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THE HISTORY OF COMPUTING AND BRAIN ARE 
INTERTWINED 

•  Turing:  Computing Machinery and  
 Intelligence (1950) 
–  What is intelligence? Are there  

fundamental reasons machines  
cannot be intelligent? 

•  Von Neumann: The Computer and the Brain (1958)  
–  Is the brain a machine like a computer? 

 
•  Herb Simon: (1957) 

–  Most theories in psychology will take the form of 
computer programs. 



TIMES HAVE CHANGED 

Exponential advances in of computing and concomitant advances in 
approaches to brain sciences have ignited new opportunities: 
 
•  Data related to brain research has exploded in diversity and scale, 

providing unprecedented resolution of both anatomy and function 
across a growing population of individuals 

•  Access to enormous computational power coupled with 
computational data science tools has been revolutionized by the 
growth of cloud-based computing platforms.   

•  The success of new models for machine learning inspired by neural 
architectures is reigniting directions of inquiry on biomimetic 
algorithms.  

•  New methods for acquiring and processing behavior data “at scale” 
are emerging from the mobile device revolution, providing new 
possibilities for brain scientists to connect behavior to function. 



REBOOT INTERACTION BETWEEN CS AND BRAIN SCIENCE 

Beyond	“one-way”	thinking	



CCC-NSF BRAIN WORKSHOP: PARTICIPANTS 

•  72 Total Attendees 
•  20 from Government Agencies 

–  NSF, IARPA, DARPA, NIH 
•  2 Foreign Attendees 

–  Italy, UK (Human Brain Project) 
•  3 Foundation Attendees 

–  Kavli Foundation 
•  4 Industrial Attendees 

–  Neurospin, IBM, Facebook 
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PLENARIES 

•  Aude Oliva, MIT: Time, Space and Computation: 
Converging Human Neuroscience and Computer 
Science 

•  Jack Gallant, UC Berkeley: A Big Data Approach to 
Functional Characterization of the Mammalian Brain 

•  Leslie Valiant, Harvard: Can Models of Computation in 
Neuroscience be Experimentally Validated? 

•  Terrence Sejnowski, Salk Institute: Theory, Computation, 
Modeling and Statistics: Connecting the Dots from the 
BRAIN Initiative 



PANELS 
•  Brain Mapping:  

–  Jeff Lichtman Charless Fowlkes, Ragini Verma, James Haxby, 
Polina Golland 

•  Brain / Mind / Body:  
–  Matt Botvinick, Naomi Hannah Feldman, Konrad Koerding, Raj 

Rao, Stefan Schaal   

•  Computing and the Brain 
–  Shafi Goldwasser, Yann Lecun, Pietro Perona, Leslie Valiant, 

Bruno Olshausen, Sanjeev Arora  

•  Creating Open-Science Platforms for Heterogeneous Brain Data 
–  Jeremy Freeman, Greg Farber, Joshua Vogelstein, Sean Hill, 

Miyoung Chun   
 



BREAKOUT THEMES 

•  Brain Architecture (Pfister) 
–  Barriers to mapping the architecture of the brain; how can they be overcome? 
–  What are/ what scale of data suffices to discover of "neural motifs.”   

•  Computing and Neuroscience (Arora)  
–  What advances in computing are needed to support empirical neuroscience?  
–  Can study of algorithms/systems help cast light on the brain’s function/structure? 

•  Brain and Behavior (Schaal)  
–  Creating big data for behavior / movement / cognitive sciences 
–  What computational tools would this require/enable? 

•  Multi-scale Multi-modal modeling (Duncan and Whitaker)  
–  How can we bridge the gap from what the brain is and what it does? 
–  Are there ways to integrate neuroscience, cognitive, and behavioral science 

through the development of common computational tools and analysis methods? 
•  Studying the brain to transform computing (Olshausen and LeCun)  

–  Natural and machine learning 
–  Natural and machine perception 



REPORT THEMES 

1.  Modeling 

2.  Connecting Brain, Mind, and Body 

3.  Data Challenges 

4.  Computing Opportunities    



MODELING 
 
■  The brain is a biological computer that functions quite 

differently from a conventional computer. 
■  Our understanding of the brain is limited both by 

measurement and by computation. 

