clinical conditions, etc.

Big neurobehavioral databases could make a 

significant contribution to the US brain initiative, and 

will prove critical in the effort to establish a data-

driven understanding of the brain. Creating such data 

repositories presents formidable challenges in the 

forms of instrumenting people and the environment, 

data structuring, and data interpretation. The goal 

should not merely be to produce a descriptive analysis 

of the data, but rather to support a functional analysis 

of data collected under ecologically valid conditions. 

Simultaneous collection of detailed behavioral data 

with advanced neurophysiological measurement would 

provide an unprecedented opportunity to integrate 

low-level neuroscience with behavioral and cognitive 

neuroscience.

4. The Challenges of Data

As already noted in the previous sections, data 

generation in brain sciences has rapidly accelerated, 

leveraging research advances in genetic, molecular, 

cellular, imaging, and electrophysiological approaches, 

among others. However, tools for systematically 

archiving, integrating, and disseminating data generated 

through divergent experimental techniques lag far 

behind. The CISE community can certainly contribute to 

developing open-science platforms that enable large, 

heterogeneous data sets to be combined and exploited 

to develop increasingly detailed and comprehensive 

models of neural function (Figure 2).7

The overarching observation is that neuroscience is the 

next science to get to big data, following astronomy 

7 T.J. Sejnowski, P. S. Churchland, and J. A. Movshon, “Putting big data to good use in neuroscience,” in Nature Neuroscience, vol. 17, no. 11, 
pp. 1440-1441, Nov. 2014.
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and genetics. We define big data in this context as any 

data that breaks the contemporary scientific workflow 

dogma. In neuroscience today, that dogma is that a 

single experimentalist collects data, that data is stored 

into local storage (e.g. a hard drive), and then analyzed 

via loading the dataset into RAM using standard 

computational tools –MATLAB, R, or Python. As already 

noted above, the next generation of neuroscience data 

must evolve beyond this paradigm.

Data Storage: The data already being collected in 

modern neuroscience projects often exceeds the size 

of RAM, disk space on a local workstation, or even on a 

local data store. These data come from many different 

experimental modalities, spanning electron, visible light, 

and magnetic measurements. Today there are three 

key ways that neuroscientists collect data at such a 

scale. First, individual experiments can now lead to 

100 TB of data, including serial electron microscopy 

and calcium physiology. Even MRI experiments can 

produce multiple TB of data products, including various 

intermediate stages of processing and formats. Second, 

the long tail of neuroscience includes many thousands 

of laboratories across the globe collecting data. Even 

if most of these experiments generate relatively small 

datasets, the amalgam of many of these datasets, 

collectively referred to as “mega-data”, quickly reaches 

big data scales. Third, large-scale simulated data is 

not prominent yet in neurosciences. However, we are 

optimistic that soon the measured data from both large 

and small experiments will be sufficiently informative 

to justify detailed simulations which can result in huge 

amounts of data, just as the output of many physical 

simulations today are viewed as “big data.”

These three different scenarios merit different 

solutions. To address large individual experiments we 

need scalable multidimensional spatial databases for 

neuroscience – for example the Open Connectome 

Project.8 To amalgamate thousands of datasets from 

across the globe, we need neuroinformatics platforms 

to query and assemble such data. And for simulations 

we need to build detailed simulation models and 

possibly dedicated hardware.

Figure 2: Spatiotemporal scales of contemporary measurements of brain structure and function from 
Sejnowski et al., 2014.

8 “Open Connectome Project.” [Online] Available: http://www.openconnectomeproject.org/. [Accessed: April 21, 2015].
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Data Access: After data have been collected some 

means must be provided for others to access the data. 

There is already movement in this direction. Some groups 

are using commercial cloud solutions to make their data 

publicly available. Federal agencies have a strong history 

of archiving interesting public databases in the sciences, 

including in neurosciences. Other groups are building 

home grown databases with federal funding 

All of these are promising approaches, but unification 

of access is essential. Just as cloud services are rapidly 

moving to a unified model, so also data access for 

science should be uniform, consistent, and easy to use. A 

key challenge is to manage the meta-data –provenance, 

content, experimental conditions, and so forth – that 

will be needed to correctly and accurately support data 

federation and analysis.

