
Version of 29 November 2010

Towards a science of open source systems

Final Report
November 2010

Prepared for the Computing Community Consortium (CCC)

Walt Scacchi, Kevin Crowston, Chris Jensen, Greg Madey, Megan Squire
Thomas Alspaugh, Les Gasser, Scott Hissam, Yuzo Kanomata, Hamid Ekbia,

Kangning Wei, Charles Schweik
and others from the 2010 FOSS Workshop on the Future of Research in Free/Open Source

Software

Newport Beach, CA
10-12 February 2010
http://foss2010.isr.uci.edu

1

http://foss2010.isr.uci.edu/

Version of 29 November 2010

Table of Contents
Executive Summary...8

Recommendations:...10

 Part I The Science of FOSS...12

Motivational Transformations...13

Overview...13

What are open source systems and what are FOSS systems?..13

Where does FOSS Research belong?..16

Why we need a national research program in FOSS systems..18

FOSS exists as a high-impact socio-technical phenomenon on its own right....................19

FOSS system code and related artifacts can be accessed, studied, modified, archived,
and redistributed by anyone...19

FOSS is a technological “extremophile” in several domains..20

FOSS system development is participatory and engages active user involvement...........21

FOSS development projects enable large-scale, domain-specific learning.......................21

FOSS systems are an engine of innovation...22

FOSS systems are transforming scientific research practice across disciplines................23

FOSS development is helping to resolve outstanding problems in large-scale software
engineering practice...23

FOSS systems are transforming the global software and IT industries.............................24

FOSS systems are transforming governments, society, and culture..................................26

Many key FOSS system projects are U.S. led...27

What have we learned so far about FOSS Systems? Observations on FOSS systems
studies...28

Where is the action? Areas and impacts for FOSS systems research...................................32

2

Version of 29 November 2010

 Part II The Current State of FOSS..35

FOSSD Processes, Practices, and Project Forms..36

Overview...36

Our scientific research goals...36

The traditional view of software development processes, practices, and projects.................37

What are FOSS Development processes, practices, and projects and how do they differ from
those traditional to Software Engineering?...40

What else do we know about FOSS processes, practices, and project forms?......................51

Additional Research Opportunities for FOSSD and SE..56

Conclusions...58

Collaboration..60

Overview...60

Observation and Intervention..62

Research Findings..63

Collaboration among individual FOSS developers...63

Collaboration among FOSS projects..64

Collaboration among multi-project FOSS ecosystems...65

Collaboration on a regional government or global scale..65

Outstanding or Emerging Research Problems..66

Contributor-Level Collaboration..66

Project-Level Questions...67

Collaborative structure and process..68

New Users and Members..69

Collaborative Infrastructure..70

Cross-Cutting Concerns...71

3

Version of 29 November 2010

Conclusions...72

Ecosystems..73

Overview...73

Characterizing Interaction Among Projects in a Software Ecosystem....................................74

Interprocess Communication Among Projects in a Software Ecosystem...............................76

Process Integration...77

Process Conflict..79

A Sample of FOSS Ecosystems..80

Networked computer game ecosystems..82

Scientific computing ecosystems for X-ray astronomy and deep space imaging...............83

World Wide Web ecosystems...84

Research findings...84

Effects of the broader ecosystem on FOSS projects..85

Effects of FOSS on the broader ecosystem...88

Open research questions..89

Conclusions...93

Evolution..94

Overview ..94

What is missing?...95

What do we currently know?...98

What do we need to know?...100

Evolution of FOSSD Processes, Practices and Project Forms..102

Evolution of FOSSD Project Infrastructure...104

Evolution of FOSSD Project Communities...105

4

Version of 29 November 2010

Evolution of FOSS Ecosystems..107

Evolution of Licensing Arrangements...108

Conclusions...111

 Part III FOSS Data, Analytics, and Research Infrastructure..................................112

A Research Infrastructure to Support New Science of Open Source Systems..........................113

Overview..113

Purpose of the New Infrastructure...115

Examples of Research Infrastructures in Other Domains...116

Benefits of a FOSS Research Infrastructure..117

Building the Infrastructure...118

Data collection..119

Data curation and cleaning...120

Metadata...120

Data analysis..121

Using the data and talking about the data..122

Summary of Infrastructure Requirements...123

Current Status of Infrastructure Requirements...124

Challenges for the FOSS research infrastructure...128

Conclusions...128

 Part IV Broader Impacts of FOSS Research..130

Broader Impacts Areas for Research in FOSS Systems...131

Overview...131

Software Development..131

Education and Learning..132

5

Version of 29 November 2010

Innovation..133

Science, Industry, and Government..134

Recommendations for Action...136

Recommendation 1: Stimulate investment in projects for scientific research and technology
development that build FOSS systems as a way to stimulate workforce development........136

Recommendation 2: Create a new cross-cutting research program within the CISE
Directorate that supports all aspects of FOSS systems research—FOSS development
processes, work practices, and alternative project forms; collaboration in development and
use of FOSS systems; FOSS ecosystems; and FOSS system evolution.............................137

Recommendation 3: Stimulate research in development and use of FOSS systems in other
science research programs, health, energy, climate, defense, and National Engineering
Challenge domains...138

Recommendation 4: Stimulate research in Gender and FOSS, and Collaboration and
Diversity in FOSSD...139

Recommendation 5: Invest in and encourage cross-cultural studies of FOSS, especially in
non-English cultures..140

Recommendation 6: Stimulate the research and development of FOSS systems for
humanitarian aid and relief, especially those that provide opportunities for graduate,
undergraduate, and secondary students to contribute..140

Recommendation 7: Stimulate existing research programs in Software Engineering, Human-
Centered Computing, and Networking Technology and Systems to investigate and develop
new approaches to the challenges of engineering FOSS systems and real-world systems that
rely of FOSS..141

Recommendation 8: Establish and support shared research repositories for FOSS data as
part of the new research infrastructure...142

Recommendation 9: Pursue development of advanced data analysis tools for examining
FOSS data as part of the new FOSS systems research infrastructure.................................143

Contributors...144

Acknowledgements..146

References..147

6

Version of 29 November 2010

7

Version of 29 November 2010

Executive Summary

We seek to establish a national program for research into the science of open source
systems.

Open source systems are beginning to appear in many diverse disciplines, though
perhaps the area with the highest level of activity, visibility, and impact is free/open
source software (FOSS) systems. FOSS systems are being researched and developed
by fast growing communities of academic and industrial practitioners in different
disciplines. However, FOSS systems are much more than just source code, or software
applications; they are better understood as packages of interrelated social and technical
resources that interact and overlap, and that can occasionally give rise to profound
consequences. This report addresses and elaborates on the nature of FOSS systems in
order to identify the questions and problems that will guide research in this domain over
the next five to ten years. Further, it provides a set of recommendations for action
targeted to FOSS researchers, research agencies, and others involved in scientific
research and technology development.

How are FOSS systems developed?, How do people working at a distance from each
other build them? How does such work draw on surrounding webs of resources and
socio-technical relationships? How do these systems evolve over time? These are
questions of growing importance to the future of software engineering, education,
innovation, science, society, and government. This report details the published research
studies and the open research problems that together describe the current state of
scientific knowledge about FOSS systems. Yet as FOSS systems permeate more
aspects of science, technology, society, and government, we will be limited in our
collective ability to explain, rationalize, predict, control, develop and transfer these
systems. Consequently, we identify and recommend the research studies, research
infrastructures, and other resources needed to expand the scientific knowledge we have
started to produce.

This report is organized into four major sections.

The first section motivates a deliberate scientific study of FOSS systems. It discusses
how FOSS systems are developed, why FOSS will help create the new scientific
knowledge we now lack, and how such knowledge can be transformative as an engine
of innovation in a growing number of application areas. This section details how FOSS
systems and development practices are creating new research practices in many
scientific domains and can contribute to resolving many outstanding issues in large-
scale software engineering. FOSS systems are also changing global software and
Information Technology (IT) industries. The development and deployment of FOSS

8

Version of 29 November 2010

systems can further transform society and cultural practices. In short, FOSS systems
and their development constitute a rich, fertile area for scientific research and
technology development that will create new knowledge about software systems
through computational thinking and practice.

The second section serves to elaborate on the specifics of what researchers know
about FOSS systems, and what remains to be discovered. This section is organized into
four sub-sections: (1) the development processes, work practices, and project forms that
facilitate and shape FOSS systems; (2) the collaboration processes that govern how
people who work at a distance from each other with little or no face-to-face interaction
can develop complex FOSS systems together, often without formal project management
regimes, budget, or schedules; (3) the surrounding web of resources and socio-
technical relationships that constitute the FOSS ecosystems that contextualize, situate,
nurture, sustain, and adapt what FOSS systems will be developed, and to what ends;
(4) the evolution of FOSS systems over time, and how open access to FOSS system
evolution, data and artifacts is giving rise to surprising results in system evolution, such
as sustained exponential growth across many system generations.

The third section addresses the kinds of data, repositories, access and analysis tools,
and other resources that comprise the research infrastructure needed for systematic
empirical studies of FOSS systems. Such a research infrastructure will support further
investigation in the areas described in Section Two: the way FOSS systems are
developed, the collaboration practices in FOSS, FOSS ecosystems, and FOSS
evolution. Additionally, the science of open source systems that we are pursuing is one
in which open source, open access, open archiving, open distribution and dissemination
are essential elements of the open science we seek to foster, practice, and model. The
research instrumentation that we need to grow and expand our body of scientific
knowledge depends on cultivating and supporting this diverse web of FOSS system
research infrastructures.

The fourth section summarizes the broad implications of a sustained research program
and significant investment in the science of FOSS systems in particular, and into open
source systems more generally. These implications will be seen most readily in the
domains of large-scale software development; education and learning; social and
technological innovation; and science, industry, and government. Finally, the report ends
with a set of nine recommendations for action that detail the ways that organizations or
agencies can maximize their research investments. These recommendations are listed
here to help set the stage for the remainder of this report. However, they are not simply
a recapitulation of findings detailed elsewhere in the report. Instead, they are intended
as recommendations for action based on an understanding of what the results from
current studies of FOSS systems, processes and practices, collaboration patterns,

9

Version of 29 November 2010

software ecosystems, and evolution processes imply for the advancement of scientific
knowledge and broader technological development.

Recommendations:
1. Stimulate investment in projects for scientific research and/or technology
development that build FOSS systems as a way to stimulate workforce development.

2. Create a new cross-cutting research program or office within the CISE Directorate
that supports all aspects of FOSS systems research—FOSS development processes,
work practices, and alternative project forms; collaboration in development and use of
FOSS systems; FOSS ecosystems; and FOSS system evolution.

3. Stimulate the FOSS research community and others to focus research attention on
the development and use of FOSS systems in other science research programs, as well
as in health, energy, climate, defense, and National Engineering Challenge domains.

4. Stimulate new research into substantially under-explored areas such as Gender and
FOSS, and Collaboration and Diversity in FOSSD.

5. Invest in and encourage cross-cultural studies of FOSS, especially comparative
studies of FOSSD activities in non-English speaking cultures and countries.

6. Stimulate the research and development of FOSS systems for humanitarian aid and
relief applications, especially those that provide opportunities for graduate,
undergraduate, and secondary students to participate and contribute.

7. Stimulate existing research programs in Software Engineering, Human-Centered
Computing, and Networking Technology and Systems to investigate and develop new
approaches to the challenges of engineering FOSS systems and real-world systems
that rely on FOSS.

8. Establish and support shared research repositories for FOSS data as part of the new
research infrastructure that supports FOSS systems research.

9. Pursue development of advanced data analysis tools for examining FOSS data as
part of the new FOSS systems research infrastructure.

Finally, this report should not be viewed as a definitive statement about progress in
FOSS systems research to date, nor should it be seen as a list of ultimate goals for the
future of research into FOSS systems. As our goal in producing this report was to
increase awareness of the advances and challenges that are found in this emerging,
open area of computer and information science and engineering research, we reiterate
our belief that this report must also be an open source, collaborative endeavor whose

10

Version of 29 November 2010

interaction with its surrounding ecosystems of scholars, enthusiasts, and critics will
collectively create the meaning and content of this report. Consequently, we will make
the text of the most current version of this report available on the FOSS 2010 workshop
Web site (http://foss2010.isr.uci.edu), along with an archive of previously released
versions (in PDF format), so that others can also contribute to the ongoing refinement of
our collected knowledge of the future of research into free and open source software
systems.

11

http://foss2010.isr.uci.edu/

Version of 29 November 2010

Part I

The Science of FOSS

12

Version of 29 November 2010

Motivational Transformations

Overview

This report describes our vision for a national program for research into the science of
open source systems.

Based on a community workshop, conference presentations, and supporting meetings
we conducted in the winter and spring of 2010, our intention is to collectively identify
the major questions that will shape future research in FOSS systems, the research
resources and infrastructures needed to explore and resolve these questions, and to
articulate our vision of a future in which FOSS plays an ever larger role in information
technology and society. Specifically, we see that major topics of research consider how
FOSS systems shape and are shaped by FOSS development processes, practices,
project communities,m collaboration practices and ecosystems that situate FOSS
systems; and how FOSS systems evolve. In turn, advances in the development of
missing scientific knowledge in these areas will help articulate the beneficial impacts
and contributions of FOSS systems to software development, education, and innovation
practices. Similarly, the new research infrastructure and resources required to conduct
the research that will produce this knowledge is also identified. Consequently, we begin
by defining what open source systems are, why they are significant and merit research
study, and why FOSS systems are the primary area to study to develop the missing
knowledge needed to realize the full range of scientific and societal benefits that can
follow from the widespread adoption of open source system development and use.

What are open source systems and what are FOSS systems?

Open source systems are those whose operational description and technological
embodiment can be interpreted and used by both computers and people. This is most
readily observable in FOSS systems in which the software source code is an
operational description of how to perform a system of algorithmic processes, data
manipulations, and user-computer interactions, as well as the means for instructing a
computer system to perform associated computations. Open source systems can also
be found to a lesser (but growing) degree in fields focusing on hardware design (open
source microprocessors, do-it-yourself home-made devices), product design (open
source cars, open source cameras), cultural media (film, video, music, art, online
documents, Wikipedia), and, importantly, the science common in scientific research. In

13

Version of 29 November 2010

some of these cases part or all of the descriptions are in computational form, but the
final embodiment may be available in non-computationally executed form (e.g., a
tangible manufactured artifact that, once made, cannot be easily modified, remade, and
redistributed). In other cases, new derivations are continually encouraged. But FOSS
systems are the open source systems receiving the greatest attention, investment, and
effort to develop and deploy new technologies in ever more diverse disciplines.
Moreover, they are an area in which openness and permission for new derivations
through collaborative processes on the Internet have been established protocol for
some time. There is much to be learned from them that can inform these activities in
other, emerging domains.

We propose a new science of open source systems to understand how and why FOSS
systems sometimes give rise to the hugely successful, socioeconomically beneficial,
and transformational information technologies that underlie much of the Internet and
Web, yet at other times fail to gain sufficient traction to engage much interest. How are
FOSS systems developed and used, and how do they sometimes evolve into
transformational systems and communities of practice? How do we create a new
generation of transformational systems using FOSS in mission-critical problem domains
like health care, cybersecurity, or global climate change?Can we even create such
systems without FOSS? These are fundamental questions that we lack the scientific
knowledge to answer reliably or predictably. Furthermore, they are different questions
than those that motivate research into software applications, services and tools, and
their development.

FOSS systems are much more than source code. The Open Source Initiative (OSI --
http://www.osi.com), the community-recognized body for reviewing and approving FOSS
licenses that comply with the “open source definition” recites eleven criteria that define
software that can be publicly identified and licensed as FOSS. These criteria include:
free redistribution, inclusion of source code and executable/compiled code, allowance
for modification and creation of derived works, maintaining the integrity of the author's
source code, not discriminating against any persons or groups when providing FOSS,
not discriminating against use of FOSS in a specific field of endeavor, allowance for
distribution of licenses without the need for additional licenses, requiring that the license
for a FOSS product must not be product specific, must not restrict other software, and
must be technology neutral.

A FOSS system comes as a socio-technical package — a package that links social and
technological resources through development processes, work practices, and project
communities that continuously transform collective action into new technologies, and
technologies into new kinds of work organizations [Kling and Scacchi 1982; Star and
Ruhleder 1996]. What distinguishes FOSS systems packages from previous computing
packages is that FOSS systems are open, accessible online, observable and

14

http://www.osi.com/

Version of 29 November 2010

modifiable. Their redistribution, mobilization, and redeployment are encouraged with
minimal restrictions. Such packages interrelate and include:

• Online information artifacts (source code, electronic bulletin boards, threaded
email discussion, bug reports, etc.).

• Development processes, work practices, and project community dynamics that
collectively develop and sustain continuously evolving software applications,
services, and tools.

• Online information infrastructure (e.g., supporting software tools and techniques,
internet servers, licenses, standard practices and tools, and project artifact
repositories).

• Communities of practitioners who develop, use, or otherwise contribute to what is
working well – and what isn’t.

• Data sets manipulated by the FOSS system being developed or used.

• Philosophies or ideologies about resource sharing practices.

• Histories, or information legacies, of work accomplishments including bug
reporting systems, individual and group blogs, etc.

• Systems of capital (social, technical, human, etc.).

• New roles, such as community manager, super reviewer or bug reporter, in which
to participate and contribute to the ongoing effort.

• Intellectual property licenses that reinforce social relationships, values, and
beliefs (e.g., the General Public License, GPL).

• Governance structures and other institutions guiding the collaboration, and
evolving as the project evolves.

Each FOSS system, whether based in a single FOSS development (FOSSD) project, or
spanning multiple ecosystems of interrelated FOSSD projects [Jensen and Scacchi
2005], is similar to and different from all others in ways that the FOSS research
community is just beginning to understand. At the same time, entrepreneurs and
venture capitalists are increasingly shifting their focus away from exclusive proprietary
software products and towards those that intermingle proprietary and FOSS
components, as a strategy to reduce time to market, improve product quality and

15

Version of 29 November 2010

service opportunities, and reduce software development and marketing costs [Augustin
2010]. Furthermore, science researchers in fields outside of Computer and Information
Science and Engineering (CISE) disciplines, as well as Information Technology (IT)
practitioners in different corporate, governmental, and academic enterprises, are
increasing their interest and investment in FOSS systems. Once again, we lack deep
fundamental knowledge to explain why this is so, and why prior Computer Science
research efforts in areas like software engineering have not generated this kind of
knowledge or enthusiasm for emerging software systems.

Where does FOSS Research belong?

In considering a new proposal for research that advances our scientific and technical
knowledge about the development, use, and evolution of FOSS systems, one may ask
where does FOSS fit into CISE research programs? This is the question that can be
addressed through a set of questions and answers that offer insight into how to “rethink
software” [Wing, Hirsh, et al. 2008].

Is FOSS just another name for software that is not proprietary? Is it nothing more than a
software free lunch?

If so, FOSS does not represent a fundamentally different approach to developing
software. It is nothing new, and research into FOSS can be addressed using existing
notions of software and software research programs already in place at the National
Science Foundation (e.g., CCF Software and Hardware Foundations (SHF) Program,
CNS Computer Systems Research (CSR) Program, Information and Intelligent Systems
(IIS) Programs, and CISE Cross-Cutting (CC) Programs). If FOSS fits here, it fails to
“...articulate new software research challenges that cannot be addressed with existing
software concepts, methods and tools” [Wing, Hirsh, et al. 2008]. But empirical study of
FOSS development projects already reveals that: (a) how FOSS is developed and
evolved does not conform to, nor can it be explained by traditional “software life cycle”
models; (b) a common dependence on evolving and self-referential webs of online
information artifacts articulate FOSS system requirements and design; (c) a multiplicity
of FOSS projects (some numbering into the hundreds) are developing alternative
versions of the same software system, functions, features, or services in order to realize
user preference; (d) social networks of FOSS developers and users collectively provide
the critical mass for sustaining exponential growth of successful FOSS systems; and (e)
the overwhelming majority of nascent FOSS projects fail to produce usable software
systems. Though FOSS is software, conditions (a-e) are not readily explainable with
extant software foundations and engineering practices that focus attention on
programming languages, formal semantics, data abstractions, or software engineering
principles. Instead, research studies of FOSS focus on the people, tools, and processes

16

Version of 29 November 2010

involved in creating, integrating, updating, managing, and supporting complex FOSS
systems, projects, and communities to better explain the causes and variations of how
FOSS comes to be the way it is (cf. IIS in [Wing, Hirsh, et al. 2008]).

If the future of computing is being driven bynew technologies like massively multi-core
microprocessors, cloud computing, and pervasive computing [Wing, Hirsh, et al. 2008], what
role if any can FOSS play to help realize or accelerate scientific advances in these areas?

There are many competing R&D efforts underway to determine how best to program
multi-core processors using alternative programming languages or data abstractions in
mainstream Computer Science research. Intel and AMD have released open source
software development tools for their multi-core and many-core processors. But the
release of FOSS system tools by itself does not necessarily enable the formation of a
community of FOSS system developers and end-users to use such tools. Instead, a
quick look at the Hadoop FOSS technology and community (which focuses on one
approach to programming massively parallel software application systems for cloud
computing) already finds hundreds of CS researchers in academia and industry
developing and using FOSS tools, development processes, work practices, and
community Web sites to self-identify and organize like-minded people contributing to the
Hadoop software ecosystem [Hadoop 2010]. In other words, Hadoop succeeds in part
because the FOSS and its surrounding community of contributors are part of the socio-
technical cyberinfrastructure of resources that are available to new Hadoop contributors,
along with the parallel computing systems that might not otherwise be available to
researchers. Though we generalize with caution, it appears that future advances in
computing technologies like multi-core processors and pervasive computing may be
better enabled by efforts that focus on cultivating, nurturing, and sustaining self-
organizing, online, and decentralized communities of developers and end-users who will
invest time, skill, and effort into engaging FOSS tools, development processes, work
practices, and project forms open for participation and contribution to advance these
technologies. This may be a more effective strategy than simply developing and giving
away software tools that support new computing technologies. Once again, FOSS is
best viewed not as software, but as a community-centered approach to developing,
using, and evolving complex software systems.

What is the “science” of FOSS systems, and how can it contribute to advances in other scientific
research endeavors?

To date, the science of FOSS systems can be found in empirical studies “...centered on
the people, tools, and processes involved in creating, integrating, updating, managing,
and supporting complex software,...open source software” (cf. IIS in Wing, Hirsh, et al.
[2008]). FOSS science focuses on exploring, explaining, and modeling FOSS source
code, artifacts, processes, projects, communities, and knowledge within or across

17

Version of 29 November 2010

FOSS projects [Gasser and Scacchi 2008]. The science of FOSS is mostly an empirical
and systematic observational endeavor giving rise to new models and theories, and in
some cases the creation of new software systems, rather than one focusing on the
creation or analysis of new software languages, formalisms, or abstractions. The
practice of FOSS within other scientific disciplines can sometimes be found as the
means for engaging in scientific observation and experimentation. At other times it can
be found in the results of scientific research. FOSS development processes, work
practices, and project community dynamics are being put to work in R&D projects now
underway in subjects such as Economics (motivations for FOSS developers; industry
competitiveness), Law (FOSS license regimes), Public Policy (impact on balance of
trade, FOSS adoption by local governments), Art (open source and open media
artworks), Anthropology (FOSS practices in non-Western cultures), Organization
Science (end-user innovation, public-private innovation approaches),
Business/Management (corporate adoption of FOSS, maintainability of FOSS),
Geography (FOSS-based Geographic Information Systems), Biology (open source
bioinformatics), Physics (astrophysics software, Large Hadron Collider software), E-
science software (open source grid software, workflow and research provenance
software), and Information Systems (understanding teamwork in FOSS development,
success factors in FOSS development). However, some of these efforts have suffered
from nominal understanding of FOSS, while some early Computer Science-based
studies of FOSS slight or ignore the social and community aspects essential to
sustained FOSS projects. Moreover, in many of these disciplines, there is emerging
interest in expanding the “science” of FOSS systems into collaborative domains outside
of traditional software development. This expansion has great potential for harnessing
human innovation on a global scale. However, significant questions exist about how and
to what degree these systems of production differ from the more traditional domains of
software engineering and development.

It is clear that FOSS is reshaping the research agendas of scholars in many scientific
and cultural disciplines. FOSS is emerging as a way of rethinking software as a complex
web of socio-technical networks that intertwine people, online artifacts, processes,
projects, communities and knowledge [Gasser and Scacchi 2008]. These socio-
technical interaction networks may be able to transform research practices across
disciplines, global software/IT industries, society and culture in ways driven by
participatory innovation practices.

Why we need a national research program in FOSS systems

In addition to the need to develop new scientific knowledge about how FOSS systems
are developed and used, there are a number of related motivations to study FOSS
systems. Though FOSS systems are widely used, we believe that much of the

18

Version of 29 November 2010

Computer Science research community has yet to fully recognize their potential to
change the world of research and development of software-intensive systems across
disciplines. Software from thousands of FOSS system projects are widely used and
globally distributed, tens of thousands of FOSS system projects are up and running
worldwide, and millions of end-users increasingly rely on FOSS systems. Growing
numbers of research projects in physical, social, and human sciences, as well as the
cultural arts, now routinely expect to develop or use FOSS systems to best meet their
needs. Similarly, growing numbers of businesses and government organizations are
looking to develop and use mission-critical software applications that are built with
FOSS system components. We believe such investment in FOSS can be attributed to
the following observations.

FOSS exists as a high-impact socio-technical phenomenon on its own
right

FOSS is important not just as an alternative to traditional software engineering, but as a
software process that is successful in many dimensions. We should foster and improve
FOSS, and we should study it in order to describe, archive, and build it. It took open
source software to create, study, modify, improve and spread the Internet and Web.
FOSS systems are more than source code. FOSS is both a social movement and a
technical approach for developing complex software-intensive systems, a package of
resources and relationships that can produce complex socio-technical computing
systems. Accordingly, we need to understand and study the history of FOSS systems.

FOSS system code and related artifacts can be accessed, studied,
modified, archived, and redistributed by anyone

FOSS systems are public, unlike proprietary software. FOSS represents a low-cost
running start for many kinds of innovation, as growing numbers of FOSS applications
become available in different configurations. Substantial FOSS application platform
stacks can be easily located, downloaded, installed, and redistributed from online
sources such as Bitnami.org (http://www.bitnami.org) and PortableApps.com
(http://www.portableapps.com), where these source code bases often exceed a million
lines of source code. FOSS systems can serve as the bases for software engineering
(SE) concepts in the context of large software systems that are open for study,
modification and experimentation.

19

http://www.portableapps.com/
http://www.bitnami.org/

Version of 29 November 2010

For cases where we need more openness and transparency, such as the source code
for citizen voting systems and cybersecurity, FOSS represents a new and potentially
better way than proprietary closed source development approaches.

The openness and transparency we see in FOSS projects and FOSS systems offers a
second benefit. The public availability of data within a project and similarities in data
format across projects hosted by the same FOSS distribution infrastructure (e.g.,
SourceForge.net) provides opportunities for longitudinal studies of many systems using
common research instrumentation. Additionally, the availability of such data facilitates
the repeated study of a project or system. By contrast, replication studies in software
engineering are few and far between [Sjoeberg, D.I.K., et al. 2005].

FOSS is a technological “extremophile” in several domains

FOSS is one of the few viable examples of widely used and ongoing successful
communities of practice relying on commons-based peer production to create complex
systems. The discipline of Software Engineering has long established and refined
practices for building software systems. These SE practices embrace the use of
formalized schemes, notations, analytical methods, and automated tools that seek to
provide a robust approach to construction of reliable software systems. SE practices
were traditionally performed in a single location with an explicit regime for software
project management, budgeting and scheduling, where software engineers were
expected to be motivated by salary and technical challenges. FOSS has a different
lineage. Some FOSS systems, like the Debian/GNU Linux distribution now exceed more
than 500M lines of source code spanning 23,000+ software packages, which indicates it
would best be considered an example of an Ultra-Large-Scale (ULS) System [Northrop,
Feiler, et al. 2006], as well as one of the most complex human artifacts ever created —
yet it is publicly available for free to anyone interested in downloading it. If traditional
economic assumptions about individual motivation in performing work don’t apply, what
are the motivations of software developers who work without payg? What happens
when volunteer developers collaborate with other FOSS developers who are paid to do
their job? FOSS represents a different set of incentives from traditional forms of
collaborative production. FOSS is like a “model organism” making inroads into new
processes, raising questions similar to those asked of high-temperature bacteria and
related life forms: How do they do that?! To what degree are they morphing and
transforming into different forms of collaboration and collective action?

FOSS is a new phenomenon in software development. The FOSS community has
moved ahead to address complex system issues in ways that are starting to work
outside traditional SE practice. Further, some FOSS systems are now very large or ultra
large systems in their own terms, and unlike other complex systems in the modern

20

Version of 29 November 2010

world and global economy, FOSS systems are open, public, and amenable to close-up
study, modification, and redistribution with comparatively few barriers. FOSS systems
are therefore likely to become the bases for or central components of complex systems
in other domains.

FOSS system development is participatory and engages active user
involvement

Compared to prior software development approaches that emphasize technical system
functionality (e.g., service-oriented architecture, object-orientation, computer-aided
software engineering, structured programming and other disciplined software
engineering methods [Boehm and Turner 2003]), FOSS development is both socially
convivial and technically engaging. FOSS developers are often end-users of the
software they build, so the division between developers and end-users is eliminated.
This simplifies difficult software development activities like requirements specification,
analysis and testing, since developers know first-hand what they want and need. Finally,
FOSS projects create new ways to participate in development as a contributor:
providing bug reports, engaging in discussion of experience with currently implemented
system features, reviewing and revising system documentation or community-centered
artifacts, contributing intra- or inter-application scripts for gluing system capabilities
together, and more. None of these ways of contributing are core developer tasks, nor
are they traditional end-user tasks.

FOSS development projects enable large-scale, domain-specific
learning

Openness, freedom of choice, and freedom of expression enhance opportunities for
learning, education and science [Peters 2009]. The most commonly cited reason for
joining a FOSS project is to learn — learn new skills, learn new problem or software
development domains, learn from domain experts, learn from an apprenticeship, learn
from participant observation, etc. [Scacchi 2007]. Also, large decentralized FOSS
development programs like Google's Summer of Code (and also South Korea's Winter of
Code) demonstrate new regimes for annually enabling hands-on participatory learning
by thousands of students worldwide, independent of geographical location, national
origin, or prior education, that facilitate informal software engineering and computer
science education.