The human brain: 
18 billion cortical neurons 
1-10 thousand synapses/neuron 
5 million cortical columns ? 
500 areas and nuclei? 
12000 inter-areal connections? 

Cajal, 1888; Oberlander et al, 2012 
Oki, Chung, Kara et al., 2006 
Felleman & Van Essen, 1992 
Modha & Singh, 2010 



 
 
■  Neural modeling uses tools developed originally for 

different purposes in computer science and engineering. 
■  Further development in a variety of mathematical areas 

will be critical for advancing neural modeling. 

Basic computer science relevant to neuroscience 

The human brain: 
18 billion cortical neurons 
1-10 thousand synapses/neuron 
5 million cortical columns ? 
500 areas and nuclei? 
12000 inter-areal connections? 

Cukur & Gallant, 2013 
Modha & Singh, 2010 



 
 
■  Future brain data will be larger, from more measurement 

modalities and across more spatial and temporal scales. 
■  We need new computational tools to deal with these 

multi-scale data and to facilitate data fusion. 

Data analysis/modeling at multiple scales and modalities 

Ohki, Chung, Kara, Hubner, 
Bonhoeffer & Reid, Nature, 2006 



 
 
■  Most current neuroscience work focuses on the group 

level, but individual differences are becoming important. 
■  We need computational tools for modeling individual 

differences and their relationships to the group. 

Data analysis/modeling at group and individual levels 

Huth, de Heer, Griffiths, Theunissen & Gallant, in press 



 
 
■  As neuroscience data grow the needs to share, archive, 

curate, access, process and model the data will grow. 
■  We need new methods for efficiently dealing with large, 

shared data and for automatically processing those data. 

Data and model sharing and processing 



BRAIN, MIND, BODY 

•  Observation: Over half the brain is devoted to sensing 
and motor activity 
–  We are embedded in a complex physical world; 

understanding the brain is only half the answer 
–  The brain has to account for (and take advantage of) 

the physical world 
 

•  BMB Challenges 
–  Spans neuro/cognitive/behavior sciences 
–  Massive diversity of data – quantity, quality, and form 
–  Massive diversity in methodology 
–  Multiple scales of abstraction 



EXAMPLE: MOVEMENT PRIMITIVES IN HUMANS AND 
ROBOTS 

•  Foundations of human (primate) movement generation: 
–  Movements can be classified into rhythmic 

(locomotion, scratching) and discrete (reach, grasp, 
touch) 

–  Theories of primate movement generation in biology 
explain both with one mechanism 

–  Computational theories based on dynamic systems 
theory postulate different mechanisms for generating 
rhythmic and discrete movement 

–  Which is right? 



EXAMPLE: MOVEMENT PRIMITIVES IN HUMANS AND 
ROBOTS 
•  A computational model inspired from behavioral and 

neuroscientific data advances the theory of movement 
planning, optimization, execution in humans and robots 
(Ijspeert et al, Neural Computation 2013) 
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f x( )  is a nonlinear function approximator
g is the goal state of the movement
Cx ,Cz  are coupling terms



EXAMPLE: MOVEMENT PRIMITIVES IN HUMANS AND 
ROBOTS 

•  fMRI Study of Rhythmic vs. 
Discrete Wrist movement: 
–  Major result: the human 

brain employs different 
areas in the generation of 
rhythmic and discrete 
movement, indicating that 
these classes of 
movement should be 
studied and modeled 
separately (Schaal et al., 
Nature Neuroscience 
2004) 
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EXAMPLE: MOVEMENT PRIMITIVES IN HUMANS AND 
ROBOTS 
•  The computational model has been successfully used 

in models of human behavior and robot motion 
generation. 



OTHER EXAMPLES OF BMB OPPORTUNITIES 

•  Creating linked internal/external data sources   
–  Controlled experimental 
–  “Found” – e.g. Fitbit movement data in the wild 
–  Simulated 

   
•  Marrying controlled experimental data with clinical data 

at scale 
–  Narrow deep wells together with massive shallow 

data 

•  Create community-wide computational reference models 
that span areas of investigation 



DATA 

Is neuroscience  
the “next big data  
science”? 