Data Analysis: Each area of science uses some 

methods of data analysis that are unique to that area, 

and others that are shared across the sciences more 

broadly. Some sciences, such as physics and climate 

research, rely mainly on highly specialized home-grown 

tools. This has also been the predominant model in 

neuroscience. However, while this approach was perhaps 

necessary in the past, it is not an effective mechanism 

for community-wide replicable science. It chains progress 

in the field to a patchwork of isolated tools that need 

constant maintenance and improvement. It also limits 

the speed with which new ideas, technologies, and tools 

are made available to the broader scientific community.

An important challenge and opportunity in neuroscience 

is to develop powerful, open-source tools that are 

broadly used and shared. The Galaxy Project9 and the 

LONI Pipeline10, for example, both provide promising 

examples of a new paradigm for replicable science 

based on shared data, common tools, and transparent 

analysis methodologies. Promoting open tools and 

methods for data analysis articulating the need and 

vision for these resources at a national level is a 

potential point of collaboration between computer 

science and brain sciences.

9 “Galaxy Project.” [Online] Available: http://galaxyproject.org/. [Accessed: April 20, 2015]. 
10 “LONI Pipeline.” [Online] Available: http://pipeline.bmap.ucla.edu/. [Accessed: April 20, 2015]. 

Table 1: List of useful brain sciences data resources

URL Utility

http://openconnecto.me Open science data & software

http://www.incf.org/resources/research-tools Neuroinformatics tools

http://web.stanford.edu/group/brainsinsilicon/challenge.html Dedicated neuromimetic hardware

https://wiki.humanconnectome.org/display/PublicData/Connecting+

to+Connectome+Data+via+AWS
Commercial cloud storage solution for neuroscience

http://www.birncommunity.org/resources/data/ Federal database of certain brain imaging data

http://crcns.org/data-sets Home-grown brain data repository

http://www.loni.usc.edu/Software/Pipeline Pipelining software for distributed computing

http://www.nature.com/sdata/ Journal dedicated to publishing datasets

http://www.humanconnectome.org/data/ Publicly shared dataset

http://fcon_1000.projects.nitrc.org/ Consortia of publicly shared datasets
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Data Sharing: The dogma of publishing a scientific 

paper that only reports highly distilled results is rapidly 

becoming outdated. The publication industry is combating 

this problem by creating scientific data journals, such as 

Nature Scientific Data and GigaScience. These journals, in 

turn, rely on the scientific data repositories. A particularly 

exciting possibility is co-locating or otherwise linking and 

archiving the data, data products and analysis tools for 

the data products. For example, the Human Connectome 

Project has already imaged over 500 subjects, and 

many labs from around the world have begun analyzing 

these data11. However, there is currently no place to 

publish tools and associated fine-grained results of 

these subsidiary analyses so that they can be shared 

and further refined. The Open Connectome Project is one 

example of an attempt to solve this issue by allowing 

analysts to post their results to annotation databases 

that are co-registered to the raw data, such that others 

can visualize, compare, and enhance the analyses of 

their peers. 

Building on the evolving paradigms of sharing data, 

community sharing of tools and results in a format that 

promotes a new paradigm of rapid, well-structured, 

authenticated and archived data-derived publications will 

be essential for advancing the field.

5. Opportunities for Computing

The past half-century has seen momentous and 

accelerating progress in our understanding of the brain, 

while major research consortia are presently engaged in 

important efforts aimed at the complete mapping of brain 

structure and activity. And yet, despite all this excitement 

and progress, no overarching theory of the brain seems 

to be emerging. We believe that computational research 

can be productive in this connection. We thus close with 

a discussion of computing themes. 