21

Version of 29 November 2010

FOSSD is being used to help teach software development by doing, sharing, and
collaborating, but for the most part, academic Computer Science programs have yet to
adopt such learning opportunities. FOSS project contributors are also learning how to
become a more effective project contributor, how to migrate into more development-
oriented roles, and how to apply FOSS systems to new application areas including
humanitarian assistance and relief. Similarly, global software development and global
use of FOSS systems requires localization and cultural sensitivity, and it appears that
FOSS systems can transfer between cultures more easily or more efficiently than
proprietary software. Is this inevitable? Do FOSS systems have competitive advantages
over proprietary software when moving into global markets, and can proprietary
software product vendors overcome such advantages through further technological
innovation? Last, can the development and deployment of FOSS systems for
humanitarian applications provide a new strategy for engaging undergraduate students
to take courses in CISE academic subjects [Morelli, Tucker, et al. 2009]?

FOSS systems are an engine of innovation

Successful FOSS systems and communities can grow at sustained exponential rates
through ongoing contributions that realize continuous improvement and evolutionary
adaptation [Deshpande and Riehle 2008; Koch 2005; Scacchi 2006]. FOSS has
become an engine of innovation in many FOSS system user communities where users
can become innovators [von Hippel 2001, Baldwin and von Hippel 2009], and where it is
seen as a basis for enabling new opportunities to enter global software markets and
challenge incumbent firms [Reding 2007]. The development of FOSS systems is a
global socio-technical movement leading the way towards open science, open content,
and open culture. But it is one of the few such movements, or perhaps the only one at
present, that has CISE disciplines at its core.

We believe that FOSS systems are a game-changing engine of innovation of historic
proportions that are transforming how people work together to develop complex
systems (and systems of systems). Increasingly, the grand challenges of engineering
research identified by the National Academy of Engineering (cf.
http://www.engineeringchallenges.or g) rely on the development of FOSS systems, such
as the International Thermonuclear Energy Research (ITER) project for fusion research.
Within some of these challenges, the development and experimentation with FOSS
systems are likely to be central to research activities (e.g., advanced health informatics,
secure cyberspace, enhanced virtual reality, and advanced personalized learning
systems).

As we mentioned earlier, the Debian Gnu/Linux FOSS distribution may be the largest
software system ever created, constituting more than 500M source lines of code. The

22

http://www.engineeringchallenges.org/
http://www.engineeringchallenges.org/

Version of 29 November 2010

development and diversification of the core infrastructure to the World Wide Web and
Internet primarily rests on FOSS systems and concepts (e.g., TCP/IP stack, network
application protocols such as HTTP, FTP, SMTP, etc., Web browsers, and Web servers).
No corporation or government enterprise currently appears capable of building and
sustaining software systems of ULS size and complexity that can surpass what is being
achieved with FOSS systems. But we lack the fundamental scientific knowledge to
explain how and why this is so.

FOSS systems are transforming scientific research practice across
disciplines

FOSS development processes, work practices, and project community dynamics are
being put to work in R&D projects in the physical and biological sciences and various
fields of engineering, and have also become the subject of research in the economic,
legal, and social sciences [e.g., Balka, Raasch, et al. 2009; Bertelli, Bovo, et al. 2007;
Lakhani, Jeppesen, et al. 2007; Raasch, Herstatt, et al. 2009; von Hippel 2001; Wilinski
2005]. Research is now underway in such diverse areas as Public Policy, Anthropology,
Organization Science, Business/Management, Geography, Biology, Physics and E-
Science, Imaging Science, Information Systems and more.

Open source systems are also being investigated in engineering and technology
development efforts addressing hardware/digital product design [Rowe 2009 “open
source business models”; Open Hardware Products 2010; Open Design 2010; Open
Design Club 2010; Open Design of Circuits 2010]. However, some of these efforts have
suffered from nominal or weak understanding of FOSS systems and technologies, while
some early Computer Science-based studies of FOSS slight or ignore the social and
community aspects that are essential to sustained FOSS projects.

Overall, it is clear that FOSS is a domain of CISE that is gaining the research attention
of scholars in many scientific and cultural disciplines, as well as shaping their research
agendas along with their industries.

FOSS development is helping to resolve outstanding problems in
large-scale software engineering practice

FOSSD and SE are not in competition with one another. Nor is it fair to call one a
variant of the other. FOSSD differs from SE in many ways, and it is these differences
that are of greatest interest. For example, the widespread availability of FOSSD tools

23

Version of 29 November 2010

has completely transformed the market for such tools, having driven down tool costs.
The availability of automated tools for SE is now much less hampered by cost or lack of
availability but the challenges of when, where, why, and who will adopt tool-based
approaches to large-scale SE remain. SE also encourages the development of generic
or reusable software components through careful design practices and testing
refinements, while FOSS application development increasingly relies on pre-built FOSS
system stacks (or "system of systems"). These are available across multiple platforms
(cf. Bitnami.org; Asterisk.org), and encourage the emergence of collaborative
communities that tailor, package, bundle, and install such systems as the basis for their
competitive offerings [cf. Snow, Fjeldstad, et al. 2010].

Much industrial practice in large-scale software development is influenced by the
Software Engineering Institute's Capability Maturity Model Integration (CMMI)
framework (http://www.sei.cmu.edu/cmmi/start) as an approach to systematically
improving the software development processes. FOSSD, in contrast, may or may not
conform to the CMMI. However, FOSSD offers many means of continuously improving
FOSS systems, and of developing and sustaining them within a decentralized
community of practice. The CMMI framework was conceived to encourage the adoption
of modern SE processes in various enterprises and government agencies. There is no
widely accepted, comparable scheme for evaluating the maturity of a software
development organization's capability with FOSSD processes. However, there is
nothing that prevents the application and assessment of FOSSD processes in a
commercial environment using the CMMI. Any perceived conflicts with FOSSD
processes that exist arise from CMMI's assumed model of centralized software process
and project management, control and planning, as opposed to FOSSD’s assumed
model of decentralized process management and self-organizing project control. If
CMMI can be adapted to assess software development projects that operate in a
decentralized, self-organizing and self-managed manner, then FOSSD projects could be
assessed by CMMI, and it would be possible to certify FOSSD projects at different
CMMI levels, as is done with SE project organizations. But until such time, the models
and metrics for assessing SE practices appear ill-suited for FOSS systems and FOSS
ecosystems, and thus it is unclear what kinds of models or measures are needed to
help understand which FOSS systems are likely to succeed or fail, and which are of
high-quality or low-quality in whose eyes or by what criteria.

FOSS systems are transforming the global software and IT industries

Every major IT and software company worldwide has been or is now investing in
FOSSD projects in-house or off-shore [Agerfalk and Fitzgerald 2008]. But what this
means is unclear, and likely varies by company. Some may see FOSS systems as a
strategy for cost reduction, increasing pressure on competitors, or free-riding on the

24

http://www.sei.cmu.edu/cmmi/start

Version of 29 November 2010

efforts of others outside the company. For example, Dinkelacker, Garg, et al. [2002]
described activities at Hewlett Packard that aimed to adapt the benefits of FOSS
systems for internal use through the progressive introduction of FOSSD practices. They
began with “inner source” (or “corporate open source” [Gurbani, Garvert, et al. 2010], the
opening of all software source code behind the corporate firewall, then “controlled
source” which restricts access to contracted partners, and finally to “open source,”
where the community outside of HP was invited to participate and contribute.
Elsewhere, informal sources indicate that major science research government ministries
in the U.S., Europe, Japan, and others supporting software development are funding
FOSSD projects that focus on evolving and expanding
enterprise IT to open cloud computing and open enterprise computing [2020FLOSS,
2010].

Growing numbers of national and regional governments, military/defense agencies, and
ministries of education worldwide are establishing policies that encourage the
development and deployment of FOSS systems [Lewis, 2010]. Sometimes these
policies, especially outside of the U.S., are intended to mitigate the perceived
dominance of proprietary software product companies in international markets. This
may be to the disadvantage of U.S. software/IT companies, but help to stimulate the
workforce development and learning of FOSS system practices in other nations.

Many of the largest Web generation businesses like Amazon, Yahoo, and Google, large
financial services firms like Bank of America, Goldman Sachs, JP Morgan, Morgan
Stanley, and Barclays Global Investors [Schmerken 2009], and national health care
providers like Kaiser Permanente now develop and deploy online Web systems,
middleware, or back-end servers that rely on FOSS systems.

The U.S. Department of Defense initially may have been hesitant to adopt FOSS
systems that might contain source code contributed by foreign nationals outside the
U.S., but now DoD policy and guidelines actively encourage and embrace selected
FOSS systems as viable "off-the-shelf" choices [Herz, Lucas, et al. 2006, Hissam,
Weinstock, et al. 2010, Scacchi and Alspaugh 2008]. Will the potential widespread
adoption of FOSS systems within the DoD stimulate or erode the base of traditional
defense contractors whose contracts increasingly depend on developing, deploying,
and sustaining proprietary, closed source software-intensive systems?

FOSSD offers no remedy for the problems of large-scale SE. While a growing minority
of SE projects succeed in producing viable and useful systems, the vast majority of
FOSSD projects do not. Yet the comparatively small percentage of FOSS systems that
do succeed seem to become very widespread, suggesting an ecological diversity
approach to software system development in which only the strong survive and thrive.
How to determine which will be strong is unclear, as is determining which socio-

25

Version of 29 November 2010

technical conditions, project forms, communities of practice, or other software
ecosystem parameters help increase the likelihood that a given FOSS system will thrive
and become widespread.

FOSS systems are transforming governments, society, and culture

A small but growing number of scientific, cultural, and arts disciplines, as well as new
government organizations in emerging arenas for collective action, are embracing the
move towards more openness. One can now find a growing number of references to
“open science,” pointing to new work and institutional practices where openness,
transparency, and peer production within decentralized organizational forms — all
hallmarks of the open source system development paradigm — are the norm [Bradley
2007; Everts 2006; Kelty 2001; Swedlow and Eliceiri 2009]. The Public Library of
Science (http://www.plos.org) has emerged as a leading source for publication of
scientific research results that follow the practice of open science [cf. David 2004],
where contributing researchers routinely provide not only journal articles, but open
access to open data sets, and to FOSS tools used to analyze their data . Another
example is the recent effort to overcome the “tragedy of the anti-commons” (Heller,
1998) in biomedical research through arrangements that encourage openness and open
data sharing (e.g., [Kolata, 2010]).

The U.S. Department of Defense has begun to refocus its research in the development
of command and control systems, as well as enterprise information systems, towards
those that operate within decentralized edge organizations with systems based on open
architectures and FOSS components [Alberts and Hayes 2003, Starrett 2007,
Weathersby 2007, Scacchi and Alspaugh 2008, Hissam, Weinstock, et al. 2010]. This
follows DoD's leadership as the first major government agency to recognize that mature
FOSS technologies were being widely used within the DoD community for at least a
decade, and that it would be a disadvantage to the mission of DoD to be restricted from
using or building new systems with FOSS systems or components [MITRE 2002,
Wheeler 2007]. Further, DoD policy now stipulates that mature FOSS technologies are
to be treated as commercial off-the-shelf products that need not be redeveloped by its
contractors when bidding on new system acquisition contracts [Wennergren 2009]

National, state, and municipal governments are also electing to adopt and deploy
FOSS-based systems, as well as adopting open standards and open data formats, as a
way to realize a more open government. FOSS also represents a low-cost approach to
acquire and deploy common software system applications (e.g., personal productivity
tools and office packages, Web browsers), software development and scripting tools
(programming language environments, script interpreters, language development tools),
back-end servers (Web servers, data base management systems, application servers,

26

http://www.plos.org/

Version of 29 November 2010

networked file servers), operating systems (Linux, FreeBSD, OpenBSD) and
middleware (network protocol handlers, data extraction, transformation, and loading
tools).

People who develop and use FOSS systems share their knowledge and experience
with others across FOSS projects in ways that collectively advance many such systems.
However, “Open Source” is often used as a vague metaphor, and this gives rise to
incorrect expectations and undermining the potentially positive influence of FOSS
systems. While significant progress has been made in describing, analyzing and
understanding FOSS systems, we need to extend and improve this research. Even with
a solid understandings of how FOSSD works, we must anticipate how these techniques
might apply in other domains, and the difficulties and challenges encountered when
groups attempt to transfer aspects from open source to other domains.

Lastly, in addition to the most widely cited “open content” example, Wikipedia, there are
efforts to take the ideas of openness and the innovation of open content licensing
(CreativeCommons.org) and apply them in domains such as educational sharing and
Collaboration, e.g., MIT Open Courseware and the broader Open Courseware
Consortium (http://ocw.mit.edu; http://www.ocwconsortium.org/), and Rice University’s
Connexions project (http://cnx.org/). These innovations are also being extended into
cultural media creation as well [Cheliotis 2009, Hughes, Lang, et al. 2007; Lang, Shang,
et al. 2007; OpenSourceCinema.org 2010].

Many key FOSS system projects are U.S. led

FOSS projects enable people from around the world to participate in software
development projects to address their own interests and to facilitate technical skill
development. The majority of project contributors are international (70% of FOSS
developers are based in EU countries [Reding 2007]). However, many key FOSS
projects like the Linux Kernel, Apache Web server, Mozilla/Firefox Web browsers, World
Wide Web, OpenOffice/LibreOffice productivity suite, and Eclipse interactive
development environment are led by core developers working in the U.S. Similarly,
FOSS systems are the technological basis for a growing number of software-centered
entrepreneurial start-up ventures in the U.S. [Augustin 2010]. So much FOSS system
innovation originates in the U.S., as does much of the global software products industry,
and many of the leading IT consultancies. But this lead is neither inevitable nor assured.

International competition is at hand. It is receiving increasing shares of national or
regional government investment, upping the incentives to adopt globally created FOSS
systems as alternatives to U.S. made software products.

27

http://ocw.mit.edu/
http://www.ocwconsortium.org/
http://cnx.org/

Version of 29 November 2010

Should U.S. national policy seek to stimulate research and development of FOSS
systems? Should U.S. research policy encourage comparative study of FOSS system
development practices and outcomes in the European Community, BRIC (Brazil,
Russia, India, and China) countries, or other nations that facilitate FOSS system
development efforts in non-English formats? Are FOSS development processes and
practices globally common, or are there significant cultural and national differences?
Does this serve to open or close international markets to future U.S. software products
and services?

What have we learned so far about FOSS Systems? Observations on
FOSS systems studies

At present, a small but growing community of FOSS system researchers in CISE and
related disciplines are now engaged in a variety of empirical studies of FOSS system
development processes, work practices, and project community dynamics to help
understand what works, when, where, why and how in FOSS projects of different kinds.
The results, challenges, and infrastructures emerging from these studies are highlighted
throughout the remainder of this report. Our goal is to develop a new vision and
research agenda for the FOSS system research community. Community members have
individually addressed a number of interesting issues about the creation and use of
FOSS systems. But research to date has not articulated an overall vision, nor does it
systematically connect to national priorities like long-term stimulation of job growth,
science-technology workforce development, the advancement of scientific knowledge,
and overall economic growth. These need to be addressed in future studies.

The FOSS systems research community is growing across and within multiple
disciplines including Computer Science, Software Engineering, Information Systems,
Information Studies/Informatics, Human-Centered Computing, and others, as well as
connecting to researchers in industrial research labs or large non-academic FOSS
projects. The community is of a manageable size, making it feasible to bring together
leading researchers and to disseminate a vision across research groups.

Empirical studies of FOSS system development are expanding the scope of what we
can learn about how large software systems have or can be developed. In addition to
traditional methods used to investigate FOSS systems like reflective practice, industry
polls, survey research [Hertel, Neidner, et al. 2003], and ethnographic field studies,
comparatively new techniques for mining software repositories ([Howison, Conklin, et al.
2006, Garg, Gschwind, et al. 2004, Gasser, Ripoche, et al. 2004, Robles, Gonzalez-
Barahona, et al. 2004] and multi-modal modeling and analysis of the socio-technical
processes and networks found in sustained FOSSD projects ([Scacchi, Jensen, et al.

28

Version of 29 November 2010

2006, Scacchi 2007, Schweik, et al. 2010]) show that the empirical study of FOSSD is
growing and expanding. Further studies will advance empirical computer science in
fields like Software Engineering, which was previously limited by the restricted access to
data characteristic of large, proprietary software development projects. Additionally,
such studies help inform FOSSD projects in other scientific and cultural disciplines, and
thus highlight the contribution of computer science research and education to those
disciplines. Subsequently, empirical studies of software products, processes, projects
and organizations will increasingly rely on data collected from FOSS development
projects. Thus, these studies will increasingly be studies of FOSS system efforts.

The diversity and population of FOSS projects and multi-project repositories is
unknown. There is great interest in the research community in a baseline and ongoing
census of FOSS multi-project repositories. As FOSS projects collect, organize, and
share the raw data of software development as an activity in their self-interest, then it
behooves us within the research community to offer some guidance or incentives for
these independent FOSS projects to contribute to such a census. Similarly, we need to
articulate what benefits (e.g., socio-economic impact or intellectual contribution) the
research community might offer in return to the FOSS projects that contribute to such a
census.

• Data varies in content, with types such as communications (threaded
discussions,chats, digests, Web pages, Wikis/Blogs), documentation (user and
developer documentation, HOWTO tutorials, FAQs), development data (source
code, bug reports, design documents, attributed file directory structures, CVS
check-in logs) [Scacchi 2002, Scacchi 2007], and programming languages
[Delorey, Knutson, et al. 2007].

• Data originates from different types of Web-accessible online repository sources
[Deshpande and Riehle 2008, Hahsler and Koch 2005, Howison, Conklin, et al.
2006, Gao, Van Antwerp, et al. 2007, Mockus, Fielding, et al. 2002]. These
include shared file systems, communication systems, version control systems,
issue tracking systems, content management systems, multi-project FOSS
portals (SourceForge.net, Freshmeat.net, Savannah.org, Advogato.org,
Tigris.org, etc.), collaborative development or project management environments,
FOSS code indexes or link servers (free-soft.org, LinuxLinks.com), search
engines (Google.com/code, krugle.org, ohloh.net), and others. Each type and
instance of such a data repository may differ in the storage data model
(relational, object-oriented, hierarchical, network), application data model (data
definition schemata), data formats, data type semantics, and conflicts in data
model namespaces (due to synonyms and homonyms), and modeled or derived
data dependencies. Consequently, data from FOSS repositories is typically
heterogeneous and difficult to integrate beyond semantic hypertext linking [Noll

29

Version of 29 November 2010

and Scacchi 1991], rather than homogeneous and comparatively easy to
integrate.

• Data can be found from various spatial and temporal locations, such as
community Web sites, software repositories and indexes, and individual FOSS
project Web sites. Data may also be located within secondary sources appearing
in research papers or paper collections (e.g., MIT FOSS research paper
repository at http://opensource.mit.edu/), where researchers have published some
form of their data set within a publication [Mockus, Fielding, et al. 2002, Scacchi,
Jensen, et al. 2006, Wasserman and Capra 2007].

• Different types of data extraction tools and interfaces (query languages, application
program interfaces, Open Data Base Connectors, command shells, embedded
scripting languages, or object request brokers) are needed to select, extract,
categorize, and prepare datafor further analysis [Garg, Gschwind, et al. 2004,
German and Mockus 2003, Jensen and Scacchi 2006, Kawaguchi, Garg, et al.
2003, Ripoche and Gasser 2003, Robles, Gonzalez-Barahona, et al. 2004], as
well as provide new kinds of tools and techniques for visualizing evolving
software systems and the social networks that develop them [De Souza, Quirk, et
al. 2007, Ogawa, Ma, et al. 2007, Ogawa and Ma 2008].

• Most FOSS project data is available as artifacts or by-products of development,
usage, or maintenance activities in FOSS communities. These artifacts and
byproducts are a critical part of the FOSS innovation process [West and
Gallagher 2006]. However, very little data is directly available in forms specifically
intended for research use. This has several implications for the needs expressed
above [Gasser, Ripoche, et al. 2004, Robles, Gonzalez-Barahona, et al. 2006,
Scacchi 2002, Scacchi 2007].

The open and public accessibility of data from FOSS project repositories and multi-
project repositories like SourceForge.net, FLOSSmole, Google Code and others [cf.
Howison 2009, Gao, Van Antwerp, et al. 2007, Garg, Gschwind, et al. 2004, Gasser,
Ripoche, et al. 2004, Robles, Gonzalez-Barahona, et al. 2004] is providing a new,
empirically grounded view of software technology and software development practice —
a view that enables comparative, cross-sectional, and ecosystem level studies. These
repositories and associated data collection, cleaning, analysis workflows, and
dissemination tools point to the need for a more robust and widely available research
infrastructure to support FOSS systems studies. This in turn means news kinds of
research questions can be posed, and new knowledge can be discovered or created.
This is needed if we are to overcome the gaps in scientific knowledge that we identify
above and throughout the remainder of this report.

30

http://opensource.mit.edu/

Version of 29 November 2010

For example, repository-based studies of ongoing FOSS projects indicate that their
software code base, functionality, development artifacts, developer contributions, and
user base can undergo sustained exponential growth, apparently in contradiction to
long-standing “laws of software evolution” which traditionally predict sub-linear, inverse
square growth rates [cf. Capiluppi, Morisio, et al. 2004, Deshpande and Riehle 2008,
Koch 2005, Scacchi 2006]. As such, the kind of research questions that follow ask what
model or theory accounts for the super-linear evolution of FOSS systems. Another
example: are there software patterns that constitute a kind of “software genome” that
characterize the evolutionary mechanisms of different families of independently
developed FOSS systems? Similarly, are the critical software components or functions
that lie at the heart of different software families FOSS, and does such software
represent a critical evolutionary or security vulnerability (e.g., the glibc library is
commonly bound with FOSS coded in the C programming language)? Also, what
development processes best characterize FOSS projects that demonstrate sustained
exponential growth of their code and functionality base, as well as the growth of the
number of contributors, but with comparable growth/decline of software quality? Last,
what can we learn about the evolution of FOSS systems across multiple releases,
across multiple platforms, and across different independently developed variants?
Exploring questions like these requires data drawn from multiple FOSS projects or
project repositories, and this data is now available. As such, we are on the verge of
possible discontinuous advances in our knowledge about software, based on empirical
studies of FOSS.

Articulating new knowledge of software products, processes, practices, and
organizational forms depends on careful and systematic empirical study of FOSS
project data. However, this data is not easy to collect or analyze. As such, there is a
need to articulate practices for the curation of FOSS project data in forms that increase
the likelihood of data use and analysis by people in different disciplines and settings.
There is also a need to capture data provenance as well as data annotation and data
analysis workflow tools and techniques. Other science disciplines have recognized
similar needs. Such research can be conducted as both discipline-specific and cross-
discipline. At present, the FOSS research community has little practice with and access
to these tools and techniques, and has little incentive to take on their application or
reinvention.

The commercial software products and service industry in the U.S. is in an awkward
strategic position regarding whether or how to take advantage of FOSS systems, or the
results arising from studies of FOSS development data. Software product companies
like Microsoft seem hesitant about what to do about FOSS, while software service
companies like Google seem to embrace FOSS (as do computer vendors like IBM and
Oracle-SUN). But all software companies could benefit competitively from empirical
studies of FOSS products, processes, practices, and organizational forms .

31

Version of 29 November 2010

Lastly, companies like Google, SUN/Oracle, Hewlett-Packard, IBM, and Microsoft have
established a community of FOSS development projects under their corporate
sponsorship. These projects are sponsored to increase the pool of future software
developers who might become skilled in the use of other products or services offered by
these vendors. However, these companies may also benefit by helping to cultivate and
recruit these developers into their commercial software workforce. FOSS development
projects develop a workforce skilled in complex software systems development. These
projects provide a situated, real-world experiment in informal software engineering
education that often takes place outside of traditional higher education. However, “data”
from these educational experiences is generally not open, nor publicly available, as it is
said to be sensitive, confidential, and proprietary. Thus it is unclear how well these
informal experiments work, and how they can be improved from a corporate as well as
from an academic perspective. Perhaps the academic software research and
engineering community can be brought together with the commercial software industry
through a government sponsored forum to articulate how best to advance U.S. socio-
economic and scholarly interests in the software community.

Where is the action? Areas and impacts for FOSS systems research

Based on discussions and debate at FOSS research workshops in 2008-2010, four
areas of research seem to offer the most promising and challenging problems to
investigate and resolve in the next 5-10 years. These areas for FOSS systems research
are:

• Processes, practices, and project forms — what are the development processes,
work practices, and alternative project organizational forms that give rise to
successful FOSS systems? What works where, when, why and how, and for
whom?

• Collaboration — how does the practice of developing large or ULS software
systems depend on the collaborative work practices and communities of practice
found in successful FOSS system projects?

• Ecosystems — how do FOSS systems emerge within a complex, decentralized
web of people, artifacts, practices, and other infrastructural resources where
most FOSS projects fail to take root and thrive? How do those few that do
succeed become widespread and transform industry, government, or science
practices?

32

Version of 29 November 2010

• Evolution — how can successful FOSS systems continue to grow and develop
across ever larger communities of developer-users at sustained exponential
rates? To what end, and following what processes?

The next section of this report examines each of these four areas to identify what is
known so far, what are some of the outstanding research questions that need to be
addressed, and what research resources and infrastructure are needed to help us
overcome our gap in scientific knowledge of FOSS systems. The third section specifies
FOSS system research community needs for resources and information infrastructures
(or cyberinfrastructure) to explore and articulate scientific knowledge that is missing but
within reach for further research into FOSS systems.

Finally, the fourth section identifies four areas in which FOSS systems research may
have an impact. The impact in these areas helps to substantiate where investment in
FOSS system research is likely to be most transformative, and demonstrates why an
investment in FOSS systems research and research infrastructures are a critical
national need. These areas are:

Software development — the development of reliable large, very-large, or ULS
software-intensive systems requires more than robust, formalized, and mathematically
grounded approaches to SE. The engagement of decentralized,
global communities of practitioners who participate in and contribute to the
development, use, and evolution of software system tools, online artifacts, and
other information infrastructure resources is also necessary. The development of
software-intensive systems at large-scale and beyond needs to be recognized as
something now essential to the advancement of science, technology, industry,
government, and society across geographic borders and cultural boundaries.

Education and learning — we need to educate students and the public to understand how
best to create, access, study, modify, and share complex systems that are open and
liberating. Widespread information resources, development processes, work practices,
and online content that are free and open, rather than restricted to those who can afford
to access them, will provide a new baseline for transforming learning in the sciences,
industry, and democratic government.

Innovation — engines of innovation for advancing science, technology, and
engineering in industry, government, and society at large are few and far between.
FOSS systems development is emerging as an engine whose openness
encourages invention and reinvention, knowledge sharing and crowd-sourcing.
It offers lower cost access to high capability information technologies that are
transparent and open for widespread public access, study, modification,
experimentation, ad hoc or systematic integration, repackaging, and redistribution.

33

Version of 29 November 2010

FOSS systems can stimulate societal advances, innovations, and progressive
transformations when their public access is assured and protected.

Science, industry, and government — many national challenges for science and
engineering depend on the development of a new generation of complex,
software-intensive systems. Advances in enterprise information systems that
realize new ways to streamline operations, create products and services and more
stimulating jobs and workforce development opportunities, depend on faster, better, and
cheaper software systems. Helping to make regional and national government agencies
more transparent, open, and trustworthy requires public access to information systems
that are easy to access, open for study and open to citizen participation. FOSS systems
are the most likely technology that can realize these societal needs.

Subsequently, the remainder of this report examines the areas and impact of future
research into free/open source software systems, as well as the infrastructures needed
to conduct such research.

34

Version of 29 November 2010

Part II

The Current State of FOSS

35

Version of 29 November 2010

FOSSD Processes, Practices, and Project Forms

Overview

At least since Conway stated his famous observation that software artifacts and
software project organizations appear to have interrelated structures [Conway 1968], we
have recognized that processes, practices, and project organization forms are critical
elements of software development efforts. Over the years, researchers have made
many attempts to define, measure, and formalize software processes, with the aim of
making them more rational, predictable, explainable, controllable, repeatable and
transferable. Below we detail how and why understanding the processes, practices and
forms of FOSS system development (FOSSD) contributes to the science of complex
systems, what the critical perspectives and unknowns are, and what systematic research
efforts are needed to fill in the essential missing knowledge.

Our scientific research goals

We are addressing how to best understand complex systems; FOSS systems and
FOSSD projects constitute complex systems. A central part of this science is the ability
to:

• Explain how and why FOSSD practices and processes behave, work and fail.

• Rationalize FOSSD practices with clear metrics of utility and generalized models
with pragmatic value.

• Predict progress, development, and breakdown of FOSSD practices and
processes.

• Control the trajectories and outcomes of FOSSD processes and practice.

• Evolve FOSSD practices and processes to incorporate new methods, standards,
tools, and participants, to adapt FOSS practices to changing constraints and
opportunities, and to improve them over time.

• Transfer and reuse FOSSD practices, processes, and project forms in new
locations and projects, with different software and participants.

36

Version of 29 November 2010

We envision FOSSD practices that are fully explainable, rational, predictable,
controllable, evolvable, and transferable so that they can be employed effectively,
continuously improved and adapted to new contexts, given situation-specific
opportunities and constraints. We seek the scientific knowledge now missing to
understand how, where, and when to employ FOSSD projects to build software in
different application areas of science, industry, and government, as well as for the
information infrastructures of the future. We need to understand in what contexts given
FOSSD practices work best and worst, and what contextual “package” or ecosystems
they entail.

The traditional view of software development processes, practices,
and projects

Much is known and continues to be learned about how best to engineer complex
software systems. Software Engineering (SE) is an academic discipline and industrial
practice that seeks to rationalize and control the development of complex software
system products and services. SE is a process by which an individual or team organizes
and manages the creation of a software-intensive system, from concept through one or
more releases. The Software Engineering Body of Knowledge [SWEBOK 2004] identifies a
number of core engineering activities whose science and mathematical bases serve as
its foundational principles. SE offer basic principles for software development that
include tools and techniques for abstraction, modularity, architectural coupling and
dependency analysis, testing and integration, internationalization and localization.
These principles are further explained for educational purposes in textbooks on the
subject, such as Sommerville’s [2006] Software Engineering, 8th. Edition. A review of
these materials finds that central software development activities should center around
the following activities:

• Software requirements — identifying the problems a new software system is
supposed to solve, its operational capabilities, its desired performance
characteristics, and the resource infrastructure needed to support system
operation and maintenance.