9

and genetics. We define big data in this context as any 
data that breaks the contemporary scientific workflow 
dogma. In neuroscience today, that dogma is that a 
single experimentalist collects data, that data is stored 
into local storage (e.g. a hard drive), and then analyzed 
via loading the dataset into RAM using standard 
computational tools –MATLAB, R, or Python. As already 
noted above, the next generation of neuroscience data 
must evolve beyond this paradigm.

Data Storage: The data already being collected in 
modern neuroscience projects often exceeds the size 
of RAM, disk space on a local workstation, or even on a 
local data store. These data come from many different 
experimental modalities, spanning electron, visible light, 
and magnetic measurements. Today there are three 
key ways that neuroscientists collect data at such a 
scale. First, individual experiments can now lead to 
100 TB of data, including serial electron microscopy 
and calcium physiology. Even MRI experiments can 
produce multiple TB of data products, including various 
intermediate stages of processing and formats. Second, 

the long tail of neuroscience includes many thousands 
of laboratories across the globe collecting data. Even 
if most of these experiments generate relatively small 
datasets, the amalgam of many of these datasets, 
collectively referred to as “mega-data”, quickly reaches 
big data scales. Third, large-scale simulated data is 
not prominent yet in neurosciences. However, we are 
optimistic that soon the measured data from both large 
and small experiments will be sufficiently informative 
to justify detailed simulations which can result in huge 
amounts of data, just as the output of many physical 
simulations today are viewed as “big data.”

These three different scenarios merit different 
solutions. To address large individual experiments we 
need scalable multidimensional spatial databases for 
neuroscience – for example the Open Connectome 
Project.8 To amalgamate thousands of datasets from 
across the globe, we need neuroinformatics platforms 
to query and assemble such data. And for simulations 
we need to build detailed simulation models and 
possibly dedicated hardware.

Figure 2: Spatiotemporal scales of contemporary measurements of brain structure and function from 
Sejnowski et al., 2014.

8 “Open Connectome Project.” [Online] Available: http://www.openconnectomeproject.org/. [Accessed: April 21, 2015].

	
	A NEW AGE OF COMPUTING AND THE BRAIN

10

Data Access: After data have been collected some 
means must be provided for others to access the data. 
There is already movement in this direction. Some groups 
are using commercial cloud solutions to make their data 
publicly available. Federal agencies have a strong history 
of archiving interesting public databases in the sciences, 
including in neurosciences. Other groups are building 
home grown databases with federal funding 

All of these are promising approaches, but unification 
of access is essential. Just as cloud services are rapidly 
moving to a unified model, so also data access for 
science should be uniform, consistent, and easy to use. A 
key challenge is to manage the meta-data –provenance, 
content, experimental conditions, and so forth – that 
will be needed to correctly and accurately support data 
federation and analysis.

Data Analysis: Each area of science uses some 
methods of data analysis that are unique to that area, 
and others that are shared across the sciences more 
broadly. Some sciences, such as physics and climate 

research, rely mainly on highly specialized home-grown 
tools. This has also been the predominant model in 
neuroscience. However, while this approach was perhaps 
necessary in the past, it is not an effective mechanism 
for community-wide replicable science. It chains progress 
in the field to a patchwork of isolated tools that need 
constant maintenance and improvement. It also limits 
the speed with which new ideas, technologies, and tools 
are made available to the broader scientific community.

An important challenge and opportunity in neuroscience 
is to develop powerful, open-source tools that are 
broadly used and shared. The Galaxy Project9 and the 
LONI Pipeline10, for example, both provide promising 
examples of a new paradigm for replicable science 
based on shared data, common tools, and transparent 
analysis methodologies. Promoting open tools and 
methods for data analysis articulating the need and 
vision for these resources at a national level is a 
potential point of collaboration between computer 
science and brain sciences.

9 “Galaxy Project.” [Online] Available: http://galaxyproject.org/. [Accessed: April 20, 2015]. 
10 “LONI Pipeline.” [Online] Available: http://pipeline.bmap.ucla.edu/. [Accessed: April 20, 2015]. 

