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The Plan 

•  Some observations on the past and current 
evolution on computing 

•  Some ideas about some of the forces driving 
computing today and how they are unique 

•  Some thoughts on the possible directions for 
the future 
 

•  The CCC and its role in shaping the future 
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We Aren’t The First Exponential! 

Credit: Olaf Simons 
USC 2014, GD Hager 
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Another Exponential 

BC 1000 AD 2000 

Source: Gregory Clark (2007) A Farewell to Alms: A Brief Economic History  
of the World. Princeton University Press.   



The Age of Steam 
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Physical Machines, Virtual Work! 

USC 2014, GD Hager 

http://www.computerhistory.org/babbage/history/ 



From Concept to Commodity 
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The WOMEN who first programmed them! 

USC 2014, GD Hager 

Ada Lovelace 

Grace Hopper 

Kathy Kleiman,  
Jean Bartik,  
Marlyn Meltzer,  
Kay Mauchly  
Antonelli 
 Betty Holberton 



Surfing Exponential (Economic) Waves 

•  The density at which the cost per 
transistor is the lowest doubles  
every (year/18 months/2 years). 

USC 2014, GD Hager 

Gordon Moore 



Surfing Exponential (Economic) Waves 
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Hard Drive Capacity 



Surfing Exponential (Economic) Waves 

USC 2014, GD Hager 



The PC 
Revolution 

USC 2014, GD Hager 

Business Insider, Annex Bulletin 

BPwiz.com 



The Corresponding Economics 

•  PCAST chart 
•  Enrollments from Ed; other exponentials 
•  Frame some questions 

–  Is this a bubble? 
–  Is the field changing? 
– How canwe respond (CCC segue) 

Oracle 2012 
USC 2014, GD Hager 



A World Awash in Computing 

•  More than 10B microprocessors sold 
every year 

•  Every smartphone includes camera, 
accelerometer, internet connectivity 

•  Cloud infrastructure dwarfs many of the 
world’s supercomputers 

•  Access from practically anywhere … 

USC 2014, GD Hager 



A World Awash in Computing 

USC 2014, GD Hager 

Internet Connectivity 



The Current Decade: Online Everything 

•  Email: 65 trillion/yr 

•  SMS: 7 trillion/yr 

•  Youtube: 14trillion views/yr 

•  Twitter: 200B tweets/yr 

http://www.internetlivestats.com/one-second/#google-band 

USC 2014, GD Hager 

Conversation 38% 

Twitter Stats 

News 4% 

Self 
Promotion 
6% 

Pointless 
Babble 40% 



A Big Driver: Us! 
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Challenge: Security and Privacy 

USC 2014, GD Hager 



The Current Decade: “Data” Everything 

•  Creation of almost all  
information in digital form 

•  Dramatic cost reductions in storage 
–  You can afford to keep all the data 

•  Dramatic increases in network bandwidth 
–  You can move the data to where it’s needed 

•  Blurring of line between computing to create 
data, and computing to analyze data 

USC 2014, GD Hager 



20 

Drivers: Science 

Courtesy Alex Szalay and Tony Tyson 

Data volume from 
major instruments 
= 200Pb/yr! 



Drivers: Science 
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A Challenge: Making Sense of Data 

DNA$
Inherited)
Unchanging)(mostly))

RNA$
Gene)expression)
Constantly)changing)

Protein$
Actual)machinery)of)cell)
Enzymes,)receptors,)etc))

Genotype)and)genome?)
wide)sequence)data:)
Up$to$3B$bases/person$

Genome?wide)profiles)
RNA?sequencing)
30K$genes/person$

Disease$

Electronic)records)
Model)organisms)

Mass)spectrometry)
10K$genes/person$

Courtesy Alexis Battle 
USC 2014, GD Hager 
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Wed, Oct 29, 2014 @ 03:30 PM - 05:00 PM
Computer Science
Conferences, Lectures, & Seminars

CS Colloquium: Brian Scassellati (Yale University) - Building
Models of Self and Task

Speaker: Brian Scassellati, Yale University

Talk Title: Building Models of Self and Task

Series: CS Colloquium

Abstract: This talk is an amalgamation of two topics that came out of
research on building socially collaborative systems that focus on building
richer representations of both robots and the tasks that they engage in.
First, I will discuss methods for building self-trained models of a robot's
own kinematic structure and sensory systems. Second, I will describe on-
going efforts to automatically learn hierarchical representations of task
structure from observations. These two topics, taken together, present a
novel viewpoint of how we can restructure the way in which we view the
division between built-in representations and learned methods.