• Software design — software architecture design defines the interconnection and
computational resource interfaces between system subsystems, components,
and modules in ways suitable for their detailed design and overall configuration
management. Detailed software component or module design defines the
procedural methods through which the data resources within the modules of a
component are transformed from required inputs into provided outputs.

37

Version of 29 November 2010

• Software construction — codifies the preceding software specifications into
operational source code implementations and validates their basic operation.

• Software testing — affirms and sustains the overall integrity of the software
system's architectural configuration through verifying the consistency and
completeness of implemented modules, verifying the resource interfaces and
interconnections against their specifications, and validating the performance of
the system and subsystems against their requirements.

• Software maintenance — sustains the useful operation of a system in its host/target
environment by providing requested functional enhancements, bug/fault repairs,
performance improvements, and conversions or ports to new platforms.

• Software configuration management — manages the software architecture over time
as components, modules, interconnections, and interfaces are subject to change
and incremental refinement during software system construction and
maintenance.

• Software engineering management — focuses on providing the managerial planning,
scheduling, budgeting, staffing, and organizing of software developers who are
employed to develop software systems for users by performing the preceding
activities.

• Software engineering process — the overall framework for how to organize and
manage a software development project so as to produce a usable system that
satisfies user requirements by directing the performance of software developers
using tools and related resources that take provided data sources and transform
them into valuable information products (e.g., reports, information displays) or
services through the system being developed.

• Software engineering tools and methods — fully or partially automated software
utilities, along with documented techniques for their proper usage, whose
purpose is to facilitate the engineering of complex software systems.

• Software quality assurance — tools and methods (inspections, reviews) that seek to
assure that user requirements are satisfied by the system development effort
across the system's life cycle.

Over the past fifty-plus years, these activities have been organized, packaged, and
refined through various “software development methodologies” that have been identified
as: the Waterfall model, Prototyping, Spiral Development, Iterative and Incremental
Development, Rapid Application Development, Object-Oriented Development, Top-

38

Version of 29 November 2010

down programming, Unified Process Model, Agile Software Development, Integrated
Methodology Software Development, Extreme programming, Rational Unified Process
(RUP), and others. Leading SE scholar Barry Boehm, at the University of Southern
California, has recapitulated the historical progress of such development methodologies
in his review of software engineering from the 1950’s to 2010’s, as summarized in the
following figure [Boehm 2006]:

Figure 1: The evolving history of progress in development methodologies for
engineering software systems [Boehm 2006].

FOSSD does not appear as a development methodology in this view. Boehm [2006]
indicates that FOSSD would be a concurrent engineering process for developing
software systems, though without much detail for how such processes are conceived or
operate in practice. So is FOSSD just another development methodology, or is it
something else? Let us review some of what has been learned through empirical
studies of FOSSD processes, practices, and projects.

39

Version of 29 November 2010

What are FOSS Development processes, practices, and projects and
how do they differ from those traditional to Software Engineering?

A significant hallmark of FOSSD is that the source code is open and available for remote
access to others with few constraints. Beliefs, values, and norms associated with
freedom to choose the ways and means for developing FOSS systems, along with
freedom to express, justify, and critique such choices in an accountable and traceable
manner, are found in many successful and self-sustaining FOSSD projects. FOSS
systems sometimes add or remove similar freedoms or copyright privileges depending
on which FOSS copyright and end-user license agreement is associated with a
particular FOSS code base [Fontana, Kuhn, et al. 2008; Rhoten, Powell, et al. 2007;
Rosen 2004]. More simply, free software is always available as OSS, but OSS is not
always free software. This is why it is often appropriate to refer to FOSS or FLOSS (L
for Libre, where the alternative term “libre software” has popularity in Europe and
elsewhere) in order to accommodate two similar and often indistinguishable approaches
to software development. Subsequently, for the purposes of this article, our focus is on
collaborative FOSSD processes, practices, and project dynamics.

The focus and primacy of FOSSD activities are different from those of SE. For example,
few if any software requirements and designs for FOSS systems are formally specified
or clearly documented in separate documents that are identified as such; instead,
requirements are asserted in dispersed online artifacts after, rather than before, they are
implemented [Noll 2008; Scacchi 2002; Scacchi 2009].

Boehm [2006] reported that the top three reasons software engineering projects fail are
(a) lack of user input; (b) incomplete requirements and specifications; and (c) changes
to those requirements and specifications. FOSS system requirements cannot be
complete if they are not specified or asserted until after they are implemented, which
means they can be fluid, dynamic and subject to change. Similarly, FOSSD projects
rarely employ a software engineering project management scheme entailing schedules
and budgets, and instead rely on informal, self-organizing agreements and
communications.

The informality of project management creates effective project organization and
software production. In one study, this was designated as “virtual project management,”
that is, project management without the budget, schedule, and staffing, but with
effective, lightweight governance and coordination mechanisms [Scacchi 2004; Jensen
and Scacchi 2010]. Further, critical FOSSD processes seem to center around (a)
motivating, recruiting, and migrating new FOSSD participants into different developer,
contributor, or user roles; (b) forming social networks, multi-project alliances, and project
communities; and (c) evolving FOSS systems within multi-project software ecosystems

40

Version of 29 November 2010

[Scacchi, Feller, et al. 2006]. Furthermore, as demonstrated elsewhere [Scacchi,
Jensen, et al. 2006], FOSSD processes are decentralized and spread across loosely
coupled, geographically dispersed OSS developers. Nonetheless, FOSSD processes
can be discovered using process mining tools and techniques [Jensen and Scacchi
2007, 2010], defined and modeled [Jensen and Scacchi 2005], computationally
analyzed and enacted [cf. Noll and Scacchi 2001], and thus potentially optimized and
redesigned [cf. Scacchi 2001].

FOSSD is mostly not about SE, at least not as SE is portrayed in modern SE textbooks
[cf. Sommerville 2006]. FOSSD is not SE done poorly. It is instead a different approach
to the development of software systems in which much of the development activity is
openly observable and development artifacts are publicly available over the Web.
Substantial FOSSD effort is directed at facilitating collaboration among developers (and
sometimes end-users), generally without traditional software engineering project
management. FOSSD is also oriented towards the joint development of an ongoing
community of developers and users concomitant with the FOSS system of interest.

When the principles of modern SE are applied in industrial centers or in government
system acquisition programs, a number of learned lessons are generally recognized as
“best practices” for developing software system products or services through SE
[SWEBOK 2004; Sommerville 2006]. In contrast, six areas can be examined to discover
the practices of FOSSD.

1) Some FOSSD projects embrace modern SE principles, but may do so through
practices different from those found in industry best practices. An example can be
found in the hundreds of FOSSD projects associated with the Tigris.org FOSS-SE
community. Exhibit 1 presents a view of the best practices the Tigris.org project
community has identified.

41

Version of 29 November 2010

Exhibit 1: Best practices advocated for Tigris.org open source software engineering
projects (source: http://www.tigris.org/community/vision/best_practices.html, accessed

June 2010).

42

http://www.tigris.org/community/vision/best_practices.html

Version of 29 November 2010

But one FOSSD project's declaration of its best practices does not necessarily indicate
whether these practices are best for other FOSSD projects. Consequently, research
questions arise such as:

• What is the best way to determine which practices are best for a given FOSSD
project before or during its development?

• How should studies of FOSSD practices be designed so that a small study
sample will allow for generalizable results?

2) There are FOSSD projects that are supported by, or organized within, industrial or
international software development centers. Examples here include the NetBeans and
Eclipse FOSSD projects that are both developing Java-based interactive development
environments (IDEs) based in part on the corporate support respectively from Oracle-
SUN (NetBeans) and IBM (Eclipse). Similarly, Dresder Kleinwort supports the
development of the OpenAdaptor middleware service which in turn is employed by both
its competitors in the international banking industry, as well as non-competing business
partners like Hewlett-Packard. Companies like Sun, IBM, HP, SAP, and Microsoft all
now support dozens of FOSSD projects, including some of their key, high revenue
product lines (e.g., HP Inkjet and Laserjet Printer now use FOSS printer drivers) and
employ FOSS systems that were derived from their own proprietary, closed-source, in-
house software. Finally, international cooperatives like the European Space Agency
(ESA) have adopted standardized processes for developing open source software
systems for mission-critical space applications like TerraSAR [Peccia 2007] that are built
on the open source spacecraft operating system, SCOS 2000 [Kaufeler, Jones, et al.
2001], that conform to international software engineering standards established by the
ESA [Aldea, Jones, et al. 2003; ESA 2007]. These conditions raise the questions:

• How does corporate sponsorship or large enterprise involvement facilitate,
impede, or otherwise transform a FOSSD project?

• What do large firms or enterprises learn from participating in large FOSSD
projects?

3) FOSSD project management environments like SourceCast™ (SC) from Collab.Net,
and Corporate Source (CS) from Zee Source are the products of commercially oriented
FOSSD projects that have evolved into Web-based project management environments
for collaborative software development [Augustin, Bressler, et al. 2002]. These
environments are not IDEs like NetBeans or Eclipse, though they could be made to
interoperate with them. These environments are non-free commercial products

43

Version of 29 November 2010

marketed primarily to large corporations that may have dozens of organizationally
dispersed software development projects underway at any time.

• Under what conditions will FOSSD tools, techniques, and interactive
development environments overcome and dominate the market for software
development tools?

Hewlett-Packard, for example, has now made its investment in FOSS system
technologies a central part of its business strategy and marketing efforts, as indicated in
Exhibit 2.

44

Version of 29 November 2010

Exhibit 2: Corporate support for FOSS at Hewlett-Packard Corporation,
http://h71028.www7.hp.com/enterprise/cache/599999-0-0-0-121.html, accessed 29

June 2010.

45

http://h71028.www7.hp.com/enterprise/cache/599999-0-0-0-121.html

Version of 29 November 2010

Accordingly, information technology and services companies like Hewlett-Packard, IBM,
Nokia, Novell, Oracle-Sun, and others have adopted FOSSD project management
environments for use behind the corporate firewall [Dinkelacker, Garg, et al. 2002,
Gurbani, Garvert, et al. 2010], or to support corporate sponsored FOSSD projects like
NetBeans or Eclipse.

These FOSSD projects follow practices that arise from the use of the tools, services,
and transactions for collaborative software development that these vendors offer. A view
of the project management activities, services and capabilities supported by SC and CS
appear in Exhibit 3. It should be noted that most FOSSD projects do not employ all of
these capabilities.

Exhibit 3: Common set of software product development, technical communication, and
project management tools/capabilities available for use within FOSSDs in a commercial

environment [Augustin 2002].

Given the growing diversity of companies making public their reliance on FOSSD
strategies in supporting development of their commercial products and services,
questions such as these may follow:

• Is the adoption of FOSSD tools and techniques inevitable for commercial
software/IT firms?Will those that fail to adopt them be at a significant commercial
disadvantage in national or global markets?

46

Version of 29 November 2010

• How can FOSSD tools and techniques be used within large enterprises to
maintain or revitalize software system applications originally developed 10-30
years ago?

• How will the use of FOSSD tools and techniques in large enterprises evolve over
time?

• What are the risks of relying on FOSSD tools and techniques for large
Enterprises? How do such risks change over time?

4) Empirical studies collect and analyze software development practices and processes
within FOSSD projects [e.g., Scacchi 2007]. These studies have produced quantitative
results that characterize FOSS properties (source size, team size, release rates,
bug/defect rates, etc.) or qualitative studies that identify processes, project
ethnographies, or patterns of recurring activity for FOSS development and evolution.

5) FOSS developers are typically end-users of the FOSS they develop [Scacchi 2002;
Scacchi 2004; von Hippel, von Krogh, et al. 2003; von Hippel 2005; Ye, Nakajoki, et al.
2005], and other end-users often participate in and contribute to FOSSD efforts as non-
core developers. There is widespread recognition that FOSSD projects produce high
quality and sustainable software systems that can be used by thousands, even millions
of end-users [Mockus, Fielding, et al. 2002]. It can’t be assumed that FOSSD processes
are the same as those used in modern SE projects [cf. Sommerville 2006]. While
FOSSD approaches might be used within an SE project, nothing suggests that SE
projects typically practice FOSSD methods. What is known about SE processes and
practices may not be equally applicable to FOSSD practices without some explicit
empirical justification. Thus, it is important to ask:

• What are the best ways to identify FOSSD processes in use in FOSSD projects?

• Under what conditions will FOSS developers prefer to follow a recommended
process to guide their development efforts, in order to improve their productivity
or software quality?

• What are the dominant development, tool acquisition, and project community
management processes that are in use in FOSSD projects?

6) The Software Engineering Institute at Carnegie Mellon University is well known for its
software development process improvement framework, the Capability Maturity Model
Integration [CMMI 2006]. CMMI is a scheme for evaluating an SE organization’s mature
ability to develop software. CMMI encourages certain software engineering practices
regarding development processes, tool use, and documentation of project activities. The

47

Version of 29 November 2010

CMMI is also an internationally recognized scheme that seeks to improve software
product quality through adoption of best practices in software engineering
[SWEBOK2004]. The CMMI has been promoted and adopted throughout the U.S.
Federal Government, as well as in hundreds of large corporations. What do we know
about how FOSSD projects fit into or conflict with the CMMI?

Exhibit 4: The Capability Maturity Model Integration (CMMI) levels.

Exhibit 4 provides a map that identifies and lays out the five CMMI levels, and process
activities that characterize them, while Exhibit 5 outlines key process activities for each
of the five levels.

48

Version of 29 November 2010

Exhibit 5: Key Process Areas for the CMMI

For the most part, FOSSD and SE are mutually exclusive, alternative approaches to
building complex software systems. The CMMI framework was conceived to encourage
the adoption of modern SE processes primarily in large, centrally located and organized

49

Version of 29 November 2010

corporate software development efforts. Evaluating FOSSD in terms best suited for SE
will likely result in FOSSD being categorized as “ad hoc” or “chaotic” (designating a
CMMI Level 1), even though FOSSD can sometimes produce better results than those
achieved in a commercial environment with higher level CMMI software process
characterizations. There is nothing fundamental that prevents the application and
assessment of FOSSD based projects in a commercial or governmental environment
using the CMMI.

Any perceived conflicts with FOSSD arise from CMMI’s assumed model of centralized
software process and project management.

There is no widely accepted scheme comparable to CMMI for evaluating the maturity of
a software development organization’s capability with FOSSD. If CMMI can be adapted
to assess software development projects that operate in a decentralized manner,
FOSSD projects could be assessed and certified at CMMI levels.

As FOSSD projects rarely if ever provide explicit software development processes or
process models, it would seem as if they could not realize a CMMI Level 3 rating, There
is no “defined” FOSSD process, as FOSSD processes vary across projects[Jensen and
Scacchi 2005, 2007, 2010]. Early indications are that software development projects
that try to combine traditional software project management practices with FOSSD
eventually produce projects consistent with either traditional efforts or FOSSD efforts,
but do not gain from their combination. In fact may lose quality through joint sub-
optimization and technical conflicts [cf. Rosenberg 2008].Why this is so is yet another
area in which scientific knowledge is lacking.

There are individual proposals for how to construct a FOSSD evaluation scheme, but
they generally focus attention on organizational capability, and comparatively few
organizations developing software employ FOSSD. Those that do have not sought to
certify their capability. Instead, there is an emerging scheme that focuses on assessing
the readiness of FOSS systems for development and use in business enterprises
[Wasserman, Pal, et al. 2006]. Consequently, this leads to such deeper questions as:

• In what ways are software process maturity models relevant to improving FOSSD
projects?

• Under what conditions are FOSSD processes and practices more effective at
producing high quality software systems compared to organizations that rely on
process maturity models?

50

Version of 29 November 2010

What else do we know about FOSS processes, practices, and project
forms?

FOSSD is not a panacea for developing complex software systems, nor is it simply SE
done poorly. Instead, it represents an alternative community-intensive socio-technical
approach to developing software systems, artifacts, and social relationships. However, it
is not without its limitations and constraints:

First, an individual developer’s interest, motivation, and commitment to a project is
dynamic and not indefinite [Robles and Gonzalez-Baharona 2006]. Some form of
reciprocity and intrinsic motivation seems necessary to sustain participation, and a
perception of exploitation by others can quickly dissolve a participant’s commitment;
worse, it may lead a participant to persuade others to abandon a project that has gone
astray. Nonetheless, the fact that large numbers of individuals globally distributed do
contribute to FOSSD projects suggests that the challenge is to mobilize and direct
action towards collectively desirable outcomes [cf. Dutton 2008].
What are the most effective ways to start new FOSSD projects so as to enable the easy
recruitment and participation of new/experienced FOSS developers?

• What are the most effective incentives for motivating FOSS end-users to become
project contributors, developers, or core developers?

Second, FOSSD projects do not escape conflicts in technical decision-making,
cooperation, coordination, or control. As these projects generally lack traditional project
managers, they must become self-reliant in their ability to mitigate and resolve
outstanding conflicts and disagreements. Values that shape system design choices, as
well as choices over which software tools to use, and which artifacts to produce or use,
are determined through negotiation rather than administrative assignment. Negotiation
and conflict management then become part of the cost that FOSS developers must
bear. Time and effort spent in negotiation and conflict management represent an
investment in building and sustaining a socio-technical network of dependencies.
Furthermore, it may be that the success of FOSSD projects primarily depends on the
social networks that emerge within and across projects, and perhaps across different
software ecosystems. A number of recent studies [Ducheneaut 2005; Madey, Freeh, et
al. 2005; Toral, Martinez-Torres, et al. 2010; Sowe, Stamelos, et al. 2006] have
discovered and modeled how participants in these social networks are recurrently
structured around small numbers of key project contributors, who tend not to be core
developers or end-users, but who serve as “knowledge brokers” or “linchpin developers”
continually bringing together the otherwise loose-knit community of practice that situates
a FOSS system project. Exhibits 6 and 7 provide examples of these small worlds.

51

Version of 29 November 2010

Exhibit 6: A social network of FOSS contributors spanning five projects that are
interlinked through two linchpin developers [Madey, Freeh, et al. 2005].

Social networks are becoming a significant resource for enabling FOSSD project
contribution and sustained success, yet the body of knowledge and process maturity
models says little or nothing about the value of software developer networks.

• What are the roles of social networks in facilitating or inhibiting the development
of large software systems in general, and FOSS systems in particular?

• What is the value of social network modeling and visualization tools in improving
the self-organization of FOSSD projects?

• Under what conditions does the growth of a social network of FOSS developers
correspond to the exponential growth and evolution of FOSS system size,
functionality, and capability?

52

Version of 29 November 2010

Exhibit 7: Social networks of FOSS developers in one project (the ARM Linux
Community), highlighting the emergence of different knowledge brokers (white spots)

over five years [Toral, Martinez-Torres, et al. 2010].

53

Version of 29 November 2010

Third, there is no single FOSSD process. If one wants to join, learn from, or emulate the
success of a FOSSD project, there is no single or reference project to consider. Why?
To begin, FOSSD projects vary in size: from small efforts involving 1-2 people (most of
which fail), to large community project efforts with core developers and numerous
contributors and users, to large foundation-based projects affiliated with a non-profit
corporation that provides some governance and legal protection. Project team size likely
matters, but how it matters is unclear. Similarly, FOSSD project location(s) matter: small
projects may involve individual or collocated developers, or they may involve developers
who are geographically dispersed; large projects are generally multi-site and spread
across time zones, and some are spread across national and cultural boundaries;
FOSSD projects in non-English speaking and writing cultures are inaccessible and
invisible to English-only developers; commercial efforts may include some or all of
these. Once again, location matters, but how is unclear.

• Under what conditions will FOSSD projects become the preferred mode for
developing large software systems that are intended for international markets or
global applications?

• How are FOSSD projects in non-English speaking and writing cultures similar to
and different from those in English cultures?

• How does FOSSD project size, complexity, and practice vary across cultures?

Fourth, alliance and community building through participation, artifacts, and tools points
to a growing dependence on other FOSSD projects. The emergence of non-profit
foundations that were established to protect the property rights of large multi-component
FOSSD projects creates a demand to sustain and protect such foundations. If a
foundation becomes too bureaucratic, this may drive contributors away from its FOSSD
projects. These foundations need to stay lean and not become a source of occupational
careers, in order to survive and evolve. Similarly, as FOSSD projects give rise to new
requirements for community building, community software, and community information
sharing systems, these requirements need to be addressed and managed by FOSSD
project contributors. FOSSD alliances and communities depend on a rich and growing
web of socio-technical relations. If such a web comes apart, or if the new
requirements cannot be embraced and satisfied, then the FOSSD project community
and its alliances will begin to collapse.

• When are multi-project alliances more effective than non-profit foundations at
advancing the collective interests and governance of related FOSSD projects?

54

Version of 29 November 2010

• How can SE processes and practices be adapted to facilitate multi-project
system development alliances?

• How are project community requirements elicited, analyzed, traced, and
validated? How do such requirements evolve over time?

Fifth, individual and shared resources of people’s time, effort, skill, values, and
computing resources are part of the socio-technical web of FOSSD. Existing software
systems are reinvented as FOSS because communities emerge that seek to make
such reinvention occur. FOSS systems represent a shared commons of reusable and
adaptable resources that require collective action. Without this collective action, the
common pool will dry up. Without the common pool, the community fragments and
disappears.

• What are the many forms and practices for reusing FOSS system artifacts within
and across FOSSD projects?

• What are the development (within release) and evolutionary (across releases) life
cycle of FOSSD artifacts, and how do their life cycles vary by FOSSD project
size, location, and application domain?

• Under what conditions will successful, high growth FOSS systems transition into
slow or no growth systems?

• Under what conditions will software ecosystems emerge which facilitate the
merger or alliance of small FOSSD projects in order to become larger,
successful, and high-growth project communities?

Sixth, empirical studies of FOSSD are expanding the scope of what we can learn about
the development of large software systems. In addition to traditional methods used to
investigate FOSSD like reflective practice, industry polls, survey research, and
ethnographic studies, comparatively new techniques for mining software repositories
[Bajracharya, Ossher, et al. 2009; Howison, Conklin, et al. 2006; Ossher, Bajracharya, et
al. 2009] and multi-modal modeling and analysis of the socio-technical processes and
networks found in sustained FOSSD projects [Sack, Detienne, et al. 2006; Scacchi,
Jensen, et al. 2006] show that the empirical study of FOSSD is growing and expanding.
This in turn will advance empirical science in fields like SE, previously limited by the
restricted access to data characterizing large, proprietary software development
projects. Thus, the future of empirical studies of software development practices,
processes, and projects will increasingly be cast as studies of FOSSD efforts.

55

Version of 29 November 2010

• What methods for comparative study of large samples of FOSS systems and
development projects provide the insight and rich contextual descriptions of
ethnographic field studies, along with the scalability of automated data mining
and discovery tools?

Additional Research Opportunities for FOSSD and SE

A significant number of opportunities and challenges arise when we identify software
developments or socio-technical interaction practices in FOSSD projects that might be
applied in the world of SE. Let us consider some research opportunities for SE that can
arise from FOSSD studies.

FOSSD is poised to fundamentally alter the costs and constraints of accessing,
analyzing, and sharing software process and product data, metrics, and data collection
instruments, and will thus have a profound impact on SE. [Cook, Votta, et.al. 1998;
Harrison 2001; Scacchi 2006]. For example, software process discovery, modeling, and
simulation research [Scacchi, Jensen, et al. 2006] is one arena in which lower costs can
be advantageous. Similarly, the ability to extract or data mine software product content
(source code, development artifacts, team communications, public user feedback)
within or across FOSSD project repositories [Howison, Conklin, et al. 2006] to support its
visualization, refactoring, or redesign can be a high-yield, high impact area for SE study
and experimentation. Another would be examining the effectiveness and efficiency of
traditional face-to-face-to-artifact SE approaches or processes for software inspections
[Seaman and Basili 1998] compared to the online informal peer reviews involving “many
eyeballs” prevalent in FOSSD efforts.

Studies of motivation, participation, role migration, and turnover of individual FOSS
developers, suggest that the SE community would benefit from empirical studies that
examine similar conditions and circumstances in conventional software development
enterprises. Current SE textbooks and development processes seem to assume that
individual developers have technical roles and motivations driven by financial
compensation, technical challenge, and the quality assuring rigor that purportedly
follows from the use of formal notations and analytical schemes. Said simply, is FOSSD
more fun, more interesting, more convivial, and more personally rewarding than SE, and
if so, what can be done to make SE more like FOSSD?

Studies of resources and capabilities employed to support FOSSD projects indicate that
conventional software cost estimation or accounting techniques (e.g., “total cost of
operation” or TCO) are limited to analyzing resources or capabilities that are easily
quantified or monetized. Social and organizational resources are slighted or ignored by

56

Version of 29 November 2010

such techniques, producing results that miscalculate the diversity of resources that
affect the costs of software development projects, whether FOSS or SE based.

Studies of cooperation, coordination, and control in FOSSD projects indicate that virtual
project management and meritocratic socio-technical role migration and advancement
can provide a lighter-weight approach to SE project management. It is unclear whether
SE corporate efforts will eschew traditional project management and administrative
control in favor of the freedom of choice and expression that may be necessary to
provide the intrinsic motivation to self-organize and self-manage SE projects.

The results of studies of alliance formation, inter-project social networking, community
development, and multi-project software ecosystems, suggest that SE projects currently
operate at a disadvantage compared to FOSSD projects. In SE projects, it is commonly
assumed that developers and end-users are distinct communities, and that software
evolution is governed by market imperatives, the need to extract maximum marginal
gains (profit), and resource-limited software maintenance effort. SE efforts are set up to
produce systems whose growth and evolution is limited, rather than capable of
sustaining exponential growth of co-evolving software functional capability and
developer-user community seen in successful FOSSD projects [Scacchi 2006].

From studies of FOSS as a social movement [Elliott and Kraemer 2008; Elliott and
Scacchi 2008], it appears that there is an opportunity and challenge for encouraging the
emergence of a social movement that combines the best practices of FOSSD and SE.
The world of open source software engineering (OSSE) is the likely locus of collective
action that might enable such a movement to arise. For example, the community Web
portal for Tigris.org (http://www.tigris.org) is focused on cultivating and nurturing the
emerging OSSE community (see Exhibit 1 above). More than 700 OSSE projects are
currently affiliated with this portal and community. It might therefore prove fruitful to
closely examine different samples of OSSE projects at Tigris.org to see which SE tools,
techniques, and concepts are being employed, and to what ends, in different FOSSD
projects.

Questions regarding the quality, security, productivity, reliability, architecture, and
governance of FOSS systems or projects are still frequent, and research results vary,
sometimes finding positive, negative, or no relationships when compared to systems
whose development was guided by SE. How can this be? First, such results will vary
depending on which software systems and development settings are examined, as not
all systems or settings are directly comparable, nor are the methods for how they were
created; at least, not without careful sampling and empirical research design. Second, if
SE and FOSSD are alternative approaches to developing large software systems, is
“software quality” just an attribute of a body of source code (e.g., ratio of detected errors
per thousand lines of code)? Or [cf. Rusovan, Powell, et al. 2005], is it perceived as the

57

http://www.tigris.org/

Version of 29 November 2010

ease with which users access and update the source code to overcome a perceived
flaw? What is and is not quality software depends on its definition and application.
Again, it depends on which systems and settings are being examined. Our scientific
knowledge of SE and FOSSD is weak and too often anecdotal in these areas. Third, we
have learned that in FOSSD projects and SE projects, the social or community
architecture of a project is related to the technological architecture of the functional
software produced by the project. But this relationship is not simple, nor readily
predictable from external form or internal interdependency of one versus the other, nor
is it necessarily persistent or controllable over time [cf. MacCormack, Baldwin, et al.
2010]. Yet there is still great interest in determining when they will be optimal, and
therefore can be prescribed. This is a daunting problem that seems to merit not just
further study, but alternative characterizations, reformulations, and visual renderings as
another way to gain the insights we seek. Finally, when contrasted, both SE and
FOSSD processes, practices, and project forms can help reveal where unquestioned
assumptions or definitions lie, and where new formulations that are neither just social,
nor just technological, but are jointly socio-technical may provide new kinds of insights
and knowledge for how to develop large software-intensive systems.

Conclusions

FOSSD is emerging as an alternative approach for developing large software systems.
FOSSD employs socio-technical work practices, development processes, and
community network project forms often different from those found in industrial software
projects, and those portrayed in software engineering textbooks [Sommerville 2006]. As
a result, FOSSD offers new types of practices, processes, and organizational forms to
discover, observe, analyze, model, and simulate, as well as to explain, predict and
control. Similarly, understanding and explaining how FOSSD practices, processes, and
projects are similar to or different from their traditional SE counterparts is an area ripe
for further research and comparative study. Many new research opportunities exist in
the empirical examination, modeling, and simulation of FOSSD activities, efforts, and
communities. Furthermore, we cannot rationalize or predict when, where, why, how, or
with whom FOSSD projects will work effectively or efficiently. Similarly, we lack the
scientific knowledge needed to explain how FOSS systems evolve over time as well as
within or across different software ecosystems. Nonetheless, the popularity and
unbridled enthusiasm of thousands of young software developers participating in and
contributing to FOSSD projects indicates that FOSSD processes, practices, and
projects are being diffused, adopted, and adapted (transferred) in ways that we lack the
scientific knowledge to understand.

FOSSD project source code, artifacts, and online repositories represent new publicly
available data sources of a size, diversity, and complexity not previously available for

58

Version of 29 November 2010

SE research, on a global basis. For example, software process modeling and simulation
research and application has traditionally relied on an empirical basis in real-world
processes for analysis and validation. However, such data has often been scarce, costly
to acquire, and is often not available for sharing or independent re-analysis for reasons
including confidentiality or non-disclosure agreements. FOSSD projects and project
artifact repositories contain process data and product artifacts that can be collected,
analyzed and shared in a free and open source manner.