We suggest that the study of computing and the study 

of the brain interrelate in three ways, each suggesting 

a major research direction. First, as noted above, the 

experimental study of brain architecture and function is 

a massive-data problem. Making progress necessitates 

advances in computing and the realization of new 

computational tools. Second, the study of efficient 

algorithms and the design of intelligent autonomous 

systems should provide new ideas and inspiration 

concerning brain architecture and function. Finally, the 

remarkable efficiency (including energy efficiency) of 

the brain, once understood, may inspire radically new 

algorithmic or system organization approaches that could 

transform computing itself. Indeed, these are exactly 

the three bridges between brain science and computer 

science that we have included in Figure 1.

A Computational Theory of the Brain: The pioneers 

of both brain sciences and computer science – John von 

Neumann, Alan Turing, Walter Pitts, Warren McCulloch, 

David Marr, Herbert Simon – were very much aware 

of the relationship between the two areas, and they 

pursued it actively through the development of formal 

or philosophical computational theories. However, 

this important connection has been mostly stagnant 

over the past 30 years, that is, precisely at the time 

when the two fields exploded and therefore cross-

fertilization could be most productive.12 (One isolated 

exception was Leslie Valiant’s work on “circuits of the 

mind”, a rigorous computational approach to the cortex 

guided and informed by neuroscience findings.13) Is 

there a comprehensive computational theory that can 

inform our understanding of high-level brain function 

and the genesis of the mind? How would this theory 

be expressed and tested? What are the measurable 

“outputs” of the brain against which such a model could 

be validated?

Machine Learning and the Brain: Is there an ensemble 

of basic algorithmic ideas underlying the high-level 

function of the brain? We are nowhere near an answer 

to this question, but conjectures are starting to emerge. 

The success of machine learning, and of deep learning 

networks in particular, should be relevant to this 

11 “Human Connectome Project.” [Online] Available: http://www.humanconnectomeproject.org/. [Accessed: April 20, 2015]. 
12  T. Poggio, “Marr’s Approach to Vision.” [online]. Available: ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-645.pdf. [Accessed: April 20, 

2015].
13 L. G. Valiant, Circuits of the mind, Oxford University Press, 1994.
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quest. Yet the connections between the algorithms 

implemented in those systems and the operating 

principles of the brain remain unclear. Ongoing research 

seeks to rigorously explain the empirical success of 

machine learning. Such work often offers explanations 

based on the special structure and specialized 

distributions of the input.  

Connections between machine learning and the brain 

also go in the other direction: Current efforts for mapping 

the anatomy, structure, and function of the brain are 

hindered by conceptual and computational complexities, 

and a deluge of data. In comparison, mapping the human 

genome was trivial, because by the 1990s we knew a 

lot about the basic molecular mechanisms of life and 

we had a comprehensive, overarching theory of DNA 

function. What new advances in machine learning are 

needed to facilitate brain mapping research?

Perception: Our ability to act and react within the 

world is grounded by perception. Because we can 

control and observe sensory signals at the transducers, 

the processes of vision, touch, sound, taste and smell 

are some of the most accessible aspects of the brain. 

Furthermore, understanding how biological systems 

process sensory signals and optimally allocate resources 

for sensory processing may provide important clues for 

creating artificial systems that will operate in the natural 

world. What are the mathematical characteristics and 

latent structure of the distributions of the inputs the 

brain’s sensors receive: that is, the environment within 

which the brain has evolved and developed? 

Language: The path to the discovery of the fundamental 

algorithmic principles on which cortical computation 

is based may pass through language. Understanding 

the neural basis and cognitive structures of language, 

for example, provide a natural link between sensory 

behavior and cognitive function, or how cognitive 

process impact motor behavior through speech 

formation. If, for example, language emerged as  a 

“last-minute adaptation,” which arrived at a time when 

human cortex was essentially fully developed, language 

must have evolved in a way that takes full advantage 

of the brain’s algorithmic principles. By studying what 

makes language so well adapted to our minds one could 

uncover important insights about the computational 

architecture of the brain.

Lessons of the Brain: Finally, the tremendous 

energy and computational efficiency of the brain, once 

understood, may inspire new ways and principles of 

organizing our computers and data centers.
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6. The Future for Brain and Computing Research 

Distilling the ideas above, we can see a number of challenges and opportunities for computer scientists working with  

brain scientists. 