Biography: Brian Scassellati is a Professor of Computer Science,
Cognitive Science, and Mechanical Engineering at Yale University and
Director of the NSF Expedition on Socially Assistive Robotics. His
research focuses on building embodied computational models of human
social behavior, especially the developmental progression of early social
skills. Using computational modeling and socially interactive robots, his
research evaluates models of how infants acquire social skills and
assists in the diagnosis and quantification of disorders of social
development (such as autism). 

Host: Maja Mataric

Location: Seeley G. Mudd Building (SGM) - 101
Audiences: Everyone Is Invited
Posted By: Assistant to CS chair

Events Calendar

Oct
29

The Social Realm Too!  

USC 2014, GD Hager 



A Challenge: Healthcare and Complexity 
Diagnostic factors in play per person 



Overarching Challenge 

Make data usable by people who aren’t 
computer scientists! 



The Coming Decade: “Smart” Everything 

•  Proliferation of (mobile) sensors 

•  The creation of almost all  
information in digital form 

•  Dramatic cost reductions in storage 
–  You can afford to keep all the data 

•  Dramatic increases in network bandwidth 
–  You can move the data to where it’s needed 

Inspiration: Ed Lazowska 
USC 2014, GD Hager 



Drivers: Co-Existing and Collaborating 

USC 2014, GD Hager 

Smart Helpers  (Rethink Robotics) 

Smart Homes 
(GE + Firstbuild) 

Smart Transportation (Google) 



A Challenge: Working in the  
Built Environment 

 

Continuous noise is usually intrinsic to the device's operation 
and internal electronics. Appliances like grinders, fans and 
hair dryers that make use of a motor create voltage noise 
synchronous to the frequency of AC power (60 Hz in the 
USA) and its harmonics (120Hz, 180Hz, etc.) due to the 
continuous making and breaking of electrical contact by the 
motor bushes. In contrast, modern SMPS based electronic 
devices generate noise that is synchronous to their power 
supply’s internal oscillator. 

 In contrast to traditional linear power regulation, a SMPS 
does not dissipate excess power as heat, but instead stores 
energy in an inductance and switches this stored energy in 
from the line and out to the load as required, thus wasting 
much less energy. The key to a SMPS’s smaller size and 
efficiency is its use of a power transistor to switch the stored 
energy at a high frequency, also known as the switching 
frequency. The switching frequency is much higher than the 
60Hz AC line frequency because at higher frequencies the 
inductors or transformers required are much smaller [7]. 
Typical SMPS operate at tens to hundreds of kHz. The 
switching waveform is adjusted to match the power 
requirements of the appliance it is powering. 

 
Figure 1: (Left) Circuit model of a SMPS with placement of the 
voltage probe. (Right) Frequency domain analysis at the voltage 

from probe showing EMI at 10 kHz. 

A CFL’s power supply employs the same fundamental 
switching mechanism to generate high voltages necessary to 
power the lamp. The switching action, which is the 
cornerstone of a SMPS’s operating principle, generates a 
large amount of EMI centered in frequency around the 
switching frequency. This phenomenon can be understood by 
modeling a simple DC-DC SMPS circuit that uses the same 
fundamental switching topology (See Figure 1). 

The large inductor L_PowerLine mimics the power line 
inductance. The SMPS is plugged into the power line. To 
measure the conducted EMI, we place a voltage probe V on 
the power line, which is analogous to having the single 
sensor plugged into the power line with a SMPS based 
device operational somewhere else. The switching frequency 
fc for the model is governed by the PER (period) parameter 
of the V_Switching component. We arbitrarily set it to 10 
kHz. Figure 1 shows a frequency domain plot of the noise at 
probe, which clearly shows that the power supply emits EMI, 
which is conducted over to the power line and is most 
prominent at the switching frequency fc (10 kHz here) and its 
harmonics. This is the same behavior that we observe when a 
SMPS based appliance is turned on in the home.  