Through surveys of empirical studies of FOSSD projects [e.g., Aksulu and Wade 2010,
Crowston, Wei, et al. 2010; Hauge, Ayala, et al. 2010; Scacchi 2007], it should be clear
there is an exciting variety and diversity of opportunities for new research into FOSS
systems, development processes, work practices, project/community dynamics, and
related socio-technical interaction networks. Thus, research going forward should
engage more studies of SE in practice in everyday real-world settings, or apply FOSSD
concepts, techniques or tools that can be collectively advanced through empirical
studies that examine FOSSD processes, practices, and projects.

59

Version of 29 November 2010

Collaboration

Overview

At its core, FOSS is about collaboration.

Free and open source software (FOSS) is transforming not only technology, but is
influencing the way government operates (e.g., Obama’s Open Government Initiative),
and is expanding into other collaborative domains (e.g., Wikipedia, Open Courseware
Consortium, etc.). Part of that transformation lies in new and novel ways of
collaborating. FOSS has demonstrated collaboration on a very large scale, using poorly
or undefined organizational structures, and un(der)-specified work methodologies. How
do FOSS projects collaborate? What can we learn from this model of collaboration?
How is FOSS collaboration changing? How is FOSS transforming the way the world
collaborates? Lastly, how and what factors are influencing this direction?

FOSS describes a broad body of computing technologies. It is also a term that
describes a set of collaborative principles. These principles have been used in the
context of software development for over twenty years. Collaboration means people
working together to accomplish shared goals. But emergent technologies support, and
in some respects participate in collaborative processes (e.g., RSS feeds, open data,
web services). Because technology in the information age offers the ability to
collaborate over distance and time, collaboration is inherently a socio-technical
phenomenon occurring on multiple spatial (local-to-global), temporal and human scales.
Collaboration used to involve more face-to-face interaction between humans. Now it
happens on a global scale, and thanks to the cyberinfrastructure that blankets most of
the Earth, forms of collaboration are emerging in many areas that are grounded upon
Internet technologies.

FOSS, conceptually, is about collaboration. Programmers and others in the computing
industry were the first to take advantage of computer networks for collaboration. One of
the great foundational innovations that led to the emergence of FOSS as an important
socio-technical phenomenon — the creative use of copyright or FOSS licensing to
encourage sharing and collaboration (e.g., General Public License and other FOSS
licenses) — was developed or inspired by programmers. Given this history and current
state, understanding FOSS as a collaborative paradigm is of vital importance for
grasping what is happening in the political economy of the software industry and how
FOSS-like practices are being “ported” or transferred into other areas beyond software
development. Important examples include open content creation and peer-production

60

Version of 29 November 2010

systems (e.g., Wikis, educational content sharing, photo and video sharing, game
modding, music and other digital content remixing). Open source collaborative practices
are shaking up major sectors of the global economy (e.g., journalism, publishing, the
music industry). FOSS-like collaboration has potentially far reaching and transformative
effects.

It is well understood that FOSS projects are social worlds [e.g., Strauss 1978, Gerson
1983, Star and Ruhleder 1996, Scacchi 2008]; that is, collective activities organized
around a common topic or subject-matter that utilize shared communication channels.
Various research perspectives use different terminologies and approaches to
understanding FOSS projects as social and collaborative phenomena. For example,
Benkler [2006] refers to FOSS development as the quintessential example of
“commons-based peer production,” while others like English and Schweik [2007]
examine FOSS using a “commons” analytical framework. Kelty [2008], looks at FOSS
collaborations with a broader perspective, labeling them “recursive publics,” where there
exists some common knowledge, and people can participate in and make modifications
to that body of knowledge. Howison [2009] sees FOSS projects as “layered
collaborations” where individual developers undertake short tasks that build upon a
common software code base, which in turn enable others to work together or to take
advantage of such work in progress. Still others view FOSS projects as institutional
endeavors that can take the form of virtual organizations or be affiliated with non-profit
foundations or for-profit corporations. These are just a view vantage points of FOSS. All
have collaboration, to some degree, as a common theme. Moreover, throughout
discussions in this workshop, participants were keenly aware of the ability to take
collaborative principles found initially in FOSS projects (such as the innovation of
FOSS-licenses to promote or permit collaboration) and extending them to other
domains. Of interest here is how studies of FOSS collaboration can inform both future
FOSS-based endeavors as well as the broader realm of “open content” collaboration.
We see FOSS as an exemplar of a social production community with a (relatively) long
track record. As such, knowledge and collaborative approaches generated within FOSS
communities have the potential to be generalized to other social production
communities.

Collaboration in FOSS occurs over multiple layers, scales, and settings. Thinking about
FOSS in scales help to organize collective thinking about important research questions
(see the “Outstanding or Emerging Research Problems” section below). Understanding
FOSS as collaboration involves focusing attention on multiple levels or scales: (1)
individual collaborators; (2) individual projects; (3) software ecosystem; and (4) regional
and global issues.

The individual working in a group, team, alliance, or coalition spanning multiple social
worlds can be viewed as the building block or unit of analysis in FOSS collaborations.

61

Version of 29 November 2010

Projects are the most obvious settings where collaboration occurs. As many FOSS
projects are not collocated. With geographically dispersed developers and users,
collaboration happens online and through shared FOSS artifacts. At this level,
collaboration involves “core-contributions” by software developers as well as
interactions between developers and the users of their software.

Ecosystem-level issues involve, for example, the dynamics that may exist when projects
involve not just volunteer developers but also include the interests of firms, nonprofits
(e.g., foundations), and actors from government agencies. In addition, software
ecosystems more fully articulate the software supply networks that associate software
producers, integrators, and consumers [Jansen, Brinkkemper, et al. 2009].

Regional level collaboration engages issues of culture, language, social movements
and other heterogeneous components, while global collaboration concerns broad
political-economic or national policy-related issues. For example, governments outside
the US are considering FOSS as an integral component of their IT procurement policy,
sometimes as a method for building or supporting their in-country software industry
[Lewis, 2010]. From a collaboration standpoint, FOSS is seen as a way to act
collectively at a national scale to bolster in-country IT industries. Governments are also
seeing FOSS as a potential avenue toward interoperability between and across
government levels — potential systems that help to remove the standard “stovepiping”
of information (consider, for example, the potential relationship between FOSS and the
Obama Administration's Open Government Initiative in the U.S.). Governments are
seeing opportunities to work collaboratively with constituents in two-way information
flow systems — e.g., crowd sourcing, the use of FOSS by citizens to create mashups or
other information flows rapidly when needed (e.g., Katrina, Haiti). In addition, some in
industry see FOSS and its collaboration principles as a business model to gain
competitive advantage. Others see FOSS as a threat to their industry and livelihood.
Again, the openness of FOSS is being ported to and affecting other arenas.

Observation and Intervention

Research into FOSS traditionally breaks down into two different approaches: the
“descriptive observation” approach, and the “prescriptive (or proscriptive) intervention”
approach. Social science researchers are frequently interested in how FOSS systems
develop and grow, and the interactions between participants in these systems. Such
researchers traditionally operate under the idea of “look but don’t touch.” They are
willing to communicate what they find but are hesitant to inject the results of their
observations into the specific communities they observe, or to impact these

62

Version of 29 November 2010

communities in the course of their research. The unique collaborative environment of
FOSS projects provides a fertile ground for this kind of social science research.

Conversely, engineering researchers are most interested in how they can (positively)
impact practice in the environments they study. FOSS systems and communities are
living, functioning entities, and the results of research into those communities can be
used to improve them. As proprietary and FOSS development methodologies converge,
the results of this research will also be applicable for commercial software development.

We feel that both approaches are useful for the future of research in FOSS as a new
and important paradigm for how humans collaborate across geographic scales in
software and in other domains.

Research Findings

As suggested above, a valuable approach to analyzing FOSS as a collaborative
phenomenon is to look at it across multiple scales or levels: individual, project,
ecosystem, and regional/global. In recent years there has been a large body of research
that could be classified as “FOSS as collaboration,”focusing on one or more of these
levels of analysis. This section provides a sample of such research.

Collaboration among individual FOSS developers

The largest body of research on FOSS has focused on the individual scale,
investigating why FOSS developers — particularly volunteer developers — contribute to
FOSS projects. Examples of this stream of research include (but are by no means
limited to) Ghosh [2005]; Lakhani and Wolf [2005]; and Chakravarty, Haruvy, et al.
[2007]. The idea that volunteer programmers would freely contribute their intellectual
property puzzled, in particular, economists (see, for example, Lerner and Tirole
[2005a]). From such studies volunteer motivations become clear: the opportunity to
learn, signalizing to peers one’s abilities, enjoyment, filling a (software) need, and, to
some degree, helping to sustain the FOSS movement [Elliott and Kraemer 2008].

However it has recently become apparent that collaboration in FOSS has become more
complex, involving not just volunteers but also paid participants from firms, government
agencies and nonprofit foundations who may provide legal, financing, marketing, and
collaborative infrastructure support [Schweik and Kitsing, 2010]. Consequently, the
incentives for participation for individual developers are becoming more complex, as are
the development settings in which they operate [Jensen and Scacchi 2010]. Results

63

Version of 29 November 2010

show that individuals’ motives, as well as their occupational and career contingencies
[Elliott and Scacchi 2003, 2008; Jensen and Scacchi 2007] are not static, but evolve
over time. By studying OpenOffice.org, Freeman [2007] argued that individuals’
motivations to join and continue to participate in the FLOSS projects are related to
personal history prior to and during participation. In the PhpMyAdmin project, Fang and
Neufeld [2009] revealed that initial motivations to participate do not effectively predict
long-term participation, while situated learning and identity construction behaviors are
positively linked to sustained participation. Iivari [2008], p. 512, describes the role of
users (not developers but non-technical, non-computer professional users who are not
interested in OSS development, but only in the resulting solutions) in the OSS.

Collaboration among FOSS projects

At the project level, Mockus, Fielding, et al. [2002] provided an early analysis of how
Open Source projects and their associated communities interact, as suggested by an
investigation into the Apache Software Foundation and the Mozilla project. The authors
discovered significant inequity in work performed: a core group of individuals
contributed the majority of the programming effort and hundreds of others provided only
very small contributions. This suggests that rather than trying to determine whether
there is some magic number of core developers needed for a FOSS project to succeed,
it is important to create and sustain a critical mass of FOSS developers who configure
their development practices to provide the socio-technical direction, decision-making,
and governance actions that keep the project moving forward.

Drawing on social network theories and previous studies, research on collaboration
among FOSS projects also examines the dynamics of social network structures in
FOSS teams. For example, studies like Long and Siau [2007] suggest that the
interaction pattern of a FOSS project evolves from a single hub at the beginning to a
core/periphery model as the project moves forward. Other studies like Madey, Freeh, et
al. [2002, 2005], Jensen and Scacchi [2005], De Souza, Quirk, et al. [2007], and Toral,
Martinez-Torres, et al. [2010] find that complex intertwined networks or socio-technical
webs better characterize the structural patterns of collaboration within and between
multiple, interrelated FOSS projects.

A variety of case studies have emerged since the Mockus, Fielding, et al. [2002] study,
many focusing on large (in terms of developers and user communities), high profile
FOSS projects. For example, O’Mahony and Ferraro [2007] analyzed the evolution of
governance in the Debian Linux project. And recently more attention has been paid to
how to analyze and structure FOSS project governance and institutions (e.g., [Schweik
2005; Markus 2007; O’Mahony 2007; Schweik and English 2007; O’Neil 2009]).

64

Version of 29 November 2010

Other studies investigate the multiple dimensions of FOSS “success” and “failure”
[Crowston et al., 2003; Robles et al., 2003; Weiss, 2005; English and Schweik, 2007a;
and Wiggins and Crowston, 2010], and provide a foundation for an effort to identify
factors that lead to these collaborative outcomes [Schweik et al., 2010].

Collaboration among multi-project FOSS ecosystems

If we look at multi-project FOSS ecosystems, we find configurations such as project
federations. Examples of such federations include the Apache Software Foundation, the
Free Software Foundation, or even the SourceForge.net [2010] website. They typically
consist of multiple projects with a shared culture and technical infrastructure, although
their domains may be orthogonal. Jensen and Scacchi [2005] examine recurring
collaborations in the context of work processes, looking at objects of interaction (or
boundary objects) as a way of identifying evidence of interaction and collaboration
between loosely-coupled projects within a FOSS ecosystem. Schweik and Kitsing
[2010] provide a case study of a federation of FOSS projects developing geospatial
software systems that are formally associated through a nonprofit foundation, and
investigate how this federation affects project governance and operations.

Taking a slightly different view of FOSS ecosystems, Madey, Freeh, et al. [2002]
examine multi-project collaborative networks of projects hosted on SourceForge.net
[2010], identifying “linchpin” developers with membership in multiple projects. Such
developers may play a similar role to “gatekeepers” in organizational studies, facilitating
the flow of information and collaboration between projects. Such linchpin developers
may play an even more significant role in multi-project federations, such as the Apache
Software Foundation and the Free Software Foundation, where federated projects may
share more than simply beliefs, values, and social norms. Consequently, linchpin
developers may help to enable the critical mass of software developers, socio-technical
actions, meritocratic coordination, and lightweight governance that span and sustain the
larger web of FOSS projects in a software ecosystem.

Collaboration on a regional government or global scale

Governments around the globe have considered the issue of providing direct or indirect
support to FOSS activities, turning FOSS into a political issue [Rossi 2006]. FOSS is
seen to hold potential to promote technology neutrality and, additionally, to provide
market regulation or freedom from “vendor lock-in” when competition is limited by one or
a few dominant software companies [Lee 2006].

65

Version of 29 November 2010

FOSS is a subject of interest within governments. Attention has centered on many
issues, including security concerns arising from failing faith in the “security by obscurity”
doctrine of software security [Schryen and Kadura 2009; Hoepman and Jacobs 2007];
reducing acquisition and maintenance costs; and increasing support for open standards
necessary for long-term system evolution, document management and accessibility
[MITRE 2003, Wennergren 2009, Wheeler 2009]. Such accessibility is a requirement for
collaboration with other organizations, both within and outside of government.
Additionally, FOSS has been advanced as a means of increasing democratic legitimacy
through participatory models of administration, providing increased transparency in
governance [Citron 2008]. Such participatory models leverage the collective intelligence
of a population to produce information goods that outperform concentrated, authoritative
efforts [Chadwick 2009]. Participatory governance models inspired by FOSS system
methodologies, processes, and practices indicate a shift in governance towards project-
centric collaboration between public officials and their constituencies, or with other non-
governmental organizations.

Outstanding or Emerging Research Problems

In this section we will continue to organize our discussion around the analytic levels or
scales discussed previously: (1) Individual contributors; (2) Projects; (3) Ecosystems;
(4) Regional, Global or “Open” questions and (5) Cross-cutting concerns, though we will
leave ecosystem and regional/global issues for later in this report.

Contributor-Level Collaboration

Individual developers are not collaboration systems in and of themselves, but they are
the smallest social unit in FOSS collaborations. Contributors to FOSS include end-
users, defect submitters and feature requesters, casual and core developers, project
management committee members, release managers, community managers,
foundation board members and leaders spanning multiple levels of involvement.

As we noted above, much of the early research on FOSS focused on individual (usually
volunteer) motivations for participation. However one set of questions that is now
emerging is how individual motivations are changing in more hybrid collaborative
environments (see Project-Level Questions section, below), and whether and how
individual behavior in FOSS collaborative environments differs across cultures.

In addition, various tools including discussion forums, email, bug trackers, IRC chat, and
other social media electronically support distributed collaboration. Given that in many

66

Version of 29 November 2010

cases these individual-level contributions (e.g., code) and individual-posted
communications (e.g., forum posts, etc.) are all captured and stored within these
systems, there are new, unprecedented opportunities to track and analyze individual
developer behavior, and potentially, their “nano-scale” actions, and measure and assess
drivers of individual productivity.

Potential research questions at the “Contributor” level include:

• Developer Behavior: How does the behavior of a contributor change over time as
he or she gains skills, knowledge and authority in a FOSS development project?
What kinds of situations lead him or her to leave the development effort? What
kinds of artifacts, constructs, or affordances (e.g., tools, processes and practices,
beliefs, social structures, technical structures) mediate the choices that
developers make [Baldwin and Clark, 2005; Elliott and Scacchi 2003, 2008;
Howison 2009; Scacchi 2010a]?

• Developer Action Steps: If we can track the discrete action steps of an individual
developer how can we improve the productivity of the developer and the
reliability of the code?

• Behavior Across Cultures: Do contributor behaviors differ across geographic
regions or cultures (comparative studies of individual FOSS developers)?

Project-Level Questions

In this section we discuss the research questions that can be studied most directly at
the level of an individual FOSS project. Most of these questions deal with the
functioning of groups of FOSS programmers working together to create software. They
explore the ways in which teams might be organized, the effect of that organization on
the performance of the team, and the creation of software tools to improve the
functioning of the team. Some research has already been focused on this set of
questions, and there are some emerging results. However, in recent years there has
been dramatic growth in projects that involve or are supported by for-profit corporations,
nonprofit foundations or government agencies, rather than the “typical” FOSS project
that historically may have relied on volunteer or unpaid developers. We focus here on
questions that have not yet been completely explored, though there are partial results
for many of these questions.

One of the opportunities at the Project Level is to explore the mostly “dead data” studies
that have been done, translate them into process or tool interventions, and perform lab
or field studies of these interventions. At the project level of analysis, at least three focal

67

Version of 29 November 2010

areas can be addressed: 1) Collaborative Structure and Processes; 2) New Users, and
3)Collaborative Infrastructure.

Collaborative structure and process

• Collaborative Activities: What are the main collaborative activities and what socio-
technical tools can best support these activities? Much research has looked at
one or two projects to understand how collaboration is supported. But more
generally, how are the existing tools used (or not used) to facilitate or inhibit
collaboration? What underlying “operational level rules” are embedded in these
tools (e.g., Lawrence Lessig's “Code as Law”)? How can projects share tools? To
what extent could these tools transfer for use in other FOSS-like collaborative
processes?

• Project Scale: FOSS projects number in participants from one (or none, in the
case of abandoned projects) to hundreds of thousands. What enables
collaboration on such divergent scales? What inhibits collaboration? (How) do
collaboration structures and processes change as project populations grow and
shrink?

• Project Governance and Institutions: How do FOSS “institutions” (norms,
operational procedures, more formalized rules, project management and
governance) evolve over time? How do they vary based on team composition
(e.g., all volunteer, all paid, hybrid teams)? Do foundations and businesses
influence institutional change? How so?

• Variation in Collaborative Practice: How do collaboration practices differ among
different types of projects? Across different cultures? Does FOSS collaboration
differ between projects that are more “geographically homogeneous” (members
all from one country, for example), compared to teams made up of participants
from multiple countries or world regions?

• Collaboration Initiation and Life Span: How are teams formed? Why do they form in
specific ways? Are there recurring patterns in team formation across projects,
foundations, etc., and how can they be facilitated? What is the life span and
trajectory of a team? Can we identify team life cycles?

• Encouragement: How can we encourage and support contributions from user
experience experts and what does this mean for successful collaboration across
disciplines, i.e. developers, users, domain experts, and designers?

68

Version of 29 November 2010

• Collaborative Failure: How do FOSS collaborations fail because of
interdisciplinary differences, and how can tools and processes be developed to
facilitate the resolution of problems?

• Conflicts: How are conflicts in FOSS teams resolved? How can they be resolved
more effectively? What kinds of tools may help?

• Developer/Community Relationship: What is the relationship between user
communities and development teams? Are they generally similar across
projects? In what ways do they differ and how does that influence project
direction and evolution?

New Users and Members

A key aspect of a successful community is its ability to bring in new users to replace
those who leave, and to bring in new members to “grow” the project. All communities
lose users eventually, so successful communities must be skilled at incorporating new
users. There are many challenges in bringing in new users, including recruiting them,
socializing them to group norms and practices, and helping them find work to do that fits
their experience and interests. We include sample research questions in each of these
areas below.

• Membership Life Cycle and Management: What are the life cycle trajectories of
contributors participating in FOSS projects? Is this life cycle and corresponding
life span ideal? How can sufficient users be brought in to refresh the
membership? What is the best mix or configuration of characteristics of members
for a project, in terms of the type and quantity of work they are able to take on?
How does the configuration of members change over the life cycle of the project?

• Member Recruitment: How are new members (users, developers) “recruited” into
FOSS projects? What methods are effective in managing different skill
capabilities and mentoring new developers? Do new FOSS projects depend on
the prior FOSS project success of their founding core developers?

• Broader Interactions with User Community: How is the broader user community
supported and encouraged? What “marketing” approaches encourage the growth
of a user community?

69

Version of 29 November 2010

Collaborative Infrastructure

Other online tools and social networks can be instrumented to enhance the
understanding of collaborative interactions among contributors to a given FOSS project
[Star and Ruhleder 1996, Scacchi 2007]. The potential for deploying these tools to
detect, collect, and visualize social network and technical configuration
interdependencies seems increasingly plausible [De Souza, Quirk, et al. 2007], as
popular interactive FOSS development environments like Eclipse and NetBeans include
uploads of (anonymized) usage data. Further, research has begun to investigate
instrumenting FOSS tools, for example user data collected in GIMP [Terry, Kay, et al.
2008]. Contributor-level collaborations are important for understanding and improving
communication and productivity, and effective communication is foundational for
successful collaboration. Communication among FOSS contributors occurs one-to-one,
one-to-many, or many-to-many to share information and provide markers for awareness
of activities in progress, completed, or abandoned. Artifact usage potentially enhances
communication success. The existence of FOSS development artifacts [Ekbia 2009;
Robles, Gonzalez-Barahona, et al. 2006; Scacchi 2002, 2010a] creates a great and
unique opportunity to study communication patterns or discourse networks in rich detail.

• Communication Networks and Structure: What are the communication networks
across different contribution types?

• Passive Communication: How are artifacts useful as a passive knowledge transfer
tool? How do contributors learn from each other by studying the code and other
artifacts created and shared through the FOSS repository?

• Mentoring Tool Creation: How can tools be created to help new members of a
FOSS project find a mentor who can help them fit into the project and find ways
to effectively contribute?

• Increasing Participation: How can tools be created that encourage existing
members of a FOSS project to interact with new members of the project in ways
that help new members feel welcomed?

• Conflict Avoidance: Can tools be created that help to protect against “stepping on
others' toes?” For example, a tool that visualizes past collaboration on a FOSS
project can help a contributor understand which collaborators will be affected by
a change under consideration, allowing communication between collaborators
before investing a lot of time in making the change.

70

Version of 29 November 2010

Cross-Cutting Concerns

Lastly, there exists a variety of issues related to FOSS development that are cross-
cutting across multiple levels of observation. These issues interact with the community
and are shaped by it, causing cascading effects that make them difficult to study and
understand within a purely hierarchical framework.

The architecture of the software and its relationship to communication structures within
a software development project, first proposed by Conway [1968], is one example of
such a cross-cutting concern. For example, a community that is built around a
monolithic socio-technical structure, such as found in the GNOME project, requires
intense involvement in core elements of the source code for even some minor projects.
In comparison, a community with a modular socio-technical structure, such as in the
Eclipse project, allows firms and individuals to work independently, minimizing
coordination and collaboration needs. It is precisely this interaction of collaboration
needs and architecture that causes this to be a cross-cutting concern.

Understanding the architecture of a FOSS community involves more than simply
understanding how the code is structured. It cascades down to the actions of the
individual who must write code, the project which needs to allocate work according to
technological constraints, and foundations which are made up of projects and have their
own architectures of coordination. These issues also affect other peer production and
social content systems, such as Wikipedia, where the design of the tools and
interactions of the community directly impact the degree to which the community can
collaborate, attract new members, and create new content.

Related to architecture and cross-cutting concerns, sample research questions include:

• Architecture: How does the architecture of a FOSS system mediate the
collaboration within and across teams, projects, or ecosystems [cf. Ovaska,
Rossi, et al. 2003]? Can we provide guidance to teams designing or refactoring a
project to create a more collaborative environment? Do different architectural
configurations and/or development processes and practices lead to different
forms of collaboration?

• Governance: To what degree does choice of project governance structure or
foundational form (e.g., in the U.S., those enterprises conforming to civil/tax
codes 501c3, 501c6, etc.) affect development of FOSS projects? How do
governance structures in FOSS projects compare to those found in closed
source or proprietary software development projects?

71

Version of 29 November 2010

Conclusions

As a prime example of commons-based peer production, recursive public, and layered
collaboration phenomenon, collaboration in FOSS projects is different from collaboration
in software engineering and is transforming the way people collaborate in other
domains. Initial studies show it is complex: multi-layered, multi-faceted, and evolving.
Understanding how participants in FOSS projects collaborate is vital to understanding
how collaboration can be supported and improved, how and why it is evolving, and the
potential opportunities and consequences of its transfer.

72

Version of 29 November 2010

Ecosystems

Overview

Software development doesn’t happen in isolation. It takes place in a collaborative
ecosystem of stakeholders, resources and tools and technologies that are marshaled,
created, transformed, and consumed in the production and maintenance of software
systems.

Understanding in the interaction between projects and their broader ecosystems is key
to assessing the potential and limits of FOSS production. We use the ecosystem
metaphor to capture the notion of interdependence, mutual support and competition
amongst the projects, code and the environment in which these operate. Software
ecosystems have arisen not simply from code reuse but from shared culture, common
standards (e.g., data formats and communication protocols), community culture and
bylaws, processes, and tools. The societal effects of free and open source software
extend beyond the participants, to all members of society.

To fully understand the potential and limits of open production therefore requires a
conceptualization of the external factors affecting FOSS projects and their relations with
project outcomes. A wide range of factors may be relevant. Project outcomes are
affected by the availability and interest of new project participants, who bring with them
training, experience and connections, or take these to other projects. Developers
coming from different backgrounds are likely to bring different levels of skills and
knowledge. Projects depend on a variety of tools for production or collaboration; these
are likely created by other projects, often FOSS themselves. Projects may be
dependent on the output of other projects (discussed above under collaboration).

Over time, code reuse has grown from the method/function level to libraries and more
recently frameworks and platforms. As a result, FOSS projects likely build on the
products of numerous other projects, as well as commercial code, and may in turn be a
platform for additional products. However, projects may also compete for the attention of
developers, sponsors and users. Projects may interact with for-profit companies that
fund projects or sell competitive or complementary products and services. Projects
embody a range of production and coordination processes, which can be conflictive or
integrative [Jensen and Scacchi 2005]. FOSS projects rely on a range of infrastructures
for developing and sharing code and knowledge, such as forges and code repositories.
The ecosystem can include various societal institutions that govern projects, such as
software foundations or the Free Software Foundation. Projects may also be influenced

73

Version of 29 November 2010

by government policies and practices, e.g., encouraging or frustrating the use of open
source systems as well as legal frameworks, e.g., for licenses, copyright law or patents.
Finally, projects are affected by the cultures and beliefs of developers and users, for
example, about the importance or relevance of sharing.

FOSS projects and products are deeply affected by the ecosystems in which they
operate, but they simultaneously change them, by developing new systems, providing
training and educational opportunities and mechanisms for technology transfer among
developed and developing countries, or by influencing the evolution of intellectual
property regimes. The interaction of these dual processes of influence — environment
affecting projects and vice versa — creates an exciting phenomenological environment
in which to study the process of influence and change itself.

Characterizing Interaction Among Projects in a Software Ecosystem

We would like to understand how projects in an ecosystem interact. We know software
development processes interact to communicate and coordinate the exchange data and
control [Feiler and Humphrey 1993]. Process interaction has been studied within other
fields, including networking [Simpson 2003] and distributed systems [Andrews 1991].
The types of process interaction studied in these fields assumes that the interacting
processes have little variation or evolution over time, lending to interaction that is
predictable. But what of FOSS processes? Do FOSS processes interact so as to
integrate smoothly and in predictable ways, so as to reify interaction processes? Or does
such interaction provide conflict that requires recovery or redesign in one or more of the
interacting processes, for example, due to competing process goals, that affects
resource availability and/or control exchange between processes? Can we identify
specific types of integration and conflict, such as have been observed in other fields,
and do these types of integration and conflict follow what other fields have observed?

Successful interaction between components of a software ecosystem depends on the
relationships between the organizations of which it is comprised. For example,
Bluedorn, Johnson, et al. [1994] identify six mechanisms of interorganizational
interaction or integration, which entail loose or tight coupling. These mechanisms
include joint ventures, network structures, federation, cooperative agreements, trade
associations, and interlocking directorates (see Table 1). Though originally devised to
describe corporate and government inter-organizational relationships, we employ them
to characterize software ecosystems. Unsurprisingly, the degree of coupling carries
implications for the degree of process integration between these organizations.
Similarly, Alter [1999] defines degrees of process integration (ranging from loose to tight
coupling) to include sharing a common culture, utilizing common standards, information
sharing, coordination, and finally collaboration, as described in Table 2.

74

Version of 29 November 2010

Interorganizational
Form

Example Tightness of Coupling

Joint Venture Apache, GNU
Foundation
members

Tightly coupled. Two or more firms form
a separate entity for a variety of
strategic purposes (e.g., market power,
efficiency, transfer of learning).

Network Structure System plugin
developers

Tightly coupled. A hub and wheel
configuration with a focal firm at the hub
organizing interdependencies of a
complex array of firms.

Federation Mozilla “on the
hook” developers

Tightly coupled. Established to manage
and coordinate the activities of affiliated
members (common in hospitals). The
federation controls all or part of the
management activities of the members.

Cooperative
Agreements

Meta-Communities
(e.g., JTC)

Loosely coupled. Arrangements
between two or more firms that have
strategic purposes but do not have
shared ownership

Trade Associations Tool integration Loosely coupled. Distribute trade
statistics, analyze industry trends, offer
legal and technical advice and provide a
platform for collective lobbying.

Interlocking
Directorates

NetBeans
governance/
community
management

Loosely coupled. Information sharing,
expertise and enhanced organizational
reputation.

Table 1: Interorganizational synchronization and stabilization mechanisms (after
Bluedorn, Johnson, et al. [1994])

75

Version of 29 November 2010

Level	 Example	 Description	

Common Culture FOSS motivations,
development methods

Shared understandings and beliefs

Common
Standards

Data formats,
communication
protocols

Using consistent terminology and
procedures to make business
processes easier to maintain and
interface

Information Sharing FOSS Web repositories Access to each other’s data by
business processes that operate
independently

Coordination Meta-communities, tool
integration, plugin
development

Negotiation and exchange of
messages permitting separate but
interdependent processes to respond
to each other’s needs and limitations

Collaboration NetBeans, Mozilla
spell-checking module
development

Such strong interdependence that the
unique identity of separate processes
begins to disappear

Table 2: Levels of business process integration (cf. Alter [1999])

Together, these give us a basis for examining the types of processes we can expect to
find in software ecosystems. Further, they provide insight into interacting members of
the ecosystem (stakeholders), their relationships, and the motivations of these
relationships. Identification of these stakeholders, relationships, and concerns requires
analysis of the interprocess communication among projects in an ecosystem. We
address this next.