Table 2: A summary of the Challenges and Opportunities

Challenge Opportunity

Extracting scientifically relevant information from the growing 

volume and variety of available images (from microscopy 

to MRI) remains a substantial challenge.  In particular, 

reliable and scalable methods for neuroimage analysis and 

associated data analytics will be necessary to develop and 

test theories and simulations of the brain networks.

Developing new quantitative methods to create fine-grained 

models of neuroanatomy tied to computational functional 

simulation will provide new tools to study the effect of 

variation in brain structure to brain function, setting the 

stage for new insights on human development and disease 

processes.  

Success in brain mapping, as well as in research on the 

brain-mind-body interface, requires the translation of a wide 

variety of raw signals into meaningful structures that can 

be shown to support causal models connecting structure to 

function to high-level behavior.

Creation of large databases of simultaneous recordings of 

behavioral and neuro-physiological data could allow machine 

learning based discovery of correlations. Such databases 

could also enable complementary clinical applications, e.g., 

predictions of upcoming health conditions.

Currently, it is impossible to connect brain models across 

scales (nanoscale to whole brain) and modalities (EM to MRI).  

Likewise, there are no methods to associate models across 

individuals or populations.

Create new modeling methods and scalable simulations 

to discover computational abstractions (motifs) at scale to 

accelerate progress in understanding the architecture of  

the brain.

New platforms supporting principled data federation, data 

analysis, and replicable science will radically alter the field 

of brain sciences. The platforms should be open-source and 

share not just data, but methods, results, and associated 

publications in order to accelerate the dissemination of 

both methods and results, and allow the broadest range of 

scientists access to the latest tools, insights, and results.

Conquering the greatest scientific problem of all time 

– understanding the brain – will absolutely require 

biologists, neuroscientists, psychologists, engineers, and 

computer scientists, working together. We need to educate 

undergraduate and graduate students and postdocs at the 

interface of neuroscience and computer science, including 

“immersion” experience and interaction with scientists from 

both disciplines. And we need to identify and promote career 

paths for researchers and educators at this interface.

Despite an explosion in brain-related data and new insights 

into small-scale structure and function and large-scale 

architecture of the brain, no overarching understanding 

of the brain’s high-level function and the genesis of the 

mind appears to be emerging. In a somewhat related vein, 

despite impressive success over the past decade of brain-

inspired machine learning algorithms, such as deep learning, 

no compelling connection has been made with the equally 

impressive success of the mammalian cortex.

The theoretical computer science research community has 

over the past decades developed productive and insightful 

models and incisive mathematical methodologies, which have 

been applied successfully to make progress in the sciences, 

including statistical and quantum physics, biology, and 

economics. Mobilizing this community around the exciting 

problems and opportunities in brain sciences – particularly 

the development of tools to model brain structure and 

activity at scale, will result in new ideas, insights, and 

progress in our understanding.
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A Vision: Where might this research take us? Consider 

the implications for neuroscience if we were to achieve 

innovations similar to what Google maps has done 

for cartography and navigation; what large scale 

finite element models and fine-scale sensor networks 

have done for weather forecasting; and how social 

network platforms running on the World-Wide Web have 

transformed social interaction.

Cartography: Compare the process of using a map 100 

years ago with the process today. Last century, we 

carried paper maps with us. These often got torn, wet, 

or lost. They would be updated only when we purchased 

new ones, and even then only when the mapmakers 

published new maps. They did not tell us where we were, 

nor what direction we were going, nor anything about 

anybody else. Contrast that with navigating today using 

online mapping software. These maps tell us where we 

are, how to get where we want to go, how long it will 

take, and what we can expect along the way. They can 

tell us where our friends are, whether we’ve been there 

before, what other people thought of it. The maps are 

updated constantly, without our having to do anything 

about it. We can generate as many markers as we want, 

share them instantly and selectively with anybody in 

the world. And if we so desire the maps tell us where 

other people are as well, so we can avoid collisions. We 

can overlay topology, roads, buildings, and many other 

features. In short, current maps are dynamic, interactive, 

and multidimensional.