In the US, the Federal Communications Commission (FCC) 
sets rules (47CFR part 15/18 Consumer Emission Limits) for 
any device that connects to the power line, which dictates the 
maximum amount of EMI a device can conduct back onto 
the power line. This limit is 66 dBuV for frequency range 
between 150 kHz to 500 kHz, which is nearly -40dBm across 
a 50 ohm load. The ElectriSense data acquisition system is 
sensitive enough to capture noise from -100 dBm to -10 dBm 
across a frequency range of 36kHz – 500kHz. 

 
Figure 2: Frequency spectrogram showing device actuation in a 

home. 

Figure 2 shows a frequency domain waterfall plot showing 
appliances being turned on and off. As is evident from the 
graph, when the device is turned on we see a narrowband 
continuous noise signature that lasts for the duration of the 
device’s operation. Also note that the noise center is 
strongest in intensity and then extends to lower and higher 
frequencies with decaying intensity, which can loosely be 
modeled with a Gaussian function having its mean at the 
switching frequency. This behavior can be attributed to the 
error tolerance of the components that make up the switching 
circuit core, as well as the characteristics of the power 
supply's load. If all the components were ideal, we would see 
a single narrow signal peak at the switching frequency. The 
error tolerance of SMPS components also allows for 
distinction between otherwise identical devices, such as a 
variety of units of the same model of CFL bulb. Finally, the 
power line itself can be thought of as a transfer function 
(difference in the inductance between the sensing source and 
the appliance) and provide additional discrimination among 
multiple similar devices. We show this experimentally later 
in this paper.  

 Dimmers also produce continuous noise due to the triggering 
of their internal triac switches, which can be used to detect 
and identify incandescent loads they control. In contrast to 
the narrowband noise produced by SMPS, a dimmer 
produces broadband noise spanning hundreds of kHz, which 
could be modeled as a Gaussian having very large variance. 
A detailed treatment of dimmers and differentiating between 
identical devices is presented later. 

 
 

Gupta, S., Reynolds, M.S., Patel, S.N. ElectriSense: Single-Point Sensing Using EMI for Electrical 
Event Detection and Classification in the Home. In the Proceedings of UbiComp 2010 (Sept. 26-29, 
Copenhagen, Denmark), ACM, New York, 2010, pp. 139-148.   

 

100% accuracy suggesting that similar make and model 
devices produce similar signature irrespective of the home or 
building they are in, implying the feasibility of crowd 
sourcing to obtain device signatures. 

Temporal Stability of Noise Signatures 
For any signature or fingerprint-based classification system, 
temporal stability is important. The classifier must perform 
well for months (or ideally, years) without requiring frequent 
re-training, which necessitates that the underlying features to 
remain stable over time. 

To show the stability of our noise signatures over time, we 
chose devices from our long-term deployment dataset, in 
particular those that met two criteria: (1) devices were fixed 
in their location during the duration of the deployment and 
(2) they were not altered in any way, for example light bulbs 
were not replaced. For these devices, we extracted randomly 
selected EMI signature vectors spread over the period of the 
6-month evaluation. 

 
Figure 8: Variation of features over 6 months for four devices 

shown in the feature space. Note that no cluster overlaps. 

Figure 8 shows the temporal stability or variation of the 
signatures over time for four randomly chosen devices by 
visualizing the feature vectors in the feature space. We 
observed that the long-term temporal variation was similar to 
what we observe in the short-term temporal variation in these 
devices and that none of the clusters overlapped. 

To better understand how temporal variation effects the 
classification accuracy over time, we generated test sets for 
each device consisting of all events that happened more than 
one week prior to the last day of the deployment and a 
training set consisting of events from all devices that 
happened in the last week. This setup ensured that, if the 
EMI signatures in the test set deviated more than the distance 
between the device clusters that the classifier had computed, 
we would see misclassifications. We observed 100% 
accuracy with KNN classifier on our results, which indicate 
that the devices are largely stable over a long period of time. 
It is important to note that this long-term experiment was 
straddling the summer and winter seasons.  