Interprocess Communication Among Projects in a Software
Ecosystem

Communication between project communities provides opportunities both for integration
and sources of conflict between them [Elliott and Scacchi 2003; Jensen and Scacchi
2004]. We will say communication is integrative if it identifies compatibilities or potential
compatibilities between development projects. From a process perspective, integrative

76

Version of 29 November 2010

communication enables external stakeholders to continue following their internal
processes as normal, perhaps with small accommodations. They also reinforce
infrastructural processes since they do not require changes in the interactions between
communities. If the degree of accommodation or adaptation becomes too great, it can
precipitate conflictive communication between project communities. Conflict may occur
due to changes in tools or technologies shared between them, or in contentious beliefs
about how best to structure or implement new functionality or data representations
across projects. These conflicts may require extensive process articulation to adapt [cf.
Scacchi and Mi 1997].

Process Integration

Process integration can be direct and explicit. It can also be indirect and implicit, such
as through common data standards. These standards can be viewed as boundary
objects [Star 1990; Pawlowski, Robey, et al. 2000]. Boundary objects are those that
inhabit and span several communities of practice, as well as satisfy the informational
requirements of each community. Following Alter’s [1999] classification, shared
standards connote a low degree of process interaction between organizations in a
software ecosystem. However, other boundary objects exist, as shown in Table 3.
Among FOSS projects, boundary objects observed thus far include (a) shared beliefs
and culture [Elliott and Scacchi 2003, 2008], (b) community infrastructure tools, such as
FOSS defect repositories produced by other affiliated organizations, and (c)
development processes. Additional boundary objects are found in the product
infrastructure (e.g., applications program interfaces and remote procedure calls that
enable data sharing and remote invocation of software modules across systems). These
may take the form of software application plug-ins or modules. They may share or
coordinate development artifacts. And, as discussed, they may implement or utilize
common data communication protocols and data representation formats that enable
reliable communication between their tools.

Community	 Infrastructure	

Object Type Example

Community Culture/Bylaws Source licenses, governance style, community
organizational composition

Community Infrastructure
Tools

Defect repositories (e.g., Bugzilla, IssueZilla),
collaborative development tools (e.g., WIKI, CVS, mail

77

Version of 29 November 2010

list managers)

Development Processes Defect discovery/submission procedures, source check-
in procedures

Product	 Infrastructure	

Object Type Example

Product Infrastructure Tools Plugins, modules, libraries

Development
Artifacts/Software
Informalisms

Software documentation, how-to guides, design styles
(e.g., P2P, client-server)

Protocols HTTP, RPCs

Shared Data Formats HTML, CGI, XML

Table 3: Common boundary objects that span the World Wide Web [Jensen and Scacchi
2005].

While certain boundary objects indicate a degree of interaction between processes in
FOSS ecosystems, it yet is unclear how this interaction plays out. As long as each
member of the ecosystem adheres to these standards, they may choose to operate
independently, following their individual processes as usual. However, an ecosystem is
not a static network of interacting objects or a single coherent virtual enterprise.
Commonly held standards change to meet evolving needs. Relationships between
interacting software systems developed by otherwise independent FOSS projects help
adapt to change. Such relationships may require tighter coupling at the level of
integration or explicit collaboration between organizational processes. By synchronizing
their communication protocols and common data representations with one another
through the process integration mechanisms of their choice, they stabilize the network.
When an individual community varies from a standard or implements an update to an
existing standard, the other communities act to support it or choose to reject it.
Likewise, defects in data representations or operations in one software system can
cause breakdowns or necessitate workarounds by others in the ecosystem. We look at
the causes and negotiations of these conflicts next.

78

Version of 29 November 2010

Process Conflict

Process conflict can precipitate or follow from process breakdown, disarticulation, or
disintegration. Conflictive activities arise often from organizations competing for market
share and control of the technical direction of an ecosystem or market and shared
technologies. It also arises from less belligerent activities, such as introducing a new
version of a tool or database that requires massive effort to incorporate and that other
organizations depend on. In these cases, the organization placed into conflict may
simply choose to reject the revised tool or technology, possibly selecting a suitable
replacement if the current one is no longer viable. This path was chosen by
shareware/open source image editing projects due to patent conflicts with the GIF
image format in the 1990s, leading to the creation of the portable network graphics
(PNG) image format standard [Battilana 1995].

Conflicts across FOSS projects get resolved through collaborative means. Most
typically, this occurs through the exchange of messages between participants (message
threads) communicated on project discussion forums or other computer mediated
communication systems (email, chat, instant messaging, etc.). Alternatively, an
organization causing or resisting a tool or technology may succumb to pressure from
the rest of the ecosystem. Irreconcilable differences, if they persist and are strongly
supported, can lead to either unresolved conflicts (e.g., software updates that do not get
implemented), incompatibilities in the interoperating software systems, or divisions in
the ecosystem.

Synchronization and stabilization of shared artifacts, data representations, and
operations or transactions are required for an ecosystem to be sustained. This process
is not “owned,” [Larsen and Klischewski 2004] located within, or managed by a single
organization or enterprise. Instead, it represents a collectively shared set of activities,
artifacts, and patterns of communication that are enacted across the participating
communities. Thus, it might better be characterized as an ill-defined, ad hoc, or one-off
boundary spanning process that differs in form with each enactment. Consequently, the
form of these processes is dynamic and emergent, rather than static and recurring.
Modeling such one-off processes thus must be justified, since they occur infrequently
and do not reoccur. As such, approaches to modeling these processes often trade off
representational detail of individual process forms, and instead uses a more abstract,
low fidelity representation [Atkinson, Weeks, et al. 2004]. This is done only so as to
model (or suggest) an abstract set of relationships of interaction, whose individual
elements would be composed anew for each enactment.

79

Version of 29 November 2010

Community communication channels (i.e., recurring patterns of communication of
shared artifacts, data representations, or protocols) can be used to connect the
interprocess resource flow between interacting communities within an ecosystem, as
suggested by Figure 1. Each channel between communities connotes ad hoc processes
that articulate the interoperability or interdependence of tools and technologies, as well
as the boundary objects, shared between them. The process characterizing the growth
and evolution of a software ecosystem can therefore be characterized by the
communication flow that enables integration or conflict process activities between
constituent projects.

Figure 1: Process integration and conflict in a software ecosystem that spans the Web
information infrastructure [Jensen and Scacchi 2005].

A Sample of FOSS Ecosystems

Here we briefly examine three different kinds of FOSS ecosystems. These are centered
respectively on the development of FOSS systems for networked computer games,
scientific computing for astrophysics, and World Wide Web. Along the way, example

80

Version of 29 November 2010

software systems or projects are highlighted or identified via external reference/citation,
which can be consulted for further review. One important concept to recognize is that
each FOSS ecosystem represents a different mix of FOSS and non-FOSS producers,
system integrators who may build systems from FOSS and non-FOSS components, and
end-users who may seek alternative system configurations of an integrated (or loosely
coupled) system. This set of relationships may be specified as a “software supply
network” that interlinks FOSS producers, integrators, and consumers through the FOSS
they share, modify and redistribute, as suggested in the following figure. This figure also
highlights how the (copy)rights and obligations found in different FOSS licenses are
composed or transferred before reaching end-users. So a FOSS ecosystem is not a
single unitary object, but instead represents a web of interrelated participants,
technologies, and other resources that interact across an underlying information
infrastructure or cyberinfrastructure.

Figure 2: A schematic description of software supply networks for FOSS ecosystems
[Alspaugh, Asuncion, et al. 2009b].

81

Version of 29 November 2010

Networked computer game ecosystems

Participants in this social world focus on the development and evolution of first person
shooter (FPS) games (e.g., Quake Arena, Unreal Tournament), massive multiplayer online
role-playing games (e.g., World of Warcraft, Lineage, EveOnline, City of Heroes), and others
(e.g., The Sims (Electronic Arts), Grand Theft Auto (Rockstar Games)). Interest in
networked computer games and gaming environments, as well as their single-user
counterparts, have exploded in recent years as a major mode of entertainment, popular
culture, and global computerization movement. The release of DOOM, an early first-
person action game, onto the Web as FOSS with a GPL license in 1999, was the
landmark event that launched the development and redistribution of computer game
mods — open source and distributable modifications of commercially available games
created with software development kits provided with the retail game package by the
game's software developer [Scacchi 2010b]. The end-user license agreement for games
that allow for end-user created game mods often stipulate that the core game engine (or
retail game software product) is protected as closed source, proprietary software that
cannot be examined or redistributed. Such licenses further state that any user-created
mod can only be redistributed as open source software that cannot be declared
proprietary or sold outright, and must only be distributed in a manner where the retail
game product must be owned by any end-user of a game mod. This has created a
secondary market for retail game purchases by end-users primarily interested in
accessing, studying, playing, further modifying, and redistributing game mods [Scacchi
2004, 2010b].

Mods are variants of proprietary (closed source) computer game engines that provide
extension mechanisms like (domain-specific) game scripting languages (e.g.,
UnrealScript for mod development with Unreal game engines from Epic Games Inc.) that
can be used to modify and extend a game. Extensions to a game created with these
mechanisms are published for sharing across the Web with other game players, and are
licensed for such distribution in an open source manner. Mods are created by small
numbers of users who want and are able to modify games (they possess some software
development skills), compared to the huge numbers of players who enthusiastically use
the games as provided. The scope of mods has expanded to now include new game
types, game character models and skins (surface textures), levels (game play arenas or
virtual worlds), and artificially intelligent game bots (in-game opponents). For additional
background on computer game mods, see
http://en.wikipedia.org/wiki/Mod_(computer_gaming).

Perhaps the most widely known and successful game mod is Counter-Strike (CS), which
is a total conversion of Valve Software's Half-Life computer game. Valve Software has
since commercialized CS and many follow-on versions. CS was created by two game
modders who were reasonably accomplished students of software development.

82

http://en.wikipedia.org/wiki/Mod_(computer_gaming

Version of 29 November 2010

Millions of copies of CS have subsequently been distributed, and millions of people have
played CS over the Internet, according to http://counterstrikesource.net/. Other popular
computer games that are frequent targets for modding include those based on the
Quake, Unreal, Half-Life, and Crysis game engines, NeverWinter Nights for role-playing
games, motor racing simulation games (e.g., GTR series), and even the massively
popular World of Warcraft (which only allows for development and sharing of end-user
interface mods, but not the game itself). Thousands of game mods are distributed
through game mod portals like http://www.MODDB.com. In contrast, large successful
game software companies like Electronic Arts and Microsoft do not encourage game
modding, and do not provide end-user license agreements that allow game modding,
redistribution, or integration with FOSS systems.

Scientific computing ecosystems for X-ray astronomy and deep space
imaging

Participants in this community focus on the development and evolution of software
systems supporting the Chandra X-Ray Observatory, the European Space Agency’s
XMM-Newton Observatory, the Sloan Digital Sky Survey, and others. These are three
highly visible astrophysics research projects whose scientific discoveries depend on
processing remotely sensed data through a complex network of open source software
applications. In contrast to development-oriented FOSSD ecosystems, open source
systems play a significant role in scientific research communities. For example, when
scientific findings or discoveries resulting from remotely sensed observations are
reported, members of the relevant scientific community want to be assured that the
results are not the byproduct of some questionable software calculation or opaque
processing trick. In scientific fields like astrophysics that critically depend on software,
FOSS is considered an essential precondition for research to proceed, and for scientific
findings to be trusted and open to independent review and validation. As discoveries in
the physics of deep space are made, this in turn often leads to modification, extension,
and new versions of the astronomical software in use. This enables astrophysical
scientists to further explore and analyze newly observed phenomena, or to modify/add
capabilities to how the remote sensing or astrophysical computation mechanisms
operate. For example, the NEMO Stellar Dynamics Package at
http://bima.astro.umd.edu/nemo/ is now at version 3.3.0, as of May 2010.

To help understand these matters, consider the deep space image example found at
http://antwrp.gsfc.nasa.gov/apod/ap010725.html. This Website page displays a
composite image constructed from telemetry data from both X-ray (Chandra
Observatory) and optical (Hubble Space Telescope) sensors. The FOSS system
processing pipelines for each sensor are mostly distinct and are maintained by different

83

http://www.MODDB.com/
http://antwrp.gsfc.nasa.gov/apod/ap010725.html
http://bima.astro.umd.edu/nemo/
http://counterstrikesource.net/

Version of 29 November 2010

organizations [Scacchi 2002]. However, their outputs must be integrated, and the
images must be registered and oriented for synchronized overlay, pseudo-colored, and
then composed into a final image, as shown on the cited Web page. There are dozens
of FOSS systems that must be brought into alignment for such an image to be
produced, and for such a scientific discovery to be claimed and substantiated.

World Wide Web ecosystems

The SourceForge web portal (http://www.sourceforge.net), the largest associated with
the FLOSS community, currently manages information on more than 2M registered
users and developers, along with nearly 240K FOSSD projects (as of July 2010). More
than 10% of those projects indicate the availability of a mature, released, and actively
supported software system. However, some of the most popular FOSS projects have
their own family of related projects, grouped within their own ecosystem, such as for the
Apache Foundation and Mozilla Foundation. Participants in the ecosystems focus on
the development and evolution of systems like the Apache web server, Mozilla/Firefox
Web browser, GNOME and K Development Environment (KDE) end-user interfaces, the
Eclipse and NetBeans interactive development environments for Java-based Web
applications, and thousands of other applications or utilities. This world is the one most
typically considered in popular accounts of FOSS projects. The two main software
systems that enabled the World Wide Web, the NCSA Mosaic Web browser (and its
descendants, like Netscape Navigator, Mozilla, Firefox, and variants like K-Meleon,
Konqueror, SeaMonkey, and others), and the Apache Web server (originally know as
httpd) were originally and still remain active FOSSD projects.

The GNU/Linux operating system environment is situated within one of the largest, most
complex, and most diverse FOSS ecosystems within this arena, so much so that it
merits separate treatment and examination. Many other Internet or Web software
projects constitute recognizable communities or sub-communities of practice. The
software systems that are the focus generally are not standalone end-user applications,
but are often directed toward system administrators or software developers as the targeted
user base, rather than the eventual end-users of the resulting systems. However, notable
exceptions like Web browsers, news readers, instant messaging, and graphic image
manipulation programs are growing in number within the end-user community.

Research findings

The study of software ecosystems is emerging as an exciting new area of systematic
investigation and conceptual development within software engineering. Since the

84

http://www.sourceforge.net/

Version of 29 November 2010

concept first appeared [Messerschmitt and Syzperski 2003], increasing attention has
been paid to the many possible roles software ecosystems can play in shaping software
engineering. For example, Bosch [2009] builds a conceptual lineage from software
product line (SPL) concepts and practices [Bosch 2000; Clements and Northrop 2001]
to software ecosystems. SPLs focus on the centralized development of families of
related systems from reusable components hosted on a common platform within an
intra-organizational base, with the resulting systems either intended for in-house use or
commercial deployments. Software ecosystems then are seen to extend this practice to
systems hosted on an inter-organizational base, which may resemble development
approaches conceived for virtual enterprises for software development [Noll and
Scacchi 2001]. Producers of commercial software applications or packages thus need
to adapt their development strategy and business model to one focused on coordinating
and guiding decentralized software development of their products and enhancements
(e.g., plug-in components).

Along with other colleagues [Bosch and Bosch-Sitjsema 2009; Brown and Booch 2002;
van Gurp, Prehofer, et al. 2010], Bosch identifies alternative ways to connect reusable
software components through integration and tight coupling found in SPLs, or via loose
coupling using glue code, scripting or other late binding composition schemes found in
ecosystems or other decentralized enterprises [Noll and Scacchi 1999, 2001]. This is
key to enabling software producers to build systems from diverse sources.

Jansen and colleagues [Jansen, Beinkkemper, et al. 2009; Jansen, Finkelstein, et al.
2009] observe that software ecosystems (a) embed software supply networks that span
multiple organizations, and (b) are embedded within a network of intersecting or
overlapping software ecosystems that span the world of software engineering practice.
Scacchi [2007] notes that the world of FOSS development is a software ecosystem
different from those of commercial software producers, and its supply networks are
articulated within a network of FOSS development projects. Networks of FOSS
ecosystems have also begun to appear around very large FOSS projects for Web
browsers, Web servers, word processors, and others, as well as related interactive
development environments like NetBeans and Eclipse, and these networks have become
part of global information infrastructures [Jensen and Scacchi 2005].

We can classify findings in this line of work as research that has investigated the effects
of the broader ecosystem on FOSS projects and vice versa.

Effects of the broader ecosystem on FOSS projects

Source of new developers. Ghosh [2006] found that Europe is the leading region of
globally active FOSS software developers and global project leaders, followed closely

85

Version of 29 November 2010

by North America. Asia and Latin America face disadvantages at least partly due to
language barriers, but may have an increasing share of developers active in local
communities.

A few studies have gone beyond reports of motives to examine how intrinsic, extrinsic
and other factors interact to influence individuals’ participation in particular projects.
[e.g., David and Shapiro 2008; Roberts, Hann, et al. 2006]. For example, by studying
135 projects on SourceForge, Xu, Jones, et al. [2009] found that individuals’ involvement
in FOSS projects depends on both intrinsic motivations (i.e., personal needs, reputation
enhancement, skill gaining benefits and fun in coding) and project community factors
(i.e., leadership effectiveness, interpersonal relationships and community ideology).

Corporate involvement. Research on this topic has examined the reasons that
companies are investing internal resources in FOSS development. For example,
Bonaccorsi and Rossi [2006] found that firms are motivated to be involved with FOSS
because: 1) it allows smaller firms to innovate, 2) “many eyes” assist them in software
development and quality assurance, and 3) to aid in the ideological fight for free
software, though this factor comes in at the bottom of the list. In comparison with
individuals, they found that firms focus less on social motivations such as reputation and
learning benefits.

FOSS ecosystems also exhibit strong relationships between the ongoing evolution of
FOSS systems and their developer/user communities, such that the success of one co-
depends on the success of the other [Scacchi 2007]. Ven and Mannaert discuss the
challenges independent software vendors face in combining FOSS and proprietary
components, with emphasis on how FOSS components evolve and are maintained in
this context [Ven and Mannaert 2008].

Similarly, by studying the firm-developed innovations embedded within Linux, Henkel
[2006] emphasized the importance of receiving outside technical support as a motivator
for revealing code. By studying four firms involved with FOSS, Dahlander and
Magnusson [2008] discovered three approaches that firms used to connect with FOSS
communities: 1) accessing development in the community in order to extend their
resource base; 2) aligning their strategy with the work in the community; and 3)
assimilating work from the community. Feller, Finnegan, et al. [2008] discuss a new form
of OSS network involving firms, which use not only IT infrastructure, but also social
network.

Licenses. A few empirical studies have taken this framework to examine the influence of
license choices on various aspects of FOSS development [German and Hassan 2009;
Sen Subramanian, et al. 2008; Stewart, Ammeter, et al. 2006]. By examining the
SourceForge projects, Lerner and Tirole [2005b] examined the relationships between

86

Version of 29 November 2010

project types and license choices. For example, they found that highly restrictive
licenses are more common for projects geared towards end-users, and significantly less
common for projects aimed at software developers.

Tools. Surprisingly little research has examined the use of different software
development tools and their impact on FOSS team activities. One exception is Scacchi
[2004], who discussed the importance of FOSS-based software version control systems
such as CVS or Subversion, for coordinating development and for mediating control over
source code development when multiple developers may be working on any given
portion of the code at once. This paper also discussed the interrelation of CVS use and
email use (i.e. developers checking code into the CVS repository discuss the patches via
email). Michlmayr and Hill [2003] illustrated the importance of software bug trackers to
coordinate FOSS contributors working on resolving questions about unexpected system
behaviors.

Government policies towards FOSS software development. Governments around the
globe have considered the issue of providing direct or indirect support to FOSS
activities, turning FOSS into a political issue [Rossi 2006]. As of September 2006,
nearly 100 governments in over 40 countries had taken legislative action in support of
FOSS [Lee 2006; Lewis, 2010]. Countries as far apart as Germany, Brazil, Italy and
Singapore, among others, have all endorsed FOSS software to some extent, according
a preference for adoption of FOSS in governmental offices, offering temporary tax
reductions and financial grants to fund Linux-related projects or through some other
means [Hahn 2002 from Rossi 2006]. Chan [2004] examined the practices that
surround the emergence of free software legislation in Peru, observing a shift in framing
beyond free software's economic and technical merit, asserting the need to overcome
the dominance of privileged nations and corporate interests that have infiltrated
Peruvian government. Free software was identified as a tool for smaller nations to
address their limitations and position within the global market. Further, as noted above,
free software offered the potential to both free the state from the clutches of corporate
interests and increase public participation in a malleable, reprogrammable political
decision-making process.

Cultural impacts. Verma, Jin, et al. [2005] explored the factors that influence FOSS
adoption and use within two different FOSS communities, one in the U.S. and one in
India. They found that the degree of compatibility with users’ mode of work, and ease of
use are the two significant factors that influence FOSS use in the U.S. FOSS
community. For the Indian community, compatibility is the only significant factor.
Through their comparison of FOSS developers in North American, China and India,
Subramanyam and Xia [2008] found that developers in different regions with similar
project preferences are driven by different motivations. For instance, for projects that
are larger in scale, more modular and universal in nature, Chinese developers are found

87

Version of 29 November 2010

to be drawn by intrinsic motives while Indian developers are found to be mostly
motivated by extrinsic motives.

Effects of FOSS on the broader ecosystem

FOSS is a venue for training developers. Consistent with the view of FOSS projects as an
opportunity for training developers are the results of surveys showing motives such as
career development [Hann, Roberts, et al. 2002, 2005; Hars and Ou 2002; Orman 2008]
or learning opportunities [Shah 2006; Ye and Kishida 2003] as commonly mentioned
motivations for participation in projects. Programs such as Google’s Summer of Code (see
http://code.google.com/soc/) have emerged with this goal in mind.

Many tools are open source, and adoption of new tools has greatly facilitated development.
The United Nations Conference on Trade and Development reported [2004] that FOSS
provides an environment for the development of local industry and skills, noting that
FOSS processes and methodologies have served to influence technology development
in general.

License. FOSS has led to innovations in licensing models. For example, the Creative
Commons licenses are reported to have been inspired in part by Free Software licenses
(see http://creativecommons.org/about/history/). FOSS licenses such as version 3 of the
GNU General Public License (GPL3 — see http://www.gnu.org/licenses/gpl.html), further
stipulate terms explicitly conveying a grant of patent licensing for software covered
under its terms. The Apache License, Version 2 (see
http://apache.org/licenses/LICENSE-2.0) includes similar patent terms. While software
patents remain a controversial and legally ambiguous subject, this move extended the
terms of licensing beyond copyright to other forms of intellectual property. These sorts of
protections are of high interest both to producers of FOSS, as well as consumers.
Moreover, they naturally raise questions regarding software license compatibility.

Lessig [2006] argued that the code that makes up a system governs how we interact
with that system. At present, the Open Source Initiative has approved more than 50
open source licenses. The increasing number of licenses is a phenomenon frequently
referred to as license proliferation [Gomulkiewicz 2009]. Recent research has begun to
examine license mismatch [German and Hassan 2009] and compatibility and the effect
on the ecosystem [Alspaugh, Asuncion, et al. 2009b].

FOSS has led to innovative models for coordination and governance of collaborative work.
Relying on four in-depth case studies of firms involved with open source software, we
investigate how firms make use of open source communities, and how that use is
associated with their business models [Dahlander and Magnusson 2008]. This paper

88

http://code.google.com/soc/
http://apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl.html
http://creativecommons.org/about/history/

Version of 29 November 2010

analyzes a dynamic mixed duopoly in which a profit-maximizing competitor interacts
with a competitor that prices at zero (or marginal) cost, with the accumulation of output
affecting their relative positions over time. The modeling effort is motivated by
interactions between Linux, a FOSS operating system, and Microsoft’s proprietary,
closed source operating system Windows, which consequently emphasizes demand-side
learning effects that generate dynamic scale economies (or network externalities)
[Casadesus-Masanell and Ghemawat 2006].

Boucharas and colleagues [2009] draw attention to the need to more systematically and
formally model the contours of software supply networks, ecosystems, and networks of
ecosystems. Such a formal modeling base may then help in systematically reasoning
about what kinds of relationships or strategies may arise within a software ecosystem.
For example, Kuehnel [2008] examines how Microsoft’s software ecosystem developed
around in its Windows operating systems and key applications (e.g., Office) may be
transforming from “predator” to “prey” in its effort to control the expansion of its markets
to accommodate OSS (as the extant prey) that eschew closed source software with
proprietary software licenses.

Code reuse. Haefliger, von Krogh, et al. [2008] found that code reuse is extensive across
a sample of code and that FOSS developers, much like developers in firms, apply tools
that lower their search costs for knowledge and code, assess the quality of software
components, and have incentives to reuse code. There has been an increase in the
number of proprietary systems taking in process outputs of FOSS systems as inputs
into their own processes [Riehle, Ellenberger, et al. 2009]. Another study showed that
software organizations can achieve some economic gains in terms of software
development productivity and product quality if they implement OSS components reuse
adoption in a systematic way [Ajila and Wu 2007].

Open research questions

The research reviewed above suggests that there are rich and complex relations
between FOSS projects and a diverse set of actors in the surrounding ecosystem.
However, it is clear that this research has provided only a glimpse of the ecosystem
web, and further research is needed to provide robust theories that are explanatory,
predictive, and transferable. Research questions about FOSS ecosystems seek to elicit
new knowledge about the relation between FOSS projects and:

1. Users (individual and organizational)

• In what ways does public participation affect FOSS development projects?

89

Version of 29 November 2010

• What factors have led to organizational adoption or non-adoption of FOSS (i.e.,
adoption of SVN, Linux, etc. in enterprise) and what are the implications for
projects?

2. Developers:

• What are the conditions for active participation in FOSS projects (enskillment
process, conditions for engagement and sustained collaboration)?

• How do developers learn to work in FOSS projects? What role does formal
education play?

• Why does FOSS apparently reduce the diversity of participation, with lower
participation from women and minorities, as compared with other software work?
What can be done to facilitate or encourage participation?

• What is the impact of FOSS on international labor markets for programmers and
IT workers more generally? Does FOSS undermine or enable the US IT worker?

• How does the fact that reputation is vested in the individual alter the labor
market? (Companies pay for much of the labor in many open source projects,
but reputation vests in the individuals, who can readily move to other companies,
or even to independent projects using the same source they worked on in the
company.)

3. Tools:

• How are the practices and philosophy of FOSS instantiated within its
collaboration technologies?

• How does the introduction of new tools realize technology-led organizational
change?

4. Other projects and their code:

• What elements comprise a software system?

• What are the relationships between these elements?

• How do they interact?

90

Version of 29 November 2010

• What are the processes that describe their interaction?

• Can we identify patterns or classes of relationships between elements of the
system?

• How do these relationships change over time and why?

• What are the effects of the heterogeneity of commercial, free/open, non-profit,
government, and other organizational forms on the interactions of projects?

5. Companies and industries:

• What is the impact of FOSS on the software industry and vice versa?

• Has FOSS enabled the US software industry to move up the value chain and
driven down business start-up costs to facilitate a new way to try business ideas?

• Does FOSS destroy business models, de-monetize collective activity, and
devalue intellectual work?

6. Institutions:

• What are the effects of institutions (e.g., social norms, formalized rules,
governance requirements) that may be enforced through the connection to an
overarching nonprofit foundation on collaboration at the project level?

• How is such an ecosystem governed? How do elements of such ecosystems
synchronize and stabilize, or desynchronize and destabilize (e.g., to achieve and
effect competitive advantage)?

7. Legal regimes:

• How does the influence of various open source licenses construct, or destruct the
collaborative environment? E.g., do various license terms restrict how “open”
code can be used by other projects thus affecting collaboration?

• How do national copyright and patent policies influence collaboration on open
source projects? Do different policies lead to different success rates or possibly
different types of FOSS?

8. Government policies (e.g., procurement, patent, copyright, etc.):

91

Version of 29 November 2010

• How do the policies of one country influence government policies in another?

• How does government policy promote or inhibit collaboration in communities?

• How do public policies enhance or impede the natural tendency to collaborate
within a given community?

• What are the risks and implications of a policy of “open sourcing” all products of
government-funded research?

9. Cultures:

• As FOSS moves beyond its US and European cultural roots, will it be a
successful model for collaboration? Will FOSS itself learn from the new and
diverse cultures it increasingly encounters?

• How do the cultural differences of various developers impact their involvement in
a project? On a larger scale, how do various project cultures interact in a
collaborative environment?

• Is FOSS fostering a culture of copying? Doing rather than asking permission from
gatekeepers?

• How do FOSS-like principles relate to or influence broader democratic principles,
or effect new models of public participation?

10. Other open movements:

• Why is FOSS so often cited as an inspiration wherever people work together
online? Is its influence only as metaphor?

• How is the visibility and transparency of FOSS an aspect of its influence?

• What has shaped the popular understanding of Open Source? Does it matter if
that understanding is erroneous?

• How are FOSS collaborative principles transferring to other collaborative
domains outside of software? How similar is FOSS to these other kinds of
efforts?

92

Version of 29 November 2010

• What lessons from FOSS can inform how we might undertake “open”
collaborations in other areas (e.g., collaboration in science)?

• What are the limits of the FOSS way of working? Can it usefully extend beyond
its software origins? What innovation might be prompted by the attempt?

• How can work be designed to be suitable for a FOSS-like mode of production
(e.g. Wikipedia)?

• Which practices work when undertaking socio-technical redesign? What are the
mechanisms by which ideas transfer from FOSS to other kinds of projects (and
vice versa)?