Neuroanatomy today is where global cartography was 

a century ago. We still publish books with hand drawn 

cartoons of neurological boundaries. Each book is 

dedicated to a particular species, with no obvious way of 

aligning the pages. What we need is a Neurocartography 

of the 21st century. This will include images of many 

different brains across spatiotemporal scales, spanning 

development and the evolutionary hierarchy. Each map 

will be linked to the others to enable overlaid views. 

Individuals will be able to annotate these maps with 

“reviews”, including links to publications or direct links 

to analyses and results. These maps will be a reference 

point for every aspect of the neuroscience research 

enterprise. Before conducting a new experiment a 

neuroscientist will check the map. After conducting an 

experiment the neuroscientist will upload the result, 

creating either more map or more analyses of existing 

maps. We will be able to share links with our friends 

so they can follow us and always know where we 

are. Everything we do will be “neuro-tagged”, just like 

everything we do today can be “geo-tagged”. 

Simulation: Geography is static, but weather is dynamic. 

Weather is shaped by geography, but the evolution of 

weather is a function of a complex web of factors driven 

by multiple sources of energy and the laws of physics. 

But we don’t forecast weather by trying to model every 

molecule of air. Rather, weather is forecast by combining 

many sources of data within a complex mathematical 

model that approximates the physical dynamics of 

the atmosphere. As data becomes better, models 

become more precise computation more powerful, and 

predictions become better. 

Imagine a future in which neurodynamics models can be 

formulated that are analogous to weather modeling and 

forecasting today. The starting point would be the unique 

properties of the neural system under study, informed by 

sensing and imaging modalities providing local temporal 

and/or spatial measurements of activity. A model 

analogous to a finite element model, but perhaps based 

on neural motifs or some abstraction of neural dynamics 

in a region of the brain, would be used to simulate 

neural or cognitive behavior into the future. At every 

time step the model could be compared to, or corrected 

by, updated measurements of brain activity. Inputs to 

the model would include stimuli – images, sounds, or 

other interactions – and outputs could be neural activity, 

motor activity, or even cognitive reporting of thought or 

sensation. As our models improve, our “forecasts” would 

get better, and as they get better, we would learn more 

about abstractions that describe the functioning of the 

brain. As this process scales, discrepancies in activity 

patterns would inform diagnosis of neural health, and 

modulation of activity due to therapy or drugs could 

be predicted. This in turn would lead to new and more 

precise ways to administer and manage interventions.

Sharing Data: Modern photo sharing sites allow one 

to see personal photos as well as photos taken by 

other people. Phototourism is a term that was coined 
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to capture “visiting” physical places online using data 

shared by others. In the future this will happen in the 

brain sciences. As noted above, neurocartography 

provides a frame of reference for thinking about 

“places I want to visit” within the brain. But, unlike a 

physical monument, every brain is different. Thus, to 

really understand some aspect of the brain, we will 

not only need to see every “picture” (image, time-series 

recording, etc.), but we will also need to understand 

the surrounding context – age, gender, health condition, 

relevant stimuli, etc. We will need “viewers” that are 

really sophisticated analytical engines that let one 

“compute forecasts,” ask questions and derive answers 

without building analytics from scratch. Finally, we will 

need a way to publish that links back to these data 

archives and allows others to replicate the results 

independently, and refine them as new models and 

theories arise. 

These analogies are, by their nature, a coarse effort to 

evoke ideas for a possible future. However, it is almost 

certain similar ideas will emerge and become essential 

elements for brain research. Implicit in all are ideas that 

span the four major thrusts of this workshop: brain 

mapping, connecting mind, brain and body, computation, 

and data. 

7. Computing and Brain Sciences:  
Re-establishing a Joint Destiny

The 80 participants of the workshop, computer 

scientists and brain researchers with strong research 

interests in both fields, spent two days debating 

the state of the art in brain sciences, and admiring 

the essential and diverse ways in which it relates to 

research in computer science. We left the workshop 

convinced that these two key disciplines are destined 

to work hand-in-hand in the coming decades to 

address the grand challenges in the research at their 

interface, and to create a common culture shared by the 

researchers working on both disciplines.
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