DISCUSSION AND NEW INSIGHTS 
Using EMI for electrical event detection is a promising 
approach. In this section, we provide additional detail and 
insights that can shed some light on improving our overall 
approach as well the limitations and challenges we 
uncovered. This paper is primarily focused on event 
detection, but the EMI signal also provides rich information 
about the state of particular devices (i.e., the setpoint of a 
dimmer switch, the mode of a washing machine, the 
changing of TV channels, etc). 

Multiple Similar Devices 
Having a number of similar devices is a common occurrence 
in a home, such as having multiple TVs or, more commonly, 
lights that all use the same brand CFL bulbs. This can cause 
problems, especially if similar devices cannot be grouped 
into a single group. For example, grouping two ceiling lights 
in a bedroom may be acceptable, but grouping lights that are 
in different rooms or floors may not be. There are two 
potential solutions to this. 

First, the tolerances in components that make up the 
switching circuitry of a device can introduce enough 
variability in switching frequency such that the mean of the 
Gaussian fits observed on the power line are also shifted. 
Figure 9(a) shows a subset of the spectrum observed by our 
system showing the spectra of the noise generated by four 
CFL lamps of the same model that were purchased as a pack 
of four, thus ensuring that they came from the same 
manufacturing batch. Note that the spectra do not overlap 
even among the same batch of CFLs.  

Our current hardware is able to discern these subtle features 
only when observed in isolation, i.e., a line isolation 
transformer was used to create a noise free power line for this 
particular experiment. With higher ADC resolution and a 
larger FFT, this shortcoming may be overcome. Thus, 
increased resolution may give us better differentiability. 

Second, as the conducted EMI travels through the power line, 
it is affected in several ways, but most prominently the signal 
is attenuated as a function of the line inductance between the 
source of noise and the point of sensing. Thus, two identical 
devices generating identical EMI may look different at the 
sensing source depending on where the devices are attached 
along the power line, which we observed in our in-home 
experiments. 

To confirm this, we plugged a device in two different 
locations in a home and logged the raw spectrum data as 
sensed by our system. Figure 9(b) shows a spectrum of a 
small section of this data. The difference in amplitude can be 
used to differentiate between similar devices located in 
various parts of the home. This suggests that we might have 
found a way to determine the number of fixed devices 
present in the home (i.e., the number of CFL lights in the 
house or the number of a particular type of TV).  



An Overarching Challenge 

Who’s doing to do all of this? 

USC 2014, GD Hager 



No wonder students (or their parents, more likely) are figuring 
out that all of the STEM jobs are in computer science 

71%$

15%$

3%$

3%$

4%$
4%$

Job$Growth,$2012.22$.$U.S.$Bureau$of$Labor$Sta8s8cs$
Computer$Occupa8ons$=$71%$of$all$STEM$

Computer$Occupa3ons$

Engineers$(Aerospace,$Biomedical,$Chemical,$Civil,$Electrical,$
Electronics,$Environmental,$Industrial,$Materials,$Mechanical,$
Other)$

Life$Scien3sts$(Agricultural$&$Food$Scien3sts,$Biological$Scien3sts,$
Conserva3on$Scien3sts$&$Foresters,$Medical$Scien3sts,$Other)$

Physical$Scien3sts$(Astronomers,$Physicists,$Atmospheric$&$Space$
Scien3sts,$Chemists$&$Materials$Scien3sts,$Environmental$
Scien3sts$&$Geoscien3sts,$Other)$

Social$Scien3sts$and$Related$Workers$(Economists,$Survey$
Researchers,$Psychologists,$Sociologists,$Urban$&$Regional$
Planners,$Anthropologists$&$Archeologists,$Geographers,$
Historians,$Poli3cal$Scien3sts,$Other)$

Mathema3cal$Science$Occupa3ons$

Data from the spreadsheet linked at http://www.bls.gov/emp/ep_table_102.htm 
USC 2014, GD Hager 

71% 



But, the kids are catching on … 
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PhD Production is also at an  
all-time high! 