Conclusions

The emergence of FOSS is transforming software production. It is transforming the
interaction between organizations, advancing science, entertainment, economics,
government, and society. Studies to date suggest these transformations are as complex
and far reaching as they are difficult to track. At present, we lack the tools to understand
the nature of these transformations. Similarly, we lack a deep understanding for how
FOSS is transforming mainstream software production within enterprises, the global
software/IT industry, government agencies, and society at large.

Given the diversity of factors, studies of FOSS must engage a variety of discipline
areas, such as behavioral economics, law, science and technology studies, ethics,
communications, anthropology, computing, political science, behavioral sciences,
sociology, public planning and policy. These research areas could employ a variety of
research methods and would benefit from multidisciplinary approaches to FOSS as a
socio-technical system. However, multidisciplinary research is hard to do. It requires
researchers with an openness and willingness to engage with others. Furthermore, it
requires disciplinary scientists to master the details of the domain.

There is a particular opportunity for FOSS to be an exemplar for new practices for
sustaining NSF funded research and transferring results of that research. Simply
throwing code on a server might be called “open sourcing”, yet that seems quite
insufficient to achieve the hoped-for benefits. For example, without indefinite sources of
funds (often longer than the typical horizon of an NSF grant), the data and other
products may not be archived sustainably, damaging the accessibility of these results to
future researchers. Open source may offer new models for dissemination and
sustainability of scientific research.

93

Version of 29 November 2010

Evolution

Overview

An evolutionary perspective on FOSS leads to fruitful insights into the science of open
source systems.

One of the hallmarks of FOSS systems is their strongly fluid and dynamic character . All
types of open source systems — from wikis, blogs, and open media, to network
organizations, ad hoc teams of volunteers, and community groups — manifest adaptive,
continuously changing, and surprising emergent behaviors. The fluid character of these
systems might be partly due to the networked environment in which they operate, as
both the hardware and software environment of digital artifacts are in “constant flux”
[Allison, Currall, et al. 2005, p. 368]. More importantly, however, it is the drivers of
change that differentiate them from traditional systems. The open, collective, and
participatory aspects of these systems seem to drive their dynamics, while the
electronic environment of their implementation supports and sustains them. FOSS
demonstrates this state of constant flux quite vividly: changes in the embedding
environment and context of use lead to changes in requirements; design features and
functions evolve; hardware systems, platforms, and properties are redesigned; team
members move, relocate, or refocus; legal arrangements and license agreements get
revised; and so on [Ekbia and Gasser 2008]. Change, in short, is the rule rather than
the exception. Our current challenge is that we do not fully understand the interactions
and high-order effects of this change. There is no common temporal frame of reference
to synchronize the evolution of these systems and subsystems. Rather, each system
runs on its own “clock,” changing at different rates and with different bindings to external
schedules and clocks [Ekbia 2009]. This characteristic gives rise to an interesting
similarity between open source systems and biological systems.

Evolutionary biology distinguishes “development” from “evolution” — the former covers
the ongoing adaptations that arise during one life cycle, while the latter covers
transformation or mutation propagated across generations. This is a useful distinction
with regard to FOSS systems, where development refers to within-release revisions and
adjustments, while evolution characterizes what happens across major releases. The
significance of this distinction becomes evident once we notice, for instance, the
common software development methodologies described by Boehm [2006] earlier in
this report.

94

Version of 29 November 2010

When studying software evolution, it is necessary to clarify whether attention is directed
at development of a given system throughout its life, or at the evolution of software
technologies over generations that are disseminated across multiple populations. It
appears that many of the studies concerned said to be concerned with “software
evolution” are in fact studies of patterns of development of specific systems, rather than
patterns of evolution across different systems, particularly as compared to work in
biological evolution. However, the laws and theory of software evolution articulated by
Lehman and associates [Lehman 1980; Lehman and Belady 1985] depend on empirical
findings that examine a variety of software systems in different application domains,
execution environments, size of system, organization, and company marketing the
system, as their basis for identifying mechanisms and conditions that affect software
evolution.

Considering the subject of FOSS system evolution at a macro level, it appears that
there are no widely cited studies that examine the issues of memes, competition,
resource scarcity, population density, legitimacy, and organizational ecology that
characterize evolution as a social and cultural process [Christiansen and Kirby 2003;
Gabora 1997; Hannan and Carroll 1992; Saviotti and Mani 1995]. The study of software
evolution in general, and FOSS evolution in particular, is still in its infancy. Similarly,
sophisticated mechanisms for cross-project (or lateral) innovation and resistive
entrenchment, as seen in recent evolutionary models [Gould 2002; Sapp 2009; Wimsatt
and Schank 2004], are not yet articulated for FOSS systems. Studies and insights from
these arenas are yet to appear, and thus need to be explored.

Conventional closed source software systems developed within centralized corporate
productive units, and FOSS systems developed within globally decentralized settings
without a corporate locale represent alternative technological regimes. Each represents
a different technical system of production, distribution or retailing, consumption,
differentiated product lines, dominant product designs and more [Hughes 1987].
Similarly, software development methods based on object-oriented design and coding,
agile development, and extreme programming entail some form of alternative
technological regime [Nelson and Winter 1985; Scacchi 2006]. Concepts from theories
of technological evolution, and observations about patterns of software development
and maintenance, can be used to help shape an understanding of how software
evolves. Additional work is required to compare and contrast evolutionary behavior
under different software production regimes, including the socio-technical regime of
FOSS system development and evolution.

What is missing?

An essential requirement for this standard model is that the successive representations
made through the software life cycle — the progressive transformations from user

95

Version of 29 November 2010

needs to reified requirements, from requirements through interpretations of designs and
code, from written codes to compiled, linked, assembled and delivered products, and
from packaged products through products-in-use reflecting actual specific behaviors —
are “meaning preserving.” In this view, the late-phase delivered products must
accurately reflect the early-stage goals, assumptions, and specifications. Many of the
cost, time, and quality liabilities of modern software production spring from the need to
sustain the accuracy of these transformations. Many development tools and practices
explicitly aim at increasing the reliability of this correspondence in the face of very
complex, distributed development processes with many stakeholders and contingencies
both internal and external. In short, software, in this conception, is a reified object with a
life cycle that goes through phases of birth, growth, maturation, and death. The eventual
destiny of the software is by and large in the hands of designers (upstream) and, to
some extent, business people and the market (downstream).The survival of the best
and the fittest software seems to be guaranteed in a kind of Darwinian process.
However, this Darwinian model provides an idealized, naive image of software
development processes, missing important aspects unaccounted for, and leaving
important questions unanswered. The parallel with biology is again useful here. The
Darwinian theory of natural selection explains the evolution of large organisms, but it
fails to explain the evolution of a much larger subset of the natural world — namely,
microbes — the evolution of which spanned the first 3.5 billion years of the overall 4.5
billion years of the emergence of life on earth. This huge evolutionary machinery is still
at work, inciting biologists to formulate non-Darwinian theories of evolution that would fill
in the theoretical gap [Sapp 2009]. Similarly, recent replication of Darwin's studies of
Finches on the Galapagos finds that natural selection may in fact be a rapid adaptation
mechanism observable in human-scale timeframes [Weiner 1995], rather than the slow
progressive process that Darwin posited. So again, our understanding of evolutionary
processes is being continuous improved and refined. But a reliance on the traditional
Darwinian model increasingly limits our understanding of the new evidence and studies
now at hand. By way of analogy, our limited understanding of FOSS evolution does not
allow us to explain or predict:

• How do the changes in FOSS structure, code, hardware, platform, community,
legal environment, and so on influence, constrain, or amplify each other, across
major and minor system releases?

• What have we learned about how to develop long-lived FOSS systems —
systems that survive transitions across generations of releases and platforms?

• Under what conditions or circumstances is FOSS code the best way to capture
and convey knowledge about how a program evolves? Are there other
mechanisms that might be appropriate?

96

Version of 29 November 2010

• How does the structure or architecture of long-lived FOSS systems change
across versions, releases, or processing platforms? Some of these FOSS
systems were originally developed on computers like DEC VAX 11/780 that
probably no longer exist, and whose processor performance might have been
measured in the range of 1M instructions per second (1Mips) or more, compared
to the multi-gigahertz processors of today, and the multi-core, massively parallel
processors of tomorrow.

• How does computer processor performance affect the evolution of long-lived
FOSS systems?

• How do changes in processor architecture (from single core, to multi-core, to
massively parallel) mediate the evolution of long-lived FOSS systems?

• Under what conditions is it necessary to create emulators of vintage computer
systems in order to revive or sustain legacy source code? Consider for example
the emergence of the FOSS-based MAME (multi-arcade machine emulator)
system that emulates vintage Motorola 6502 compatible game arcade computers
that in turn allows thousands of vintage arcade games to be revitalized and
played on modern PCs [Scacchi 2004].

• Do software systems in general tend to be designed assuming a particular
processor architecture, such that using them on newer architectures may result
in large parts of the source no longer usable or relevant? If X-Windows was
developed to support graphic stroke (Tektronix 4014) terminals, or computers
that lack graphics acceleration cards/processors now commonly available today,
what does this mean for the evolution of its source code?

• When does a software product line come to an end? When does a long-lived FOSS
system evolve into a hobby for nostalgic software developers?

• What roles do online artifacts take in sustaining the ongoing development of
FOSS systems? Such artifacts are, for example, FOSS project discussion
forums, group blogs, CVS/Subversion logs, IRC transcripts, and project digests
(“Kernel Cousins”). They are often knowledge-rich and highly contextualized.
They stand in contrast to the recommended practice of software engineering that
stresses the creation of formal representations of software, like “requirements
specifications” and “language-based design notations” [Sommerville 2006].

In short, the general problem area is: how and why do FOSSD outcomes, activities,
technologies, infrastructures, etc. develop and change over time; do these changes
follow specific patterns or principles; and what evolutionary trajectories are typical with

97

Version of 29 November 2010

FOSS as compared to other forms of software? Analyzing such evolutionary
diversification is significant in multiple ways. It can offer new ways to explain and predict
likely outcomes for certain initiatives. It helps us understand how software processes
learn and change, what events and factors lead to such change, and how much change
is driven by social, regulatory, technical or market changes. These are valuable in
managing and coordinating FOSS production efforts, formulating policy and regulatory
interventions, and understanding the pattern of software change in relation to its
environment. Evolutionary analyses offer insight into how software and its related
processes,infrastructures, and tools co-evolve over time . In addition, these analyses
help discern factors that lead either to the growth or decline in FOSS initiatives, and
what factors influence the overall change patterns in FOSS communities.

What do we currently know?

The subject of software evolution is one of the longest standing topics for empirical
software engineering, with the earliest studies appearing in the late 1970’s, while
ongoing studies continue to this day [Godfrey and German 2008; Lehman 1980;
Lehman and Belady 1985; Madhavji, Ramil, et al. 2006]. Studies of FOSS evolution
have appeared since about 2000, and surveys of this work have already begun to
appear [Robles, Gonzalez-Bahrona, et al. 2003, Koch 2005, Ye, Nakajoki, et al. 2005,
Scacchi 2006, Deshpande and Riehle 2008, Fernandez-Ramil, Izquierdo-Cortazar, et al.
2009]. Noteworthy about these studies of FOSS evolution are (a) the discovery of large
numbers of FOSS systems that are growing at sustained superlinear (exponential)
rates, and (b) that FOSS code and developer/user communities co-evolve together,
rather than independently. However, such growth is not inevitable, nor it is insured, as
other FOSS systems do not show such sustained evolutionary growth patterns.

A number of the current studies of FOSS evolution focus on software products such as
source code releases, application systems or families, development tools and
infrastructure, and process models. Other studies examining the evolution of software
development artifacts, practices, and project communities have appeared in smaller
numbers compared to those focusing on the software itself. Studies of FOSS
ecosystems are just beginning to appear [Alspaugh, Asuncion, et al. 2009b]. New
methods for studying FOSS evolution have appeared, including methods relying on data
mining tools and techniques applied to FOSS project repositories, whether for specific
large projects, or those analyzing FOSS evolutionary patterns found in multi-project
FOSS repositories like SourceForge, or archives of such repository data found at
FLOSSmole [Howison, Conklin, et al. 2006], the SourceForge Data Repository at Notre
Dame University, and elsewhere [Gasser and Scacchi 2008]. As a result, we can now
see different research strategies and methods coming into view which in turn reflect the
different kinds of studies of FOSS evolution that can now be undertaken. These include:

98

Version of 29 November 2010

• Very large, population-scale studies examining common objects selected and
extracted from hundreds to tens-of-thousands of F/OSS projects, or surveys of
comparable numbers of F/OSS developers.

• Large-scale cross-analyses of project and artifact characteristics, such as code
size and code change evolution, development group size, composition and
organization, or development processes.

• Medium-scale comparative studies across multiple kinds of F/OSS projects within
different communities, use or production ecology, or software system types.

• Smaller-scale in-depth empirical studies of specific F/OSS practices and
processes for ethnographic study or hypothesis development, as well as the in-
depth investigation of details of different socio-technical resources and
relationships.

Details identifying studies at each scaling level of data sampling and analysis can be
found in the survey by Gasser and Scacchi [2008]. Studies of software evolution prior to
2000 seem to be limited to either medium or small-scale studies, as large-scale and
very large-scale data sets were previously not available. Studies of FOSS system
evolution at different scales thus represent a new opportunity for discovering scientific
knowledge about software evolution through new data sources.

Next, there are several important distinctions to be made about evolution of FOSS
systems. First, analogous to models in evolutionary biology, one level is involved with
analyzing patterns of developmental change for singular processes, artifacts, projects or
communities within a generational scope. This kind of evolutionary adaptation is
sometimes called software maintenance or continuous development. Second, we can
seek to observe evolutionary patterns across processes, artifacts, projects or
communities in how they build an ecosystem, adapt to specific ecological niches or
maintain specific environmental interactions as some sort of “species” or stage of
evolution across generations. Evolution in this regard covers generational changes that
are expressed across software releases, platforms, contributors, and the like.
Subsequently, the study of evolution of FOSS systems needs to be able to distinguish
these two levels of change and also understand their interactions.

Last, a FOSS system can be viewed as an evolving entity which involves many
interacting and evolving components. Such components involve participants and their
patterns of interaction (size, volatility, intensity, etc.), structure of the community in terms
of organization and organizing principles, decision rights, principles of ownership, value
extraction and property rights (licensing), the nature of artifacts produced (artifacts),

99

Version of 29 November 2010

technological artifacts and capabilities appropriated or prescribed as part of the software
production work (software development tools, software version/configuration
management tools), software production processes and related methods, the nature of
the infrastructures in which the FOSS participates, the structure and change of the
communities, and changes in the broader environments in which the FOSS projects
operate.

What do we need to know?

We now turn to identifying where future research studies of FOSS evolution will appear,
and the kinds of deep, challenging, and fundamental problems they can address. These
studies will address FOSS evolution at the level of: products and artifacts; software
property licenses; development practices, processes, and tools; development
infrastructures, project communities; and socio-technical environment or ecosystem.

Are these informal FOSS development artifacts merely containers of information, or are
they, along with the tools that support their creation and management (like project wikis
or discussion forums) also the workplace where FOSS development work happens? If
so, the evolution of FOSS development work practices might be understood through
examination of the evolution of the patterns of usage for creating and sustaining these
artifacts.

If online artifacts are the new workplace for globally dispersed and decentralized FOSS
development, then how will the evolution of these objects of interaction shape the
software development workplace of the future? How will the future of software
development work determine which artifacts will be most critical to the ongoing
development of a FOSS project? How is the development of FOSS best characterized
from a software process perspective? How is the process of software evolution, perhaps
the oldest, empirically studied problem in the field of software engineering, changing to
account for FOSS? Empirical studies of software evolution prior to 2000 were almost
exclusively focused on commercial software systems developed in proprietary settings
that were deprecated over time, and subject to extant software business models and
market conditions. Since 2000, nearly all studies of software evolution practices,
processes, and artifacts focus on the empirical study of FOSSD projects, mainly due to
the public accessibility of FOSS development and evolution data [Scacchi 2006].

Thus, the problem of understanding the evolution of FOSS system code and artifacts
will be situated and understood with reference to development processes, and project
forms. Such investigation remains an open problem area that is highly amenable to
empirical study, and it is a problem area that is likely to be long-lasting in its importance

100

Version of 29 November 2010

to the future of software and the future of closely aligned social practices that embrace
an open source-like approach (e.g., open science, open content creation).

Can we create general laws of software evolution primarily from studying FOSS?
Studies of proprietary software have usually been subjected to confidentiality
restrictions such as Non-Disclosure Agreements that limit the details that can be
published. This poses two fundamental problems: first, many empirical studies of
software evolution cannot easily be replicated or extended due to lack of open access to
the data collected in proprietary settings; and second, so much detail is typically left out
of the study that we are asked to take a lot on faith. These studies ask us to trust that
the researchers have done the study properly, and also to accept the results without
fully understanding the design or even domain of the target system. Some FOSS have
been around for more than a decade or two, and have preserved their histories. The
availability of such FOSS systems has thus initiated a golden age of research in
software evolution, where any researcher can now have access to rich histories of
software systems to study. Furthermore, empirical studies of FOSS systems can now be
replicated to either confirm or revise previous results, or present discoveries that might
have been previously overlooked.

We do know that the goals, processes, economics, and even politics of FOSSD are
strikingly different from that of most proprietary systems. What we must ask is: How do
the differences affect the resulting systems, and are there significant differences with
results from non-FOSS system development efforts [Paulson, Succi, et al. 2004]?
Finally, we note that just as there are a wide variety of industrial software development
processes, there are also many development models that fit under the umbrella of
“open source”: some projects are driven mainly by part-time enthusiasts, and decisions
are made by an informal consensus; some are initiated by companies but then donated
(or abandoned) to the broader user community; and some are supported by
organizations that spearhead, oversee, and legally represent official development efforts
through for-profit corporations or nonprofit foundations. This last category — which
includes such well known systems as Mozilla, MySQL, Eclipse, and Mono — is
particularly interesting as the organization usually hires and manages most of the key
developers and so functions within a kind of hybrid process model: the system is
designed, developed, and managed by a formal organization, but development is “out in
the open” [cf. Dinkelacker, Garg, et al. 2002]. Perhaps these kinds of systems hold the
key to an improved understanding of the differences and similarities between FOSS and
proprietary closed source software.

While the recent explosion in the amount of empirical work on FOSS systems is good
news to the research field, the question must be asked: Is the evolution of FOSS a good
indicator of the evolution of software in general? If not, what are the differences? To
answer this question, we categorize the evolution of FOSS into five key areas:

101

Version of 29 November 2010

processes, practices, and project forms; infrastructure; community; ecosystem; and
licensing.

Evolution of FOSSD Processes, Practices and Project Forms

FOSSD processes and work practices evolve as development tools change, the
community discovers new ways of coordination and organization, and the rules of
governance are modified. Recurring FOSSD work practices represent instances of
FOSSD processes within a given FOSSD project organization. So adaptive or
responsive changes in recurring, collaborative FOSSD work practices are partly
characteristic for how FOSSD processes evolve, and how they jointly co-evolve with the
FOSS system and project organization at hand. Outstanding research questions
associated with FOSSD processes, work practices and tools include:

• How do we best to discover, recover, and model FOSSD processes that are
decentralized and globally dispersed, and that yield useful software systems?

• How do FOSSD processes or practices give rise to sustained evolutionary
growth of source code and developer/user communities? Why do some FOSS
systems undergo sustained growth at superlinear rates, while others do not?

• How do development processes evolve over time, and what factors affect their
evolution? Do development processes change with emerging changes in work task,
tools, participants, and as project scale increases? What is the role of alternative
project organizational forms in facilitating or inhibiting such changes?

• Do development processes follow incremental or punctuated change patterns?
Under what conditions are the changes incremental or punctuated?

• How do tools change and evolve as development processes, work practices, or
project forms evolve? How are new tools integrated into processes, practices, or
projects, and with what consequences?

• What aspects or elements of FOSSD are critical to analyze in the FOSSD project
evolution including passages across new actors, tools, organizational forms,
governance regimes, size, task volatility, etc?

The evolution of FOSSD processes and practices encompasses the frequency and
distribution of events such as updates to platforms, tools and requirements, and
participants or user populations engaging in development processes. The sequencing of

102

Version of 29 November 2010

activities in which these components or actors participate (i.e. order of sequences,
proportion of different types of activities) is also of interest. Traces of work practices can
also be used for analyzing similarities and differences across a set of processes within
FOSSD projects, and compared to proprietary software development. One can analyze
developmental change in a single process or set of development processes over time in
terms of changes in their organization and its variance. There are also options to
compare types of development processes and their stages of evolution. Similarly, we
can analyze integration and expansion of tool support to address change in production,
collaboration or negotiation tasks, and how they influence the process
organization,structure, and outcomes.

This requires developing categories to describe and classify process data and events
and their connections in a systematic way. It may demand creation of new tool and data
collection capabilities to capture in real time process events and their sequences, and to
visualize them for analysis. Additional approaches that can use event data may involve
simulation, or with larger data sets use of variance based statistical techniques
(regression, non-linear regression) to analyze interactions between process features
and outcomes like software size, quality, user growth, and the like. Consequently,
puzzling questions arise around issues such as:

• How do developer and contributor practices change as a function of the
development state of the project (concept, pre-alpha, alpha, beta, or stable
releases)? Do these mirror changes in proprietary development practices?

• Do programming language features fragment during the project life cycle [Krein,
MacLean, et al. 2009]? In other words, is there a general trend towards high or
low language entropy throughout the life of a project? Is this good? Can we
quantify the benefit of a project moving in either direction?

• Is there a critical mass of communication or socio-technical interaction required
to move a project into a phase of rapid, sustainable and exponential growth? If
so, which kinds of communication (email, chat, mailing lists, blogs, wikis, phone,
face-to-face) or have the most power to support this kind of growth?

• What are the key communication practices, processes, software
tools/applications, online artifacts, project forms, or other resources that enable a
decentralized, international FOSSD project? Can we see a difference in
successful and unsuccessful projects along these lines? How soon in the life
cycle of the project do these communication habits need to manifest in order to
allow a project to grow at a super-linear rate? Is there a drop-dead point after
which the project will collapse under its own weight if not supported by these
resources?

103

Version of 29 November 2010

A beneficial step would be to develop a collaborative resource to curate and house
research data in a single repository like FLOSSmole. Once evolutionary data from
multiple sources are co-located, it becomes much easier to analyze evolution as a web
of processes and practices that are situated within a FOSSD project and its larger
surrounding or embedding ecosystem.

Evolution of FOSSD Project Infrastructure

Many products of FOSSD projects have become essential, critical cyberinfrastructure,
such as Web servers, Web browsers, data management repositories, interactive
development environments, and more. Familiar examples include Bind, the Apache web
server, and the Eclipse IDE (where greater than 70% of all current Java development is
done using Eclipse). The infrastructure management issues raised above clearly apply
to FOSS products. To understand infrastructure evolution, we need conceptualizations
of infrastructure’s critical dimensions. A model presented by Star and Ruhleder [1996]
includes the following dimensions, adapted here to FOSSD projects:

• Embeddedness, as indicated by the size, diversity, and complexity of resources and
social arrangements that situate a FOSS system.

• Transparency, as indicated by the level and extent of openness, as well as the
ability to study, modify, and share knowledge or practices for how a given FOSS
system is being developed or used.

• Learned as part of membership, since participation in and contribution to a FOSSD
project demands effort to acquire and make sense of disparate information and
online artifacts, to figure out how internal system computations and external
development activities are performed.

• Linked with conventions of practice, such as how and where to ask questions that
elicit knowledge from others, how to collaborate with other FOSSD project
contributors, or how to focus on resolving software bugs rather than chiding
those who may have contributed them.

• Embodiment of standards, particularly in the form of preferred
programming/scripting languages, development tools, project repositories, online
artifacts, data representation formats, or data communication protocols to use
when contributing to a FOSSD project.

104

Version of 29 November 2010

• Built on an installed base, including participant contributed hardware, software, and
networking resources, along with shared FOSSD project repositories.

• Becomes visible upon breakdown, since the hardware, software, and project
platforms, as well as the beliefs, values, and norms that are shared by FOSSD
project participants, help shape when FOSSD practices, processes, or project
forms are working well or becoming problematic and conflict-laden.

Star and Ruhleder [1996] present these as characteristics of mature information
infrastructures. But such infrastructures have life cycles of creation, growth, maturation,
sustenance, and eventual dissolution. It is critical to understand the roles of different
FOSS resources in the life cycles of infrastructures along each of the dimensions
above. For example, how do dense networks of dependencies between FOSS systems
and project resources develop and dissolve? What are the roles of FOSS practices,
processes, and project forms in establishing and evolving local or global infrastructural
standards? How do FOSS practices, processes, and project forms become invisible and
then return to visibility? Similarly, closely related research questions arise when FOSSD
projects are expected to create cyber-infrastructure for mission-critical applications in
science, industry, or government settings:

• Creation: how do new infrastructures come about?

• Sustainability: how can infrastructures best be maintained?

• Vulnerability: how can infrastructures be attacked or fail, and how can they be
protected against such events?

• Innovation: how can infrastructures be revised, updated, improved, or
decommissioned?

We lack the requisite scientific knowledge to explain, predict, and control how FOSSD
project infrastructures are developed and evolved over time and across multiple
projects.

Evolution of FOSSD Project Communities

Communities begin, grow, adapt, maintain themselves, and decay within a socio-
historical environment and ecology of other communities and use. Some communities
compete for members, while others find synergies or cooperative strategies. The social
structures of these communities are important to understand, as is their dynamic path

105

Version of 29 November 2010

over time. These paths include the interaction patterns of members within and across
FOSSD projects.

It would be useful to instrument existing FOSS communities to obtain rich enough
datasets to understand these internal and external interactions. To achieve this goal will
require (a) a research infrastructure project to instrument FOSS activity and to archive
such datasets. Once we have these datasets of multiple community efforts, we can also
(b) provide visualizations of this activity, (c) understand the activities and interactions in
time, and (d) provide additional tools to augment these activities. Important research
questions here include:

• What are the relationships between FOSS system structural characteristics,
community interaction, productivity, and use? Do these relationships change over
time as the project grows, adapts to its environment, attempts to maintain itself,
and decays?

• Where are practice innovations created and developed in OSS projects and OSS
ecologies, in terms of structural and dynamic characteristics?

• What information flows best enable productive communication in OSS projects?

• How do FOSS code and project communities co-evolve?

• What augmentation mechanisms, such as visualizations and information digests,
provide information and activity summarization and understanding? What are
their advantages and problems?

• What tools can augment communication among stakeholders? How might they
be designed appropriately, and what are their issues in use?

• Can social or technical mechanisms be designed to identify emerging innovative
practices, and best practices developing within a project? What mechanisms
could help spread the inter-project communication of those practices?

FOSS communities are often more diffuse, geographically distributed, and artifact-
based than other communities, even those online. They exist in clear ecologies of
communities, where the interactions and communication flows among them may be
critical to their effectiveness and persistence.

106

Version of 29 November 2010

Evolution of FOSS Ecosystems

Software ecosystems and their evolution have become a prominent feature of FOSS
projects and projects integrating FOSS and non-FOSS licensed components. Such
ecosystems connect software producers and software consumers through system
architectures created by system integrators. Researchers have found that traditional
homogeneously-licensed FOSS projects involve a complex network of producers, who
occasionally introduce an unexpected license into the system [Gonzalez-Barahona,
Robles, et al. 2009]. A software ecosystem evolves as the configuration of a system
changes to incorporate different libraries and components from other producers. In
some cases, producer projects (such as Linux Kernel and GNOME) coordinate their
evolution and releases [Alspaugh, Asuncion, et al. 2009a]. The health of a FOSS system
depends not only on the project that produces or integrates it, but on the web of
producers it depends on and the consumers who use it [Alspaugh, Asuncion, et al.
2009b; Godfrey and German 2008]. The management of these ecosystems is an
important consideration in the predictable evolution of the systems involved.

As innovative technologies evolve and mature they attract other applications that build
on them and these interdependencies create an ecology that takes on characteristics of
an infrastructure technology. Thus interesting research questions related to this
phenomenon include:

• What environmental catalysts allow a group of FOSSD projects to coalesce into a
critical mass?

• How does the interaction between users and technology propel some FOSSD
projects forward?

• What are significant characteristics of the ecosystems of FOSS systems that
evolve at superlinear rates?

• What tools encourage intermittent participation and facilitate learning and
collaboration for populations of transient and diverse participants?

• Is there a recurring cycle of growth and decay that drives the success of FOSSD
projects? Is this cycle impacted by competition, demand, new legislation,
economic policies, IP, standards, etc?

• Will a historical analysis of other seminal projects uncover critical inflexion points
at which projects take off? Are there certain governance norms and structures
that are best of breed?

107

Version of 29 November 2010

In recent years, an increasing number of businesses are shifting some development
efforts to FOSSD projects in order to reap greater economic efficiency. Any organization
that seeks non-differentiating software can benefit from shifting some development to
FOSS communities [Perens 2005]. However, not much effort has been directed towards
understanding new socio-technical practices that inevitably emerge due to differences
between the existing OSS communities and the organizations that join them [Lin 2005].
Emerging research questions include:

• What factors drive such alliances, and how do these alliances form? Are there
common structures for such alliances?

• What factors improve or damage the coordination, collaboration and governance
processes in these communities of practice?

• How will these alliances impact the future of the software industry?

Methodologically, we need more grounded, ethnographically-oriented research to better
understand the socio-technical practices of deployment, development and
implementation of FOSS systems in different ecosystem contexts — for example, FOSS
systems for networked computer games versus scientific versus World-Wide Web
applications. This is driven by the need to resolve the current paucity of detailed
sociological research on this area of innovation, especially the absence of an account of
mutual shaping between multiple constituencies (e.g., FOSS communities, corporations,
governments) and emerging socio-technical dynamics in the collaborative development
processes.

Evolution of Licensing Arrangements

Software property licenses are a relatively recent topic of research, and one that is
becoming clearly relevant to studies of FOSS system development and evolution.
Researchers have confirmed that the choice of a license correlates with some metrics of
project success [Subramaniam, Sen, et al. 2009], although this research focuses on
broad categories of licenses rather than specific licenses or specific license provisions.
The task of determining which license applies to a specific built component or system
has been addressed both by researchers [Gonzalez-Barahona, Robles, et al. 2009] and
by industry projects [Gobeille 2008]. However they have noted that the binary files do
not contain enough information to determine this completely.