Table 1: List of useful brain sciences data resources

URL Utility

http://openconnecto.me Open science data & software

http://www.incf.org/resources/research-tools Neuroinformatics tools

http://web.stanford.edu/group/brainsinsilicon/challenge.html Dedicated neuromimetic hardware

https://wiki.humanconnectome.org/display/PublicData/Connecting+
to+Connectome+Data+via+AWS

Commercial cloud storage solution for neuroscience

http://www.birncommunity.org/resources/data/ Federal database of certain brain imaging data

http://crcns.org/data-sets Home-grown brain data repository

http://www.loni.usc.edu/Software/Pipeline Pipelining software for distributed computing

http://www.nature.com/sdata/ Journal dedicated to publishing datasets

http://www.humanconnectome.org/data/ Publicly shared dataset

http://fcon_1000.projects.nitrc.org/ Consortia of publicly shared datasets





SOME EXAMPLES OF DATA OPPORTUNITIES 

•  Creating a community “brain observatory” 
  

•  Developing tools that mirror e.g. galaxy tools for genomics 
 

•  Creating models that promote anonymous federated sharing 
and analysis 

•  Developing novel methods for extracting relevant structure 
from noisy, incomplete observations of the brain 
 

•  Developing new computational tools for aggregating data and 
for building probabilistic structural and functional atlases 



A CONCRETE EXAMPLE OF CS/BRAIN DATA 
ADVANCE 

•  Computational methods to analyze neuroimage data 
(MRI,fMRI, dMRI,M/EEG)  
–  Models of observed signals informed by neuroscience 
–  Analysis methods informed by geometric modeling 

and statistical inference 
•  Examples: 

–  Functional organization of the visual cortex via 
clustering and spectral matching of fMRI and/or MEG 

–  Topic modeling of brain processes from large 
collections of activation data  

–  From diffusion to connectivity and brain parcelation 



EXAMPLE: FROM PIXELS TO MODELS OF BRAIN 

•  Functional connectivity 

•  Anatomical connectivity 



GENERATIVE MODEL: FROM NETWORKS TO DATA 

•  Computational search for subset of nodes  
–  statistical inference 
–  optimization 

Venkataraman et al.  2012 



RESULT: PERTURBED NETWORK 

Reduced connectivity in schizophrenia 
 

Increased connectivity in schizophrenia 
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Venkataraman et al.  2012 



CS FOR BRAIN DATA 

•  Data management and sharing 

•  Computational models of the brain 
–  Based on current brain models 
–  From data to insight 
–  Guide further brain modeling  

•  Need and potential for a new type of computational 
scientists who are well versed in the domain knowledge 



COMPUTING 

•  Numerous cross-cutting computational opportunities: 
–  Machine learning vs. human learning 
–  Machine perception vs. human perception 
–  Machine language understanding vs. human 
–  Machine motor control vs. human motor control 
	
	



 
Borrowing New Ideas  
from Human Vision 

 
David Lowe  
Google Seattle,  

University of British Columbia 



Creating features stable to viewpoint change 

■  Edelman, Intrator & Poggio (97) suggested that complex 
cell outputs are better for 3D recognition than simple 
correlation 

 (Edelman, Intrator & Poggio, 97)  

Slide courtesy David Lowe 



Stability	to	viewpoint	change	

•  Classifica>on	of	rotated	3D	models	
–  Complex	cells:	94%	vs	simple	cells:	35%	

 (Edelman, Intrator & Poggio, 97)  

Slide	courtesy	David	Lowe	



SIFT vector formation (Lowe 1999) 
■  Rotated image gradients are sampled over 16x16 array 

of locations in scale space 
■  Create array of orientation histograms 
■  8 orientations x 4x4 histogram array = 128 dimensions 

1/3/16, 6:00 PMDavid Lowe - Google Scholar Citations

Page 1 of 2https://scholar.google.com/citations?user=8vs5HGYAAAAJ&hl=en&oi=ao

David Lowe
Professor of Computer Science, University of
British Columbia
Computer Vision, Object Recognition

Google Scholar

Citation indices All Since 2011
Citations 62848 36752
h-index 47 34
i10-index 81 53