Figure 1. Number of Respondents to the Taulbee Survey  
Year US CS Depts. US CE Depts. Canadian Us Information Total 
1995 110/133 (83%) 9/13 (69%) 11/16 (69%)  130/162 (80%) 
1996 98/131 (75%) 8/13 (62%) 9/16 (56%)  115/160 (72%) 
1997 111/133 (83%) 6/13 (46%) 13/17 (76%)  130/163 (80%) 
1998 122/145 (84%) 7/19 (37%) 12/18 (67%)  141/182 (77%) 
1999 132/156 (85%) 5/24 (21%) 19/23 (83%)  156/203 (77%) 
2000 148/163 (91%) 6/28 (21%) 19/23 (83%)  173/214 (81%) 
2001 142/164 (87%) 8/28 (29%) 23/23 (100%)  173/215 (80%) 
2002  150/170 (88%) 10/28 (36%) 22/27 (82%)  182/225 (80%) 
2003 148/170 (87%) 6/28 (21%) 19/27 (70%)  173/225 (77%) 
2004 158/172 (92%) 10/30 (33%) 21/27 (78%)  189/229 (83%) 
2005 156/174 (90%) 10/31 (32%) 22/27 (81%)  188/232 (81%) 
2006 156/175 (89%) 12/33 (36%) 20/28 (71%)  188/235 (80%) 
2007 155/176 (88%) 10/30 (33%) 21/28 (75%)  186/234 (79%) 
2008 151/181 (83%) 12/32 (38%) 20/30 (67%) 9/19 (47%) 192/264 (73%) 
2009 147/184(80%) 13/31 (42%) 16/30 (53.3%) 12/20 (60%) 188/265 (71%) 
2010 150/184 (82%) 12/30 (40%) 18/29 (62%) 15/22 (68%) 195/265 (74%) 
2011 142/185 (77%) 13/31 (42%) 13/30 (43%) 16/21 (76%) 184/267 (69%) 
2012 152/189 (80%) 11/32 (34%) 14/30 (47%) 16/26 (62%) 193/277 (70%) 
2013 144/188(77%) 10/30(33%) 14/26(54%) 11/22(50%) 179/266 (67%) 
!
!
!
!

!
!

0!

500!

1000!

1500!

2000!

2500!

Nu
m
be
r'o
f'P
hD
s'

Academic'Year'ending'in'June'of'Year'

Figure'D1.'PhD'Production'
CRA'Taulbee'Survey'2013'

Canadian!
US!I!
US!CE!
US!CS!

CRA%Taulbee%Survey%2013 57
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But What Ultimately Drives All of This? 

USC 2014, GD Hager 



2012 
2012 NITRD update by PCAST 

USC 2014, GD Hager 



Drivers: Industry 
•  IT is around 1T$* of US economy (itself 18T$ 

GDP) 
–  Apple Inc. (Nasdaq: AAPL), (560B/30B)  
–  Exxon Mobil Corporation (NYSE: XOM), 
–  Google Inc (Nasdaq: GOOG), (358B /12B) 
–  Microsoft Corporation (Nasdaq: MSFT), (344B/20B) 
–  Berkshire Hathaway Inc. (NYSE: BRK.B),  
–  Wal-Mart Stores, Inc. (NYSE: WMT),  
–  Johnson & Johnson (NYSE: JNJ),  
–  General Electric Company (NYSE: GE),  
–  Chevron Corporation (NYSE: CVX)  
–  Wells Fargo & Co (NYSE: WFC) 

USC 2014, GD Hager 

*Atkinson, R. D., & Stewart, L. A. (2013). Just the FACTS: 
 The Economic Benefits of Information and Communications Technologies  



Drivers: Government Investments 

USC 2014, GD Hager 

$894M 



Payoff on Investment 
•  CISE core at 682M is 87% of CS funding 

nationally – effectively a payoff of 1200-1! 
 

USC 2014, GD Hager 



Payoff on Investment 
•  CISE core at 682M is 87% of CS funding 

nationally – effectively a payoff of 1200-1! 
•  But, we aren’t growing academics! 

USC 2014, GD Hager 
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Most PhDs Go To Industry Too … 

!
!
!

!
!