License conflicts have been analyzed, with increasingly specific results, with no
consideration of software context [Rosen 2004], minimal consideration of context

108

Version of 29 November 2010

[German and Hassan 2009; Tuunanen, Koskinen, et al. 2009], and in terms of software
architecture, build configuration, and version history [Alspaugh, Asuncion, et al.
2009a,b]. The analysis has proceeded from bottom up to identify or confirm the
applicable license, starting with binary files [German and Hassan 2009; Gobeille 2008],
and from the top down to guide design and assert a virtual license, starting with
software architecture and other development artifacts [Alspaugh, Asuncion, et al.
2009a,b]. Such calculations are complicated by the fact that the license or license
version for a specific component, or the interpretation of that license, can evolve over
time. A recent study found that significant numbers of FOSS component licenses evolve
across versions during the component’s lifetime [Di Penta, German, et al. 2010]. The
text and interpretations of licenses make it clear that license interactions depend at a
minimum on how components are connected, and in some cases also on architecture,
build, and executable run-time version data.

A palette of FOSS licenses exists, created and evolved to address goals, conflicts, and
new technologies: wide use of academic software, an ever-increasing commons of
FOSS, software patents and other IP, the rise of software services and embedded
control software, and others. As new issues have arisen, new licenses (GPL, LGPL,
MPL, EPL) and revisions of old licenses (GPLv3, Affero GPL) have appeared to
address them. In the economy of license choices we see gradual shifts in the proportion
of projects using various licenses, and occasionally projects changing from one version
to another or one license to another.

How does the choice of license affect a FOSS project? There has been some work on
how gross license characteristics correlate with certain project success measures
[Stweart, Ammeter, et al., 2006; Subramaniam, Sen, et al. 2009]. However, there are
other characteristics of interest such as flexibility in evolving the project's product and
reliability, and the effect of licenses on these is not known. In addition, finer-grained
license characteristics and individual license provisions are important as components of
future revisions of existing licenses and of new licenses created to meet new goals.
Subsequently, emerging research question include:

• How do software licenses shape how software is developed, evolved, used, and
incorporated into larger systems?

• How does a license, and specific license provisions, affect significant FOSS
product characteristics such as flexibility, reliability, interoperability, and degree of
use?

• How does a license, and specific license provisions, affect significant FOSS
project characteristics such as contributor population, development processes

109

Version of 29 November 2010

and practices, coevolution with other projects, alignment with societal needs, and
lifespan?

• How should license considerations be integrated into software development
processes and tools?

Traditional FOSS projects are homogeneously licensed, with each project developed
and released under a single license. An emerging context of FOSS development and
use is for heterogeneously-licensed (HtL) systems, those composed of components
developed by different projects and distributed under different FOSS and non-FOSS
licenses. Here best-of-breed components are selected regardless of project or license,
and integrated using shim code to quickly produce a complex system or systems with a
very high degree of code reuse [Alspaugh, Asuncion, et al. 2009a]. The development
context is now much wider, connecting a group of projects into a software ecosystem in
which providers and consumers of software are connected by use and co-evolution
relationships [Alspaugh, Asuncion, et al. 2009b]. Researchers also find that some
traditional FOSS projects, when examined in detail, are found to be HtL due to apparent
inadvertence [Gonzalez-Barahona, Robles, et al 2009]. The quality, prospects, and
viability of an HtL system depend on the health of this ecosystem, and the increasing
number of such systems leads to new goals for FOSS licenses. Other related research
questions for this context include:

• What licenses and provisions support and encourage component reuse in HtL
development, while still meeting existing FOSS goals?

• How can the rights and obligations within the virtual licenses of HtL systems be
reliably managed by developers and satisfied by users?

• What effects do specific licenses and provisions have on the health of software
ecosystems?

• In what ways should licenses evolve or be created to support software
ecosystems?

• How do licenses interact with national and international law to have their proper
effect?

Licenses address latent or expected conflicts between stakeholders. What is the role of
license characteristics and provisions in mediating conflicts effectively, and guiding
stakeholders in proactively forestalling potential conflicts?

110

Version of 29 November 2010

Conclusions

Understanding the evolution of FOSS systems is a daunting yet fundamental problem
for research. It is jointly a problem area for software engineering, FOSS development,
human-centered computing, science studies, and the history of technology. The open,
public availability of data about successful long-life FOSS systems represents a truly
unique scientific opportunity to study the evolution of a complex systems technology.
Such study is challenging in that the openness and availability of the information in no
way trivializes the systematic and long-term effort necessary to fully comprehend how
FOSS system evolution operates, and to what ends. Consequently, we need new ways
to study FOSS system evolution so that we can acquire, articulate, and refine the
scientific knowledge needed to explain, predict, and potentially control the evolution of
FOSSD processes, collaborative work practices, project communities, project
infrastructures and ecosystems. Future FOSS system research infrastructures will be
critical to such studies of complex systems evolution.

We also need to expand our conceptual vocabulary beyond evolutionary metaphors
drawn from classic Darwinian models of biological systems evolution. A richer set of
constructs, metaphors, and relational models drawn from contemporary studies of
biological, economic, cultural, and technological systems evolution need to be employed
in explanations and of FOSS system evolution. The need is not simply to add more
conceptual complexity to scientific discourse on FOSS but to recognize that the
dominant framework for explaining, rationalizing, predicting, and controlling software
systems evolution is still very limited after more than 30 years of study.

Finally, we serve the FOSS research community and the larger scientific research
community well if we visualize the statics and dynamics of FOSS system evolution
across releases, projects, and ecosystems as complex socio-technical systems.
Evolution is not a condition of complex systems development; it is a web of processes
that continually emerge and adapt across space, time, participants, geographical and
cultural boundaries. Consequently, we should expect that our ability to explain,
rationalize, or predict FOSS system evolution might more easily be done in textual,
visual, and multi-media modalities using new tools and techniques created for such
purposes [e.g., De Souza, Quirk, et al. 2007; Ogawa and Ma 2008; Ogawa, Ma, et al.
2008]. Such tools and techniques would likely be of significant scientific value to other
research communities studying other kinds of natural or human-made complex systems.

111

Version of 29 November 2010

Part III

FOSS Data, Analytics, and Research
Infrastructure

112

Version of 29 November 2010

A Research Infrastructure to Support New Science of Open
Source Systems

Overview

Centralized, coordinated and collaborative research infrastructures are critical to
allowing FOSS researchers to reach the high-impact future we envision([Gasser and
Scacchi 2008]; [David and Spence 2003]; [Gasser, Ripoche, et al. 2004]; [Gasser and
Scacchi 2003]).

The roadmap we are proposing for a new Science of Open Source Systems will
necessarily include the need to continue developing a research infrastructure, which we
describe in this chapter. As Gasser and Scacchi explain in [2008]:

For F/OSS research, the objective [of research infrastructure] is to improve the
collective productivity of software research by lowering the access cost and effort for
data that will address the critical questions of software development research. ... In
our view, the multi-discipline F/OSS research community seeks to establish a
scholarly commons that provides for communicating, sharing, and building on the
ideas, artifacts, tools, and facilities of community participants in an open, globally
accessible, and public way.

Fortunately, there are a number of advantages FOSS researchers have in leveraging
our own existing knowledge and efforts to build this research infrastructure commons.

First, evidence of the potential usefulness of a research infrastructure to FOSS research
is already apparent and proven: several online research archives, tool repositories and
community portals already exist to collect and promote use of these artifacts, e.g.,
FLOSSmole [Howison, Conklin, et al. 2006], SRDA [Van Antwerp and Madey 2008],
FLOSSMetrics, FLOSSology, FLOSShub, etc. Numerous papers have been written
using the shared data found in these basic community portals (examples: [Rossi,
Russo, et al. 2010; Hofman and Reihle 2009; Wiggins, Howison et al. 2009; Squire and
Duvall 2009; Crowston and Howison 2006; Ripoche and Sansonnet 2006]), and FOSS
researchers have some record of sharing data and replicating each others’ studies
[English and Schweik 2007b; Wiggins and Crowston 2010]. These shared FOSS
research repositories serve a critical role in sustaining the scientific basis for
comparative FOSS system research studies. However, while these existing methods,
tools, portals, repositories, and research archives each may have a small following,

113

Version of 29 November 2010

none of them is really serving as an authoritative or centralized resource. The result is
that researchers are often unaware of the multiple sources of online research data and
tools; or, they may be dissuaded from using all those resources because of different
interfaces and non-standard data formats; or data available on one resource may not be
compatible with a tool on another resource site, etc. In addition, some of the data is
replicated between data sources, and other potentially useful data is not yet collected
and curated. This situation is not unique to research on FOSS; bioinformatics,
environmental science, nanotechnology, scientists who study the effects of wind on
structures, earthquake engineers, and many more have experienced these problems.
Solutions to these problems in other domains often take the form of federated scientific
portals (also called scientific gateways), enabled by emerging cyberinfrastructure
technologies, designed and developed by a virtual organization of research and
resource stakeholders. ([NSF 2007; Hey and Trefethen 2005; Freeman, Crawford, et al.
2005]) Such a standardized portal provides interoperability between users, data
sources, and tools. A portal can also reduce the effort required to collect data and can
result in better quality data with better annotations. [Parastatidis, Viegas, et al. 2009]

Second, we know that developing an infrastructure for research into the science of open
source systems will be both accelerated and challenged by the very large amounts of
data publicly available for study. This, as the saying goes, is both a blessing and a curse
for FOSS research. These artifacts include software source code archives, archives of
discussions between and among developers and users, statistics about projects
(including usage, downloads, defects), social networking data (such as relationships
between projects and developers, or between developers), characteristics of the code,
descriptions of development processes, metrics describing success and failure of
projects, models of various FOSS ecosystem components, documentation about
projects or source code, software tools developed to research the FOSS phenomenon,
and evidence of collaboration support (including written discussions and the like).

Third, the population of publicly accessible multi-project FOSS hosting repositories is
growing in number, diversity, and projects hosted [COSSHF 2010]. SourceForge,
Google Code, Codeplex, Freshmeat, Savannah, Apache, Tigris, and others host FOSS
project content repositories, or links to separate project repositories. Some like Google
Code, which may host upwards of 250K FOSS projects, and Microsoft's CodePlex are
proprietary, and do not provide FOSS researchers with open access to their hosted
projects databases nor allow offsite data collection programs to crawl and mine their
contents, while other proprietary service vendors like SourceForge which also hosts
about 250K FOSS projects do provide such access, and this access has enabled the
creation of FOSS research repositories like SRDA and FLOSSmole. Others like
Java.net and Tigris are specialized and only allow certain types of FOSS projects to be
hosted. Still others like GitHub host nearly one million FOSS project directories, while
having only 1/3 that number of users.

114

Version of 29 November 2010

Third, other multi-project FOSS repositories are hosted by FOSS projects backed by
nonprofit foundations like those for Savannah (Free Software Foundation) and Apache
(Apache Foundation) but strive to ensure that hosted projects conform to certain
guidelines, development practices, and software licenses. Development of FOSS
research repositories that span and can grow to accommodate new multi-project FOSS
project repositories is needed, as the kinds of data, meta-data, content links, and project
content (online artifacts, source code bases, etc.) that these repositories host will
continue to be both the source data and model for the development and use of
physically decentralized, but logically centralized FOSS research infrastructures.

Finally, because we study the phenomenon of FOSS systems as collaboratively-
developed, evolutionary software development ecosystems, we desire to transfer the
benefits of such a system into our own research domain. The previous chapters on
collaboration and evolution touched on some of the benefits from our research into
systems developed in an “open” way. So far in our modest attempts to build a research
infrastructure many researchers in our community have tried to “drink our own
champagne” by applying principles of open, collaboratively-built systems to our own
work. For example, the FLOSSmole and FLOSSMetrics projects collect and release
data and scripts under an open source license; FLOSSmole, itself, uses a combination
of features found within common software development forges.

It is our contention as researchers (and as users and leaders of these decentralized,
nascent research portals) that a community-driven effort to coordinate our efforts and
create a FOSS research infrastructure is critical to the success of our community's
research agenda, as described earlier in this document. In this chapter, we describe
what a FOSS research architecture would do for our research vision. We first present
the possibilities of a FOSS research infrastructure. We then follow this with a description
of each stage in our data collection and analysis process. In each stage of the process,
we show the missing pieces in our current research infrastructure, and we outline how
those might be addressed by a community-driven, federated FOSS research
infrastructure.

Purpose of the New Infrastructure

A FOSS research infrastructure will provide a physically decentralized but logically
centralized community for supporting research ideas with appropriate data and
expertise. In addition, a common FOSS research infrastructure will make important
contributions to non-FOSS research communities by providing standardized data sets to
do replicable research (for example, by allowing empirical software engineering
researchers access to very large data sets about FOSS development projects), or by

115

Version of 29 November 2010

contributing to advance the state of the art in these other disciplines (for example, by
allowing data mining researchers to apply their new algorithms to FOSS data sets, or by
allowing database systems researchers to experiment with very large, heterogeneous
data sets).

As discussed in more detail earlier in this report, research on the phenomenon of FOSS
will have several high-impact benefits. It will 1) improve our understanding of how the
FOSS ecosystem can be replicated in other domains, 2) provide insights on ways to
improve innovation, education, and software engineering practices, and 3) contribute to
the new science of open source systems. As with all research efforts, literature reviews
are needed, studies must be designed and conducted, collaborations may be formed,
data must be collected and analyzed, and results disseminated. The case for building
shared resources to support these research activities is well established by
organizations such as the NSF Office of Cyberinfrastructure and the many model
research infrastructures already in place (some discussed below). Such an
infrastructure will increase research productivity, reduce duplication of efforts, enable
research not feasible today, and accelerate the dissemination of results. These benefits
of the research infrastructure will be accrued for a variety of reasons. Having the data in
a centralized, federated repository, researchers will be able to conduct unified searches
across available data. Researchers can avoid duplication of data collection efforts, and
will be less likely to abandon a research project because data is not easily available.
Communications services (forums, email lists, wikis, informational web pages) and
archival resources (document repositories, abstracts, bibliographies) will help
researchers find collaborators, engage in Q & A with the research community, and
discover related projects and results. Archived simulations, data mining tools, data
manipulation and statistical scripts, stored queries, and other research support tools will
help standardize and improve the productivity of FOSS researchers.

Examples of Research Infrastructures in Other Domains

Science-gateways (or portals) using sustainable cyberinfrastucture can promote
distributed collaboration, increase research productivity, and enable research not
feasible without such infrastructure. Examples from other research domains that serve
as models for a FOSS research infrastructure include NEES, NEON, NCBI, and
DataONE. NEES (Network for Earthquake Engineering Simulation) is a shared national
network of experimental facilities, collaborative tools, communication forums, relevant
news, and shared earthquake simulation software, a centralized data and document
repository, and a Wiki. NEES enables communication and collaborative research and
experiments by distributed researchers [NEES 2010]. NEON (National Ecological
Observatory Network) collects data from multiple sites on the impacts of climate
change, land use change and invasive species on natural resources and biodiversity

116

Version of 29 November 2010

[NEON 2010]. NCBI (National Center for Biotechnology Information), run by the NIH,
houses genomic and related data, an index of biomedical research articles, search
engines, downloadable books, tutorials, and other related resources. VORTEX-Winds is
a virtual organization of universities, institutes, firms, agencies and individuals that
research methods to mitigate the effects of extreme winds on society; it pools
geographically dispersed resources, centralizes collective knowledge, and serves as the
virtual forum for the exchange of ideas to enhance the research and design capabilities
of its members [Vortex-Winds 2010]. DataONE (Data Observation Network for Earth) is
a gateway for accessing distributed environmental data available from atmospheric,
ecological, hydrological, and oceanographic sources, serving scientists, land-managers,
policy makers, students, educators, and the public through online access. [DataONE
2010] DataONE will ensure preservation and access to multi-scale, multi-discipline, and
multi-national science data. These and many other gateways display what is needed in
the FOSS research infrastructure: centralized access to distributed research resources.
Such a science gateway could combine existing and new FOSS resources to provide
similar features to those above for the FOSS research community.

Benefits of a FOSS Research Infrastructure

What data and tools will a FOSS research infrastructure include, and what will be the
benefits of collecting and sharing these objects? As a start, Gasser and Scacchi [2008]
outline five main objects of study in empirical FOSS research studies: software artifacts
and source code, software processes, development projects, communities, and
participants’ knowledge. They have created a useful table — two columns of which we
have reproduced here (see Table 4) — showing what each of these objects of study can
tell us about “success” in software development. For the purposes of this document, we
can consider each object shown in the table to be type of data to be collected, studied,
analyzed, and discussed in our research infrastructure.

Objects Success Measures

Source Code and
Artifacts

Quality, downloads, reliability, usability, durability, fit, structure,
growth, diversity, localization

Processes Efficiency, ease of improvement, adaptability, effectiveness,
complexity, manageability, predictability

Projects Type, size, duration, number of participants, number of software
versions released

117

Version of 29 November 2010

Communities Ease of creation, sustainability, trust, increased social capital,
lower rate of participant turnover

Knowledge Creation, codification, use, need, management

Table 4: Objects of study in a FOSS infrastructure, and what they tell us about success
in software development [Gasser and Scacchi 2008].

A FOSS research infrastructure will enable more productive research into the new
science of open source systems by encouraging researchers to collect, clean, analyze,
and discuss these objects of study. In addition to the collection and curation of these
objects of study, we also envision an infrastructure with tools and analyses, and a
vibrant discussion portal. These are some of the benefits:

• Eliminate redundancy. Redundant efforts to collect and clean data will be reduced
or eliminated. Data is easy to find. Data is trustworthy.

• Exposed and explained. Data, both basic and complex, is fully exposed for others
to use. Conversations about the data are centralized and exposed, vibrant and
timely. Site is easy-to-use.

• Bootstrapping. Analyses that are not possible today will become possible as
research groups share their collective wisdom and enable each others’ efforts.

• Donations. Data is donated and collected. Data sources are easy to annotate.
Data sources and types grow and change over time.

• Contributions to other domains. The data, analysis, and discussions made possible
by this research infrastructure will contribute to learning communities and open
source development communities in other domains, e.g., open hardware design,
open education, open science, open government, etc.

Building the Infrastructure

At the moment, the FOSS research infrastructure is very basic and underdeveloped.
Researchers express interest in being able to store and share data of various levels of
complexity, as shown in Table 1 above. These objects of study will consist of a variety of
data types, from simple quantitative metadata about projects to complex workflows
describing aggregation, cleaning, and analysis of data. The sections below follow a
typical data analysis process, describing at each stage of that process what a FOSS

118

Version of 29 November 2010

research infrastructure should include; what mechanisms are needed to facilitate that
inclusion; what currently exists and whether it would meet the community's need if it
were folded into a research infrastructure.

Data collection

After researchers identify the data they want to use in an analysis, the desired data is
collected either manually or automatically. A research infrastructure should assist
researchers with data collection in three ways. First, a research infrastructure should
assist in the collection process through automatic data collection and centralized
storage of commonly used data sets. Second, the research infrastructure should help
the researcher find out what data has already been collected and understand the
structure and provenance of the data that has been collected. Third, a research
infrastructure should help researchers understand how to contribute their own data
collections into the centralized storage. While the requirements for data collection may
change over time, currently the most commonly requested data collection features for a
centralized research infrastructure are:

• Storage of difficult-to-collect or very time-consuming-to-collect data types,
including: data from source code forges, data from developer or user surveys,
messages from project mailing lists, data from source code repositories
(including version control information, dependency histories), data from issue
trackers and bug reporting systems, developer and community discussions
(emails, IRC, chat logs, blog posts and comments, forums, Twitter feeds), data
about how users actually use the software, meeting or conference minutes or
video streams.

• Privacy for community contributors, avoiding release of personal information
(phone numbers, email addresses, employment information) or other sensitive
data

• Regular and timely collection of data, performed automatically and exposed via
easy-to-use methods.

• The ability to upload and share collected data, including data sets from published
research papers or “Gold Standard” data sets.

Meeting these data collection needs will require a set of automated collectors for
various data types, a centralized storage system (such as a database and file system),

119

Version of 29 November 2010

a mechanism for creating downloadable data sets in many formats, a mechanism for
uploading data sets, and a mechanism for discussing data sets between users.

Data curation and cleaning

Once the data has been collected, it needs to be described and stored in such a way
that it can be shared and preserved over time. The features that FOSS researchers
most frequently request for curated data are:

• A standard selection of just a few well-described, manageable formats for
downloading data.

• A description of what has been “done” to the data, if anything, between when it
was collected and when it was made available for use. Are there calculated
fields? Are there interpolated values?

• A description of what data is missing in the collection.

• Grades or assessments of the quality of the collected data.

• The ability to upload and share data cleaning scripts.

• Assignment of other, well-described metadata to collected data.

Meeting these data curation and cleaning needs will require all the items from “data
collection” above, plus a mechanism for describing the data (including tags), and a
mechanism for downloading, uploading and sharing scripts that can manipulate the
data.

Metadata

Metadata is data about the target data stored in the research infrastructure. For
example, if a researcher is studying the concept of “a software project”, the data could
include the source code about the project, whereas the project metadata could be high-
level facts about that project, including its name, its creation date, or its URL. Or if a
researcher is studying the behavior of a particular developer, the data could include the
developer's messages to a project mailing list, whereas the metadata about that
developer might be her name, her email address, her preferred spoken language, the
list of projects to which she has contributed, etc. The metadata that will be stored in a

120

Version of 29 November 2010

research infrastructure for FOSS will necessarily grow and change as the data stored in
it grows and changes. At the moment, researchers commonly require the following:

• A standard language for describing key data elements, such as project,
developer, user, action, fork, and release.

• The ability to tag data with metadata. Researchers typically want to be able to
add contextual descriptors, such as intended user community, implementation
language, and extent and nature of commercial support.

• Metadata that describes the provenance of the data. This may include validity
assessments for the data, and these may be community-developed
assessments.

• The ability to create and share connections between data sets. For example,
information about how one project is similar to others.

• Other metadata that describes and fully documents the structure of the data.

Meeting these metadata needs will require all the items from the categories above, plus
a mechanism for collaboratively writing and sharing a standard vocabulary, creating
validity assessments, and drawing connections between the data sets.

Data analysis

A mature research infrastructure will provide more than just “data for download.” Ideally,
a research infrastructure will also allow researchers to perform data analyses, and to
contribute, describe, and comment on analyses performed externally. Some of the
desired data analysis features include:

• The ability to automatically run various canned analyses on data collections
already stored in the infrastructure.

• The ability to create and share constructed workflows describing analysis of data
stored in the infrastructure (e.g. data about projects that has been collected).

• The ability to create and share aggregated or unified statistics from multiple data
collections.

121

Version of 29 November 2010

• The ability to create and share derived histories, for example constructing
historical data from transactional databases, or re-constructing long-term
histories of a project or of multiple projects.

• The ability to store interpretations or annotations of textual data, such as emails
or IRC logs.

• The ability to store written case studies.

• The ability to store constructed taxonomies and ontologies.
• A set of tools that can be used online or downloaded that will perform common

tasks. For example, source code control system analyzers, mailbox or mailing list
analyzers.

Meeting these data analysis needs will require all the items from the categories above,
plus a mechanism to select and run analysis tools, a mechanism to upload and share
analysis artifacts (for example: workflows, case studies, ontologies), and a mechanism
to upload and share user-developed software tools.

Using the data and talking about the data

Researchers have also requested a centralized, easy-to-use place to ask questions and
discuss their data and findings with each other, including:

• What data exists? Where can I find it? Who contributed it? When? Is it accurate?

• How can I learn what other researchers have already done?

• What is the best application of my analysis to the Big Picture of FOSS research?

• How can I use FOSS research in my classroom? Can I contribute my own teaching
materials to other researchers?

• I've recently completed this analysis. Is anyone in need of my expertise?

• Is there a common bibliography for FOSS work?

• Does anyone have archived copies of papers/articles/audio/video on some topic?

122

Version of 29 November 2010

• I read this paper but I can't find the data/script/program. Does anyone know
where I can get the data sets, programs or scripts that accompany papers?

• I want this new feature! (A structured feedback mechanism so researchers can
help guide the actions of the infrastructure team.)

Meeting these needs will require all the items from the categories above, plus a
mechanism to share bibliographical information, and a mechanism for tracking issues
within the infrastructure itself.

Summary of Infrastructure Requirements

The following table summarized the infrastructure requirements described above. After
the table, in section 3.7, each mechanism or requirement is further described, and we
note any existing technology that can be leveraged for this infrastructure.

Required for Data Collection Does it exist now?

1. Automated collectors for various
data types

YES, but underdeveloped

2. Centralized storage system YES, but underdeveloped
3. Mechanism for creating easily-
downloadable data sets in multiple
formats

YES, but underdeveloped

4. Mechanism for uploading data
sets

YES, but not automated or described

5. Mechanism for discussing data
sets between researchers

YES, but underdeveloped

Required for Data Curation Does it exist now?

6. Mechanism for describing and
tagging data

NO

Required for Creating Metadata Does it exist now?

7. Standardized vocabulary for
describing project metadata

YES, in theory, but not implemented, narrow
focus

8. Mechanism for creating validity NO

123

Version of 29 November 2010

assessments
9. Mechanism for drawing
connections between data sets

YES, in theory, but not implemented, narrow
focus

Required for Data Analysis Does it exist now?

10. Mechanism to select and run
analysis tools online NO

11. Mechanism to upload and share
analysis artifacts NO

12. Mechanism to upload and share
user-developed analysis tools NO

Required for Using the Data Does it exist now?

13. Mechanism to share
bibliographical information

YES, but not collaborative, underdeveloped,
underused

14. Mechanism for tracking issues in
infrastructure NO

Table 5: Infrastructure requirements to support the science of open source systems

Current Status of Infrastructure Requirements
Table 5 summarizes 14 requirements of a research infrastructure. These requirements
are further explained in this section, along with the research tools that are being used
currently, if any.

1. Automated collectors for various data types: a few repositories hold collections of
research-oriented FOSS data. Most of the time, their data is first found at software
forges (spidered or collected through web-based methods), cleaned, parsed, and stored
in a central place for use by researchers. Some people have called these “repositories
of repositories” (RoR). Examples are:

• FLOSSmole - many different forges. Metadata only.

• FLOSSMetrics - collects code and metadata about a hand-selected group of 1000
open source projects.

• Notre Dame SourceForge Data (SRDA) - Sourceforge data only.

124

Version of 29 November 2010

• Ohloh - commercial implementation - non-research focus. Sourceforge data only.
Basic metrics.

• SPARS-J - collects and searches through source code, not FOSS-specific. Basic
metrics and code only, java, xml, and jsp.

• Merobase - collects and searches through source code and components, not
FOSSspecific. Basic metrics. Java.

2. Centralized storage system: Several of the RoRs (namely FLOSSmole,
FLOSSmetrics, SRDA) are specific to FOSS research and do contain a centralized,
publicly-accessible database server.

3. Mechanism for creating easily-downloadable data sets in multiple formats. Most of
the RoRs mentioned do provide mechanisms to select and download data sets in
multiple formats. There is no general agreement about data set format, naming
conventions, how files are described, their provenance, or whether they are verified.

4. Mechanism for uploading data sets. The sharing of data sets between researchers in
a public way is currently a very rare occurrence in the FOSS community. When it does
happen, it is a manual process involving project leaders.

5. Mechanism for discussing data sets between users. Currently, discussion of FOSS
data sets takes place in three main venues: on the FLOSSmole mailing list, in personal
communications between researchers, and at the annual OSS conference. A FOSS
research infrastructure would provide a more robust means of fostering communication
between researchers.

6. Mechanism for describing and tagging data. There are numerous data tagging
systems in existence for other large, community-based data collection archives, but
because of the decentralized nature of the FOSS research infrastructure, these have
not been implemented. This would be a critical component of any FOSS research
infrastructure.

7. Standardized vocabulary for describing project metadata. There are at least three
standardized vocabularies which could be potentially useful in describing FOSS
metadata, but none of these is complete. An effective strategy would likely embrace and
extend one or more of these existing standards:

• DOAP - Description of a Project is an RDF description of the metadata describing
any software project.

125

Version of 29 November 2010

• POM - Project Object Model is designed for describing how to build a project
within Apache Maven.

• FAMIX - is a metamodel for describing the static structure of any object-oriented
software system.

8. Creating validity assessments for data sets. This does not currently exist
conceptually, either in whole or in part.

9. Drawing connections between data sets. There are a few papers written about this
possibility and some potential strategies for doing it, but nothing has been implemented.

10. Mechanism to select and run analysis tools online, live. Some tools exist for doing
similar things. A sample of available tools includes:

• CVSAnalY is a simple tool used to extract data from CVS and Subversion version
control systems. The tool reads the logs of a repository and recreates the data in
a local database. It generates a few descriptive metrics, but is not generally
extensible for other research. Researchers must pipe the output from CVSAnalY
into some other tool to generate meaningful results. [Robles, Koch, et al. 2004]

• FOSSology is a data mining framework initially created as an internal project at
Hewlett-Packard to identify software licenses present in source code [FOSSology
2010]. [Gobeille 2008]

• Mylyn is a plugin for Eclipse that allows researchers to use Eclipse to gather real-
time data from developers. [Mylyn 2010]

• Sourcerer [Ossher, Bajracharya, et al. 2009; Bajracharya, Ossher, et al. 2009] is a
set of possibly relevant open source tools. It includes a repository crawler for
locating project metadata and download links, an automated dependency
resolution tool for aiding compilation, a feature extractor for building relational
models of (open) source code, and tools for building source code indices for
searching.

• Simal is a framework for “the collection and management of essential details
about open development projects” [Simal 2010].

• Kepler is a mature, open source workflow engine capable of “integrat[ing]
disparate software components” [Kepler 2010]. In addition, Kepler workflows can
be shared among collaborators. Kepler has many valuable features, including

126

Version of 29 November 2010

broad support for distributed execution, graphical workflow creation, “a suite of
data transformation actors”, and support for multiple programming languages.

• Taverna is an “application that eases the use and integration of the growing
number of molecular biology tools and databases available on the web” [Hull,
Wolstencroft, et al. 2006]. Although not created for FOSS research per se, it is a
powerful workflow tool. Neither Taverna nor Kepler implements a storage
medium in which to persist data.