Title 1–20 Cited by Year

Distinctive image features from scale-invariant keypoints
DG Lowe
International journal of computer vision 60 (2), 91-110

33017 2004

Object recognition from local scale-invariant features
DG Lowe
International Conference on Computer Vision, 1999, 1150-1157

10418 1999

Perceptual Organization and Visual Recognition
DG Lowe
Kluwer Academic Publishers, Boston

1586 1985

Three-dimensional object recognition from single two-dimensional images
DG Lowe
Artificial intelligence 31 (3), 355-395

1522 1987

Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration.
M Muja, DG Lowe
VISAPP (1) 2

1433 2009

Automatic panoramic image stitching using invariant features
M Brown, DG Lowe
International Journal of Computer Vision 74 (1), 59-73

1187 2007

Fitting parameterized three-dimensional models to images
DG Lowe
IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (5), 441-450

1069 1991

Recognising panoramas
M Brown, DG Lowe
International Conference on Computer Vision, 2003, 1218-1225

1060 2003

Shape indexing using approximate nearest-neighbour search in high-dimensional
spaces
JS Beis, DG Lowe
Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE ...

1015 1997

A boosted particle filter: Multitarget detection and tracking
K Okuma, A Taleghani, N Freitas, JJ Little, DG Lowe
Computer Vision-ECCV 2004, 28-39

997 2004

*

Slide courtesy David Lowe 



Deep Neural Networks 

■  Convolutional neural nets are also based on the 
multistage Hubel-Wiesel architecture (LeCun et 
al., 1989) 



Different levels of Deep Convolutional Neural Networks 
predict activity in different levels of the visual system 

Agrawal, Stansbury, Malik & Gallant, in prep. 



COMPUTING 

•  Computing continues to be our closest “artificial relative” 
to the brain – how to make it more than “just” a tool: 

 
–  Is there a comprehensive computational theory that 

can inform our understanding of high-level brain 
function and the genesis of the mind?  

–  How would this theory be expressed and tested?  

–  What are the measurable “outputs” of the brain 
against which such a model could be validated?  

	
	



FINAL THOUGHTS: ARE THERE DISRUPTIVE VISIONS 
OF THE FUTURE 

•  Brain Cartography: What is “Google Maps” for the brain? 
–   A complete registry of “places to see and do” for the brain 
–  A connectivity roadmap 

 
•  Brain Forecasting: Can we create community, open-source 

dynamic simulations of brain functions? 
–  What can we predict from these models? 
–  How are they refined from observational data? 

 
•  Brain Sharing: How can data sharing be as easy as uploading 

a photo on the Web? 
–  Data, metadata, and registry 



CS AND BRAIN - WHERE DISCOVERY MEETS 
INVENTION 

•  It will be impossible to envision brain science absent 
computational support/theories/models 

•  This community is under-developed – BRAIN programs 
are an opportunity to ignite interest and excitement at 
this juncture 
 

•  Learn from other community models – e.g. astrophysics, 
genomics – to learn what to do (and how to do it well) 
 

•  Don’t underestimate importance of education and 
community building! 



CHECK OUT THE WEB SITE VIDEOS! 

http://cra.org/ccc/events/brain-workshop/ 
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Data Approach to Functional
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1/5/16, 9:29 PMCCC | Brain Workshop

Page 3 of 7http://cra.org/ccc/events/brain-workshop/#agenda

09:30 AM Panel: Brain Mapping

Jeff Lichtman
Charless Fowlkes
Ragini Verma
James Haxby
Moderator: Polina Golland

11:00 AM Break

11:30 AM Panel: Brain / Mind / Body

Matt Botvinick
Naomi Hannah Feldman
Konrad Koerding
Raj Rao
Moderator: Stefan Schaal

Working lunch (1:00 – 2:00 PM)

02:00 PM Plenary: Jack Gallant, UC Berkeley, A Big
Data Approach to Functional
Characterization of the Mammalian Brain

Panel Brain Mappi…

Panel Brain Mind …



Research Interfaces 
between Brain 
Science and 

Computer Science 

Jack Gallant, UC Berkeley 
Polina Golland, MIT 
Greg Hager, Johns Hopkins University 

h"p://cra.org/ccc/events/brain-workshop/	