CRA%Taulbee%Survey%2013 60
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The Way We Think of Ourselves 

machine)
learning)

NLP)

HCI)

RoboKcs)

Sensor)
networks)

CORE$
CSE$

USC 2014, GD Hager 



The Way It Really Is 

machine)
learning)

natural))
language)
processing)

HCI)

cloud)
compuKng)

big)
data)

mobile)

sensors)

Energy$and$$
Sustainability$

Security$and$
Privacy$

Technology$for$
Development$

Medicine$and$Global$Health$

EducaJon$

ScienJfic$
Discovery$

TransportaJon$

Neural$
Engineering$

Elder$Care$ Accessibility$

Agile$Manufacturing$

CORE$
CSE$

Drivers: Industry, Society, Government, Science 

Modified from Lazowska 
USC 2014, GD Hager 



What Is Our Future?  
How Do We Shape It? 

USC 2014, GD Hager 

Is Computing the  
future of thought  
and discourse? 

Is Computing creating a new ways to combine 
and create? 

Is it the beginning of the  
end of Computing as 

we know it? 



Gregory Hager                         Elizabeth Mynatt 
    Chair       Vice Chair 

Johns Hopkins      Georgia Tech 
Ann Drobnis 

Director 

THE COMPUTING COMMUNITY 
CONSORTIUM: CATALYZING AND 

ENABLING COMPUTING RESEARCH 



SOME MOTIVATING QUESTIONS 

•  How do we energize the community around “big ideas” 
that will create excitement and energy for computing and 
computational research? 

•  How do we shape and articulate our relevance to 
national priorities? 

•  How do we communicate these ideas, as a community, 
to science policy and funding leadership? 



THE COMPUTING COMMUNITY CONSORTIUM 

•  Established in 2006 as a standing committee of the 
Computing Research Association  

•  Funded by NSF under a Cooperative Agreement 
–  Second Award began in 2012,  

recently completed Reverse Site Visit 



THE START 

PIs 
•  Dan Reed, PI  
•  Andrew Bernat 
•  Susan Graham 
•  Anita Jones 
•  Edward Lazowska 

Also in the Mix 
•  Randal Bryant 
•  Richard Karp 
•  Ken Kennedy 
•  Peter Lee 
•  Wim Sweldens 
•  Jeffrey Vitter 



THE COMPUTING COMMUNITY CONSORTIUM 

•  Established in 2006 as a standing committee of the 
Computing Research Association  

•  Funded by NSF under a Cooperative Agreement 
–  Second Award began in 2012,  

recently completed Reverse Site Visit 

•  Facilitates the development of a bold, multi-themed vision 
for computing research – and communicates this vision 
to stakeholders 

•  Led by a broad-based Council with 3 year terms 
•  Staffed by CRA 



THE CCC COUNCIL – EXECUTIVE COMMITTEE 

•  Greg Hager, Johns Hopkins Univ. (Chair) 
•  Beth Mynatt, Georgia Tech (Vice Chair) 
•  Susan Graham, UC Berkeley (Past Chair) 
•  Bob Sproull, formerly Sun Labs, Oracle 
•  Liz Bradley, University of Colorado, Boulder 
•  Mark Hill, University of Wisconsin, Madison  
•  Ann Drobnis, Director  
•  Andy Bernat, CRA Executive Director  

*)ExecuKve)CommiPee)
**)1)year)leave)



THE CCC COUNCIL  
   Terms ending June 2017 

–  Lorenzo Alvisi, UT Austin 
–  Vasant Honavar, Penn State 
–  Jennifer Rexford, Princeton 
–  Debra Richardson, UC Irvine 
–  Klara Nahrstedt, UIUC 
–  Ben Zorn, Microsoft Research 
 

   Terms ending June 2016 
–  Randy Bryant, CMU** 
–  Limor Fix, formerly Intel 
–  Tal Rabin, IBM 
–  Daniela Rus, MIT 
–  Ross Whitaker, Univ. Utah 

   Terms ending June 2015 
–  Sue Davidson, Univ. Pennsylvania 
–  Joe Evans, Univ. Kansas 
–  Ran Libeskind-Hadas, Harvey Mudd 

College 
–  Shashi Shekhar, Univ. Minnesota **)1)year)leave)



OUR MISSION  

•  Catalyze)and)communicate)the)excitement)of)
compuKng)research)

•  Align)and)arKculate)our)contribuKons)to)other)
fields)and)to)naKonal)prioriKes)

•  Communicate)to)policymakers,)industry,)
government,)and)community)at)large)

•  Groom)future)leadership)to)help)shape)science)
policy)



HOW DO WE DO IT? 

CommunityLiniJated$visioning:)
•  Workshops)to)discuss)“out?of?the?box”)ideas)
•  Blue)Sky)Ideas)tracks)at)conferences)

Outreach$to$White$House,$funding$agencies:$
•  Outputs)of)visioning)acKviKes)
•  Short)reports)to)inform)policy)makers)
•  Task)Forces)–)Health)IT,)Sustainability)IT,)Data)

AnalyKcs)
CommunicaJng$CS$Research:$

•  CCC)Blog)[hPp://cccblog.org/])
•  CompuKng)Research)in)AcKon)Video)Series)
•  Research)“Highlight)of)the)Week”)
•  “The)Impact)of)NITRD”)symposium)

Nurturing$the$next$generaJon$of$leaders:$

•  CompuKng)InnovaKon)Fellows)Project)
•  Leadership)in)Science)Policy)InsKtute)



VISIONING GOALS 

Communicate)the)role)of)
CS)research)to)
stakeholders)

)

Develop)leadership)
capacity)to)help)shape)
science)policy)



4 meetings during 
summer 2008 

 

Roadmap published 
May 2009 

 

Extensive discussions 

between visioning  

leaders & agencies 
Henrik Chistensen 

Georgia Tech 

OSTP issues directive to all 
agencies in summer 2010 

to include robotics in 
FY 12 budgets 

National Robotics  
Initiative announced 

in summer 2011 

CATALYZING AND ENABLING: ROBOTICS 



CATALYZING AND ENABLING: BIG DATA 

2012 2008 2010 2008 



Josep Torrellas 
UIUC 

CATALYZING AND ENABLING: ARCHITECTURE 

Mark Oskin 
Washington 

Mark Hill 
Wisconsin 

2010 2010 2012 2013 
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Directorate for Computer & Information Science & Engineering

SMART HEALTH AND WELLBEING  (SHW) 

CONTACTS

See program guidelines for contact information.

SYNOPSIS

Information and communications technologies are poised to transform our access to and
participation in our own health and well-being.  The complexity of this challenge is being shaped
by concomitant transformations to the fundamental nature of what it means to be healthy.  Having
good health increasingly means managing our long-term care rather than sporadic treatment of
acute conditions; it places greater emphasis on the management of wellness rather than healing
illness; it acknowledges the role of home, family, and community as significant contributors to
individual health and wellbeing as well as the changing demographics of an increasingly aging
population; and it recognizes the technical feasibility of diagnosis, treatment, and care based on
an individual's genetic makeup and lifestyle.  The substrate of 21st century healthcare will be
computing and networking concepts and technologies whose transformative potential is tempered
by unresolved core challenges in designing and optimizing them for applicability in this domain.

The goal of the Smart Health and Wellbeing program is to seek improvements in safe, effective,
efficient, equitable, and patient-centered health and wellness services through innovations in
computer and information science and engineering.  Doing so requires leveraging the scientific
methods and knowledge bases of a broad range of computing and communication research
perspectives.

Some illustrative examples are described here.  Protecting patient privacy while providing
legitimate anytime, anywhere access to health services will require new security and
cryptographic solutions.  Personalized medicine will require advances in information retrieval, data
mining, and decision support software systems.  Continuous monitoring and real-time, customized
feedback on health and behavior will rely on remote and networked sensors and actuators, mobile
platforms, novel interactive displays, and advances in computing and networking infrastructure. 
Data collected by sensors, at clinics, and labs need to be anonymized and aggregated for
community-wide health awareness and maintenance.  Such data, especially collected over
populations, can lead to inferences about best practices and cost savings in providing health
services.  Virtual worlds, robotics, image, and natural language understanding can facilitate better
and more efficient delivery of health services.  Software-controlled and interoperable medical
devices are necessary for providing safe critical care.  Healthcare systems and applications must

be usable, to preclude or minimize failures due to human error; and they have to be useful, by
matching the mental model of users, from provider to patient, so people make appropriate
decisions and choices.  These examples are meant to convey the breadth of computing areas that
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SOME RECENT AND UPCOMING EVENTS 

•  Aging in Place (with NIH) 
•  Uncertainty in Computation (Community driven) 
•  BRAIN (with CISE) 
•  Privacy by Design (Community driven) 
•  CS Visions 2025 (with CISE AC) 

Thanks)Stefan!)



BLUE SKY IDEAS CONFERENCE 
TRACKS 
•  Special “Blue Sky Ideas” tracks at leading conferences  

–  Reach beyond usual papers 

•  CCC provides prize money for top 3 papers 
–  Papers should be: 

•  open-ended 
•  “outrageous” or “wacky” 
•  Present new problems, new application domains or new 

methodologies   
•  Relatively short (4-6 pages) 
•  Published after the conference 



BLUE SKY IDEAS CONFERENCE 
TRACKS 
•  BuildSys 2012 
•  Computational Sustainability Track @ AAAI 2013 
•  Computational Sustainability Award @ CHI 2013 
•  Robotics: Science and Systems 2013 
•  Conference on Innovation Data Systems Research 

(CIDR-2013) 
•  Autonomous Agents and MultiAgent Systems (AAMAS-2014) 
•  Upcoming: 

–  Foundations of Software Engineering 2014 
–  Association for the Advancement of Artificial Intelligence 2015 
–  SIGSPATIAL 2015 



COMMUNICATING: LEADERSHIP IN 
SCIENCE POLICY INSTITUTE 

Milt)Corn,)NIH)

Henry)Kelly,)DoE)

APendees)

#3$coming$4/15!$



SOME CURRENT THEMES 

•  Computing and the Physical World   

•  What are the underlying 
CS research questions that 
will enable new generations 
of smart systems that  
move, manipulate, and 
control our environment? 

Machines)

People)

CompuKng)



SOME CURRENT THEMES 

•  Industry 
–  What are interaction modes with industry? 

–  How do they benefit both 
sides? 

–  What are the growth 
barriers/opportunities? 

Drivers: Industry 
•  IT is around 1T$* of US economy (itself 18T$ 

GDP) 
–  Apple Inc. (Nasdaq: AAPL), (560B/30B)  
–  Exxon Mobil Corporation (NYSE: XOM), 
–  Google Inc (Nasdaq: GOOG), (358B /12B) 
–  Microsoft Corporation (Nasdaq: MSFT), (344B/20B) 
–  Berkshire Hathaway Inc. (NYSE: BRK.B),  
–  Wal-Mart Stores, Inc. (NYSE: WMT),  
–  Johnson & Johnson (NYSE: JNJ),  
–  General Electric Company (NYSE: GE),  
–  Chevron Corporation (NYSE: CVX)  
–  Wells Fargo & Co (NYSE: WFC) 

USC 2014, GD Hager 

*Atkinson, R. D., & Stewart, L. A. (2013). Just the FACTS: 
 The Economic Benefits of Information and Communications Technologies  



SOME CURRENT THEMES 

•  Cyber-infrastructure 
–  Next generation HPC and relationship to data 

intensive computing 
–  Production, transport, analysis, and visualization 

  
•  Manufacturing 

–  Agile manufacturing = smart devices, networks, and 
software 

–  3D printing = smart devices, networks, and software 
–  How do we engage the CS community 



SOME CURRENT THEMES 

•  Education 
–  What are ways that CS can help create a highly 

trained workforce? 
–  What are the CS research questions that will enable 

that future? 

•  Healthcare 
–  How do we continue to bring CS into the 

conversations around major healthcare initiatives? 



WRAP-UP 

•  It is a great time to be in CS! 
•  We have to keep our eyes to the forefront of research 
•  We have to frame our ideas in a way that communicates 

the excitement and impact of computing research 

•  Subscribe to the Blog! 
•  Participate in LiSPI (April 2015) 
•  Propose a workshop or conference 

track 

•  We need your ideas! 



Free$&$Open$Source$SoYware$

SOME CCC VISIONING ACTIVITIES 



CCC: CATALYZING AND ENABLING 
COMPUTING RESEARCH 

Gregory Hager 
CCC Chair 

Johns Hopkins University 