• Alitheia Core is “an extensible software quality monitoring platform” [Gousios and
Spinellis 2009] that implements an extensible pipeline for studying data from
Subversion, MailDir, and Bugzilla. Its existence validates the need for a tool that
manages both the logic and the data required for analysis. Much of the
development overhead required to connect to repositories and to storage media,
download and store the data, and store intermediate results is implemented by
Alitheia Core. However, the framework does not provide extensibility for studying
data from other types of repositories or sources (Git, Mercurial, Perforce,
SourceSafe, GoogleCode, Trac, JIRA, etc.).

• VisTrails is “an open-source scientific workflow and provenance management
system" developed at the University of Utah that provides support for data
exploration and visualization” [VisTrails 2010].

11. Mechanism to upload and share analysis artifacts. Similar to #4 above.

12. Mechanism to upload and share user-developed analysis tools. Similar to #4 and
#11 above.

13. Mechanism to upload and share bibliographical information: Currently there are a
few project teams that are attempting to serve as research hubs. Research hubs are
resources that attempt to collect research artifacts (papers, data sets) that have been
produced by researchers about the open source software phenomenon. Examples of
current FOSS research hubs are: FLOSShub.org. FLOSSmole has a rudimentary
bibliography system to track its own data sets and to track papers that have been
written using FLOSSmole data.

14. Mechanism for tracking issues within the infrastructure itself. There are numerous
issue tracking systems in existence for other large, community-based software projects,
but because of the decentralized nature of the FOSS research infrastructure, these
have not been implemented. This would be a critical component of any FOSS research
infrastructure.

127

Version of 29 November 2010

Challenges for the FOSS research infrastructure

Challenges for the FOSS research infrastructure worth addressing at this juncture
include:

• Quality. Assessing and monitoring the effects of this readily available data on the
quality of the research that results. What is the best way to take donations and
annotations while preserving quality and authenticity?

• Accessibility. Helping people find the data. Where do people look for data sets?
Do they have to look very hard? What would it take to be a clearinghouse for
data?

• Sharing. There are numerous challenges here:

• Privacy. Balancing researchers’ needs for privacy and data protection against the
advantages of data consolidation, collaboration, and open process in the
research itself.

• Self-sufficiency. “Not invented here” syndrome. Students and faculty can be good
at crunching out code and they like doing this. Encouraging researchers to trust
and rely on data and code from other places can be a tough sell.

• Learning publicly. Difficulty in getting academics to learn in public. Acclimating
researchers to the open, collaborative work process.

• Incentives. Do people assume that their formats and data won't be useful to
others? Could donation requirements or incentives change this?

Conclusions

In this chapter we describe the gap between the research infrastructure that has been
developed and what we still need in order to realize the high-impact future vision we
articulate in previous chapters. FOSS systems have a transformative potential for many
domains, and the vision we describe here of a centralized, coordinated, collaboratively-
maintained research infrastructure will enable high-quality investigations of the five
primary objects of FOSS study in the table above. The research infrastructure outlined
here does not consist merely of storage of FOSS objects of study, but encompasses
data collection, curation and cleansing, and analysis. With this infrastructure, we may

128

Version of 29 November 2010

advance the science of FOSS in ways demonstrated by the research infrastructure of
other domains. Finally, we believe the science enabled by this infrastructure will
stimulate opportunities for growth in other science research programs and beyond.

129

Version of 29 November 2010

Part IV

Broader Impacts of FOSS Research

130

Version of 29 November 2010

Broader Impacts Areas for Research in FOSS Systems

Overview

There are at least four major categories of broader impact arising from research in
FOSS systems over the next 5-10 years. These are (a) software development, (b)
education and learning, (c) innovation, and (d) science, industry, and government.

Software Development

The development of reliable large, very-large, or ultra-large scale software-intensive
systems requires more than robust, formalized, and mathematically grounded
approaches to software engineering. They also require the engagement of
decentralized communities of practitioners who can participate in and contribute to the
ongoing development, use, and evolution of software system tools, online artifacts, and
other information infrastructure resources, either on a local or global basis. The
development of software-intensive systems at large-scale and beyond needs to be
recognized as something now essential to the advancement of science, technology,
industry, government, and society across geographic borders and cultural boundaries.

FOSS systems research is likely to change how software engineering research and
practice are now accomplished. The openness of FOSS system development means
that new participants are coming into the world of software systems to contribute to their
development and evolution. The engagement and contribution of participants who are
not necessarily skilled in the traditional principles and practices of SE means there will
be a long-term need to adapt SE concepts, techniques and tools to people lacking skills
in SE, while also seeking ways for motivating these new participants to engage in
learning and practicing emerging SE processes, practices, and principles. In addition,
the public availability of FOSSD artifacts will likely become a primarily source of data for
empirical SE research, as such data will often be far less encumbered by the corporate
non-disclosure agreements that have historically limited what software development
data can be made available for scientific research purposes.

FOSS systems research will continue to be a rich source of observation and
experimentation for collaborative software development processes, practices, and
project forms. As many successful, ongoing, and large-scale FOSS systems and project

131

Version of 29 November 2010

communities are typically physically decentralized but logically centralized, sustained
software development must rely on collaboration tools, techniques, and patterns of use
whose fundamental principles we do yet fully understand. Yet, FOSS system
development is a clear, recurring demonstration that the development of complex
systems can be performed, governed, and sustained in a decentralized manner, with
little or none of the corporate oversight or enterprise governance that have long been a
hallmark for the development and maintenance large complex systems. Collaborative
FOSS system development processes, practices, project forms, project infrastructures,
and surrounding ecosystem represent new ways and means for developing complex
systems that meet societal needs.

FOSS systems depend on and co-evolve with their surrounding ecosystem. They are
both social and technological endeavors, in which socio-technical interactions are more
critical to system development, use, and evolution than a formal mathematical basis for
specifying the system's analytical intent. The study of FOSS system ecosystems is at a
very early stage. But human-made complex systems are increasingly recognized as
being products of their own complex ecosystems, and of the networks of producer,
integrators, and consumers who create, assemble, and use such systems. Thus,
research into complex system ecosystems like those that situate and embed FOSS
systems are within the grasp of scientific study, comprehension, and explanation. These
eventual accomplishments will provide the basis for rationalizing, predicting, controlling,
and transferring such knowledge to other complex ecosystems, especially those that
are mediated by information infrastructures or cyberinfrastructure. Thus research into
FOSS ecosystems is critical to advancing scientific knowledge and technology
development in many areas beyond software systems.

FOSS systems are complex software systems with an open evolutionary history and
future. Such openness is in many ways historically unprecedented for complex technical
systems. So we should not miss a rare opportunity to study FOSS system and
ecosystem evolution, as a software system, as a decentralized social system for peer
production, and as a complex socio-technical system.

Education and Learning

We need to educate a new generation of students and other publics to understand how
best to create, access, study, modify, and share complex systems that are open and
liberating. This requires widespread information resources, development processes,
work practices, and online content/assets that are free and open, rather than costly,
opaque, and restricted to those who can afford to access them. These will provide the
new baseline for transforming education and learning in the sciences, industry, and
democratic government.

132

Version of 29 November 2010

Software engineering education is a prime target for adoption of FOSS system
development processes, practices, and project forms. Other CISE disciplines may also
benefit from introduction and integration of openness in team-oriented project work
courses. Open source projects are a viable conduit for encouraging collaborative study,
practice, experimentation, and sharing. FOSSD projects are excellent vehicles for
creating, extending, and sharing knowledge about large-scale, complex software
systems in ways that can create new workforces where they don't exist, or where they
are underdeveloped. To the extent that the socio-economic growth of scientific fields of
study, national industries and public institutions are increasingly dependent on larger
and complex software systems and infrastructures, then fostering and stimulating FOSS
system research, practice, and education will be a critical national investment.

However, FOSS system development is not a complete remedy for education and
learning in CISE coursework. FOSSD projects are often skewed culturally and by
gender (far too few women are visible contributors to FOSSD projects), and why this is
so is not well understood. FOSSD projects are often globally dispersed, but such
dispersion is not uniformly distributed across all countries, ethnicities, or cultures. There
is still much to learn about how to stimulate the benefits of FOSSD projects and other
open practices in ways that are inclusive and that mitigate the barriers to participation
and contribution that seem to exist, in spite of the openness at hand.

In sum, FOSS system development will facilitate new ways and means for education
and learning in CISE coursework and real-world practice. But it is not a panacea that
will remedy or overcome the barriers to participation that at present remain poorly
understood.

Innovation

Engines of innovation for advancing science, technology, and engineering in industry,
government, and society at large are few and far between. FOSS systems development
is emerging as one such engine whose openness encourages invention and
reinvention, knowledge sharing and crowd-sourcing, and lower cost access to higher
capability information technologies. Further, these technologies are transparent and
open for widespread public access, study, modification, experimentation, ad hoc or
systematic integration, repackaging, and redistribution. FOSS systems can stimulate
societal advances, innovations, and progressive transformations when their openness is
assured and protected.

Many FOSS systems and their development projects are berated as efforts to merely
copy existing commercial software system products. But this perspective undervalues

133

Version of 29 November 2010

the effort of reinvention as a critical innovation practice. Reinvention is a fundamental
strategy for learning how successful products are made. Efforts to discover what is
going on inside of “black boxes” is a widespread practice of curiosity and inquiry. This
kind of endeavor can serve as the basis for improving or making entirely new products.
Reinvention and rediscovery is also one of the most common approaches to education
in science, engineering, technological, and mathematical coursework. So FOSS
systems and projects that recreate successful complex systems are a vital component
of workforce and socio-economic development. Such practice should be encouraged
and celebrated as a national strategy that fosters technological progress and societal
advancement.

FOSSD projects generally seem to practice open innovation that is user led.
Participatory or democratic innovation [von Hippel 2001, 2006] is a new mode of
technological innovation. It is also a hallmark of an advanced society where progress is
assured through democratic participation in complex systems development. Participants
can get involved in innovation practices as end-users who identify potential FOSS
system weaknesses. These simple contributions can lead to open pathways to more
opportunity to affect or control how a FOSS system continues to develop and evolve on
its way to becoming evermore useful. But progressing along these pathways will not be
for the faint of heart, as the challenges to be met will often co-mingle social and
technical relationships. This is where the secret sauce of innovation may be found—in
learning how to navigate such relationships to achieve a vision with the least amount of
time and effort. The openness of FOSSD projects can become an engine of innovation
for new participants who find their way through their web of socio-technical challenges.

Science, Industry, and Government

Many grand challenges for science and engineering depend on the research and
development of a new generation of complex, software-intensive systems. Advanced
healthcare informatics, advanced personalized learning systems, secure cyberspace,
engineering automated tools for scientific discovery, and enhanced virtual reality are all
readily recognized as problem domains that depend on future software systems. Making
solar energy economical, managing the nitrogen cycle, preventing nuclear terror,
providing energy from fusion and access to clean water, engineering better medicines,
developing carbon sequestration methods, improving urban infrastructure, and reverse
engineering the human brain are also areas where new generations of software
systems are needed to enable and deploy the sought after scientific advances. But
meeting these grand challenges depends on more than robust or well-engineered
software systems. They will also depend in part or full on FOSS systems and
ecosystems, as well as FOSSD processes, practices, and project forms.

134

Version of 29 November 2010

Social choices and economic constraints may make proprietary or closed source
system solutions less practical and less desirable. For example, scientific research into
fusion energy centers around the International Thermonuclear Energy Research (ITER)
project, still in the early stages of development, has a budget forecast at more than
$20B. How much of that budget will be allocated to development of ITER control system
software, and who will be called upon to develop or engineer the requisite software?
ITER is a multi-national effort, and there is likely to be a common call for openness in its
software development projects, as well as openness in science practices, rather than an
expectation that some company or contractor will develop a proprietary, closed source
software system. As such, it may be the case that grand challenge problems are more
likely to embrace or demand openness in their system development efforts, at least
prior to any commercialization of supporting software systems.

FOSS system development has already begun to transform the global software industry
and all major software and Information Technology (IT) firms. Proprietary, closed source
systems are not likely to disappear, but there will be growing pressure on proprietary
systems to offer innovative features or functions that are not yet available as FOSS
systems. FOSS systems may therefore motivate proprietary system developers to
advance technologically out of self interest and preservation of market position. Once
again, FOSS systems are creative drivers that stimulate advances to the broader
economy and IT marketplace.

Companies that actively resist the progressive transition to FOSS systems will be
increasingly marginalized. FOSS systems will take over mundane, infrastructural, and
non-competitive IT domains, and this will help to clarify where IT or software system
value truly is to be found. Stimulating research and development into FOSS systems
and FOSSD projects are a strategic national investment, if the goal is to improve
national and industrial IT system capabilities and related industries.

Advances in enterprise information systems that streamline operations, create new
products or services, more stimulating jobs, and workforce development opportunities,
depend on faster, better, and cheaper software systems. Helping to make regional and
national governments more transparent, open, and trustworthy requires public access to
information systems that are easy to access, open for study and open to citizen
participation. FOSS systems are the most likely technology to meet these societal
needs.

135

Version of 29 November 2010

Recommendations for Action

FOSS system development (FOSSD) is emerging as an alternative approach to
developing large software systems. FOSSD employs socio-technical development
processes, work practices, and networked community project forms. These processes,
practices, and project forms often differ from those found in industrial software projects,
and those portrayed in software engineering (SE) textbooks. As a result, FOSSD offers
new kinds of processes, practices and project organization. Understanding and
explaining how FOSSD processes, practices and projects are similar to or different from
their traditional SE counterparts is an area ripe for further research and comparative
study. This includes understanding how and why collaboration works within FOSSD
projects, how FOSS systems are situated within software ecosystems, and how FOSS
system evolve. The studies reviewed and research questions identified throughout this
report lead us to several recommendations for facilitating a new science of openness.

The recommendations we put forward seek to realize a discontinuous leap in the
current state of scientific knowledge in Computer and Information Science and
Engineering (CISE) research efforts. Their collective goal is to identify how the
development of FOSS systems can enable significant constructive transformations, as
well as broader societal benefits and impacts. These recommendations follow and
complete this report.

Recommendation 1: Stimulate investment in projects for scientific research and
technology development that build FOSS systems as a way to stimulate
workforce development.

The creation of a new, skilled and motivated workforce is not inevitable from any
research program, unless it is designed toward such an outcome. FOSSD poses this
opportunity, as witnessed by large-scale demonstrations orchestrated by companies like
Google and its Summer of Code projects that engage thousands of students world-wide
each year, with comparatively high levels of successful and deployed student projects.
More broadly, hundreds of thousands of self-initiated FOSS projects seek to create and
deploy FOSS systems. The vast majority of these projects fail. Yet they embody intrinsic
motivations on the part of their participants to learn how to build and use such systems,
whether for personal, academic, industrial, or governmental application.

FOSSD is already beginning to transform software and IT industries, as well as scientific
research projects that need software-intensive systems for data collection, analysis,

136

Version of 29 November 2010

networking, visualization, and dissemination. Similarly, the adoption of FOSS systems
within academia, for-profit and non-profit enterprises, and government agencies at the
local, regional, national, and international levels will create a workforce that is motivated
and skilled in new FOSS-based concepts, techniques, and tools grounded in CISE
disciplines.
The integration of FOSS systems into CISE education will bring new participants into
the broader field of study and practice, as well as heighten awareness of the value of
being a contributor to FOSS system development projects. .

Recommendation 2: Create a new cross-cutting research program within the
CISE Directorate that supports all aspects of FOSS systems research—FOSS
development processes, work practices, and alternative project forms;
collaboration in development and use of FOSS systems; FOSS ecosystems; and
FOSS system evolution.

The bulk of this report identifies FOSS studies conducted within the last ten years, along
with emerging research problems or questions. However, the creation of new scientific
knowledge in FOSS systems and development is spread among diverse CISE
researchers and research programs that don’t seem to be well connected. Perhaps this
is inevitable, desirable or both. But the recommendation here is strategic--it seeks to
improve the effectiveness of investments in FOSS systems research by bringing
isolated studies together into a coherent community.

FOSS system research spans many diverse disciplines, both within and beyond CISE
disciplines. Few advances in CISE fields have garnered such widespread interest.
When they do attract attention, they become transformative and enable broad impacts.
Once again, the Internet and World Wide Web are prime examples of complex systems
whose core software relies on FOSS systems, as well as the socio-technical projects
and ecosystems that evolve them. Should they be left alone to fend for themselves?
Why not consider how a coherent programmatic organization could focus scarce
attention and limited resources to FOSS system research and enable many desirable
transformations and broader impacts that have been identified through this report? Not
merely a recommendation to reorganize the management of FOSS systems research,
this is a call to arms in the national interest, as well as in the interest of researchers and
practitioners across the CISE disciplines.

However, if available resources for new research programs is limited or creation of a
new research program unrealistic, then at minimum, it is appropriate to invest in a
national center for research in the science and technology of FOSS systems.

137

Version of 29 November 2010

Recommendation 3: Stimulate research in development and use of FOSS
systems in other science research programs, health, energy, climate, defense,
and National Engineering Challenge domains.

In concert with the two preceding recommendations, there is a strategic opportunity to
stimulate and invest in FOSS systems research to create new scientific knowledge in
other non-CISE disciplines. The majority of National Engineering Challenges for the
21st Century found in the National Academies report on the subject depend on software
systems at their core. These systems will not be developed by computer scientists or
software engineers, but by scientists and engineers working within their specialities in
health, energy, climate and other domains.

An investment to stimulate the research and development of FOSS systems can
simultaneously be an investment to advance R&D in these National Challenge domains.
The development processes, work practices, and alternative project forms associated
with successful, self-organized, and self-governed FOSSD projects are likely those
needed by R&D projects in the Challenge domains. Similarly, the collaboration patterns,
software ecosystems, and evolution processes found in self-sustaining FOSS system
development projects are also those needed in the Challenge domains. Effort in this
area may or may not be redundant with the previous recommendation, depending on
how the new research program or office is structured and administratively located. This
recommended action is directed to support the scientific research community outside of
the CISE disciplines, much like the Office of Cyberinfrastructure or other NSF-wide
Cross-Cutting Program do. Why? Part of the answer stems from growing recognition
that science researchers outside of the CISE directorate are already investing in the
development and use of software-intensive systems that rely on FOSS systems at their
core. FOSS systems are becoming an ever more central element of the infrastructures
of science, and thus participate in, mediate, or enable scientific discoveries and
advances in many disciplines.

FOSS systems and their development are becoming a strategic capability for advancing
all of science, not just software engineering or human-centered computing. The
software systems that make up the Internet and World-Wide Web are based on FOSS
systems and FOSSD projects, as are much of global e-Commerce infrastructure, email,
Web search, and other Web generation enterprises and R&D projects. Yet, much of the
science research community has not followed FOSS community practices like the
establishment of publicly accessible, shared repositories of software, online artifacts,
data, and publications that enable curious people to browse, use, or contribute to such
scientific research or technology development projects.

138

Version of 29 November 2010

An investment in research on open source science and FOSS systems is a strategic
one that is best viewed as Pareto optimal, rather than as zero sum, across science and
engineering disciplines referenced by the National Engineering Challenges.

Recommendation 4: Stimulate research in Gender and FOSS, and Collaboration
and Diversity in FOSSD.

Creating FOSS systems and FOSS development projects is technically challenging
work that can directly benefit from results and findings in software engineering and
human-centered computing research studies. As already noted, the vast majority of
FOSSD projects fail to develop and deploy usable systems. This is fine as long as
modest resources go into starting new FOSSD projects. But it is a risky venture for
those not already skilled and knowledgeable about FOSSD processes, practices, and
project forms to invest scarce resources to build systems that may ultimately lack the
critical socio-technical mass to succeed, grow, and evolve.

There are some poignant gaps in how FOSSD processes, practices, and projects work,
whether local or global in scale and participation. For example, why are there still
comparatively few women involved in FOSSD projects? Further, it may also be the case
that proportionally, there are fewer women involved in FOSSD than compared to
academic CISE disciplines or the broader software/IT industries. Why is this so? Is
openness somehow an issue of gender, one that is tilted towards males? Is FOSSD
participatory, contributory, and successful only when a largely homogeneous community
of like-minded developer-users are involved? Does FOSSD implicitly encourage some
form of meritocratic exclusion across (a) all groups, (b) people with certain
characteristics, or (c) gender? Do meritocratic forms of FOSSD governance enable
certain subtle forms of discrimination?

There is much to be inspired and motivated by FOSSD projects and outcomes, but is
limited diversity and gender imbalance inevitable, probable, temporary or accidental?

Similar questions can be raised about collaboration across socially and culturally
diverse communities. Though FOSSD is often cited as a model of collaborative practice
on a global basis, FOSSD projects tend not to be fully or uniformly global, engaging
people from all countries interested in participating. What is needed for FOSS systems
or projects to become universal?

As these questions have not been well addressed, it seems reasonable to recommend
that whatever form or initiative is taken to invest in building up a new cross-cutting

139

Version of 29 November 2010

program or office for research supporting openness and FOSS science, it is strongly
advised that these current blind spots in the research need to be recognized and
addressed programmatically. If increased gender balance and diversity would thrive in a
world of openness or open source systems, what can be done to create such a world in
a timely manner?

Recommendation 5: Invest in and encourage cross-cultural studies of FOSS,
especially in non-English cultures.

Once again, as related and informed by the preceding recommendation, much of what
we know about FOSS systems and FOSSD projects comes from studies of those of
English-based communities. However we have very little scientific knowledge about
whether or how work, community, or collaborative practices in non-English based
FOSSD projects operate. SourceForge Japan, for example, hosts many thousands of
FOSSD projects that are openly accessible to those fluent in Japanese, but not in
English. What is going on in these projects? Do they replicate and naturally reproduce
the same kinds of development processes, work practices, alternative project forms,
collaboration patterns, and system evolution processes that we see in U.S., European,
or other Western-based FOSSD projects conducted in English? If so, this would
suggest cultural differences matter less than technical skill and commitment to learn
through participation. If not, perhaps different cultures cherish and enact different forms
of collaboration or meritocracy, or may find constructive social value in other choices for
how best to develop, deploy and sustain complex software systems.

In non-English or non-Western based societies, under what conditions will software
developers embrace openness in complex systems development? Is openness
predominantly a Western and English-based cultural value? Is “freedom enabling”
software development seen as a subversive or hegemonic ethical value, or is it a global
social movement for cultural transformation?

Recommendation 6: Stimulate the research and development of FOSS systems
for humanitarian aid and relief, especially those that provide opportunities for
graduate, undergraduate, and secondary students to contribute.

One promising area of effort to develop and deploy FOSS systems is that focusing on
humanitarian aid and relief across geographic borders. As natural disasters and human-
led disasters continue to arise in seemingly more complex forms, it appears that FOSS-
based systems and ecosystems are emerging to create or address new ways to reduce

140

Version of 29 November 2010

the associated human suffering and loss. FOSS systems for humanitarian aid and relief
have been deployed in places like Haiti, following the recent earthquake disaster, to
help locate displaced family members, as well as to keep track of what relief resources
have been deployed and where they have been distributed. S.

Once again, an important characteristic of many successful FOSSD projects is their
ability to encourage volunteers to contribute to ongoing system improvement and
evolution. Such contributions do not necessarily require high levels of core software
development effort and skill, though they do represent more than casual experience as
an end-user of such systems. Even modest participation can open windows of
awareness that cross cultural divides and enable new modes of societal engagement, at
a time when other modes of assistance seem distant, institutionally diffuse or opaque.
Furthermore, such systems are situated in FOSSD ecosystems that enable both CISE
and non-CISE students to participate and get involved in ways that traditional
coursework may not have allowed.

Recommendation 7: Stimulate existing research programs in Software
Engineering, Human-Centered Computing, and Networking Technology and
Systems to investigate and develop new approaches to the challenges of
engineering FOSS systems and real-world systems that rely of FOSS.

As indicated in the preceding recommendations, research and development of FOSS
systems are likely to yield broader impacts and socio-economic benefits. However,
existing research programs in Software Engineering (Computer and Communications
Foundations Division), Human-Centered Computing (Information & Intelligent Systems
Division), and Networking Technology and Systems (Computer and Network Systems)
are still needed, as the existence and pervasive distribution of FOSS systems
exacerbates some of the research problems that are emerging in studies in these
respective programs. For example, academic research in software engineering
historically has been limited to study of software systems that could be prototyped in
laboratory settings, or to conduct of empirical studies of software development efforts in
situ that may be subject to access and disclosure limits. The widespread growth,
diffusion, and availability of FOSS systems changes this, by providing access to open
and operational (or in development) systems that may have independent developer-
user project communities, where the FOSS systems, development artifacts, and project
social networks are also open for access and study.

Research addressing the composition of large or very large-scale software systems that
benefit from new specification/design languages, notational techniques or quality testing
tools, can now often be built and demonstrated at scale using FOSS systems as their

141

Version of 29 November 2010

components, or objects of study. Building software systems including more than 1
million lines of source code within an academic setting was almost unimaginable a
generation ago, yet it is increasingly common among researchers who work with FOSS
systems It also means that problems of engineering software systems of this scale and
complexity can now be studied, both as experiments in new ways and means to build
such systems, and as socio-technical objects of empirical study within their embedding
in vivo ecosystem or isolated in vitro laboratory setting. However, what happens when
large or very large-scale FOSS systems are built from diffuse aggregate collections of
software components developed by new developers with little or no expertise in
software engineering principles? The precarious creation and deployment of such
systems poses new challenges for how to sustain and systematically evolve them for
software engineers and human-centered computing scientists.

As new software engineering, human-centered computing, and networking
systems are built using FOSS systems as elements, both outstanding and new research
problems are manifested. FOSS systems are helping to advance the creation and
refinement of new scientific knowledge in these areas. As noted in the broader impacts
section in this report, FOSS systems are an engine of innovation that can drive scientific
and socio-technical advances in software engineering, education, science, industry and
government. So it is important to recognize that an investment in FOSS systems and
openness should not be considered as a reallocation of resources away from current
CISE research programs, but one that strategically advances research and scientific
knowledge in these areas. A strategic investment in open source science and FOSS
systems research and development is one that is most effective if complementary
rather than if zero-sum.

Recommendation 8: Establish and support shared research repositories for
FOSS data as part of the new research infrastructure.

FOSSD project source code, artifacts, and online repositories offer new publicly
available data sources of a size, diversity, and complexity not previously available for
SE research, on a global basis. The current FOSS research infrastructure is modest
and relies on donations of FOSS data from projects. This offers an unnecessarily limited
perspective of a select set of projects. Expansion of research infrastructure will support
additional kinds of data from a nonrestrictive project sets as a vital basis for further
research and development of FOSS science. Similarly, investment in “repositories of
repositories” will enable scientific research and knowledge creation in FOSS systems to
scale from small to very large-scale studies.

142

Version of 29 November 2010

Recommendation 9: Pursue development of advanced data analysis tools for
examining FOSS data as part of the new FOSS systems research infrastructure.

Many new research opportunities exist in the empirical examination, modeling, and
simulation of FOSSD activities and communities. We cannot predict when, where, why,
how, or with whom FOSSD projects will work effectively or efficiently. Similarly, we lack
the scientific knowledge needed to explain how FOSS systems evolve over time, or
within or across different software ecosystems. The popularity and unbridled
enthusiasm of the thousands of young software developers who avidly participate in and
contribute to FOSSD projects indicates that FOSSD processes, practices, and projects
are being diffused, adopted, adapted, and transferred in interesting ways. We lack the
scientific knowledge to explain why this is happening, and with what consequences.
FOSS research, at present, suffers from a tremendous lack of data and a dearth of tools
to analyze and understand the FOSS phenomenon. Those tools that are available are
still rudimentary and are mostly limited to supporting only quantitative data analyses.
Tools and techniques that discover, extract, analyze, model, or visualize qualitative data
or processes are nascent but needed to produce new scientific knowledge about FOSS
systems and socio-technical resource arrangements.

Overall, these nine recommendations represent our collective position on how to
achieve the most significant scientific results, to create necessary, new scientific
knowledge, to transform academic, industrial and government R&D efforts, and to
unleash the engine of innovation that FOSS systems can enable and fuel.

143

Version of 29 November 2010

Contributors

This report is the result of a workshop held from 10-12 February 2010 in Irvine/Newport
Beach, California and a follow-up meeting from 22-24 June 2010 in Evanston, Illinois
regarding the Future of Free and Open Source Software. The workshop was organized
by Walt Scacchi, Institute for Software Research, University of California, Irvine; Kevin
Crowston, Syracuse University School of Information Studies; Greg Madey, University of
Notre Dame; and Megan Squire, Elon University. The report reflects the input from forty-
five participants, listed below, from the research community, including academia,
industry, and members of the open source community:

Mark Ackerman, University of Michigan, Ann Arbor
Thomas Alspaugh, Institute for Software Research, University of California, Irvine
Paula Bach, Microsoft Corporation
Sushil Bajracharya, University of California, Irvine
Shobha Chengalur-Smith, University at Albany, SUNY
Premkumar Devanbu, University of California, Davis
Hamid Ekbia, Indiana University
Justin Erenkrantz, The Apache Software Foundation
Roy T. Fielding, Day Software
Les Gasser, Graduate School of Library and Information Science, University of Illinois,

Urbana-Champaign
Daniel German, University of Victoria
Robert Gobeille, Hewlett Packard
Martina Greiner, University of Nebraska at Omaha
Imed Hammouda, Tampere University of Technology
Scott Hissam, Carnegie Mellon Software Engineering Institute
James Howison, Carnegie Mellon University
Chris Jensen, Institute for Software Research, University of California, Irvine
Yuzo Kanomata, Institute for Software Research, University of California, Irvine
Christopher Kelty, Department of Information Studies, University of California, Los

Angeles
John Leslie King, School of Information, University of Michigan, Ann Arbor
Charles Knutson, Brigham Young University
Cristina Lopes, Institute for Software Research, University of California, Irvine
Kalle Lyytinen, Case Western Reserve University
Alex MacLean, Brigham Young University
Audris Mockus, Avaya Labs Research
Ralph Morelli, Trinity College
Luis Felipe Rosado Murillo, Department of Information Studies, University of California,

144

Version of 29 November 2010

Los Angeles
John Noll, Lero, The Irish Software Engineering Research Centre
Joel Ossher, University of California, Irvine
Stormy Peters, GNOME Foundation
Jack Repenning, CollabNet, Inc.
John Riedl, University of Minnesota
Dirk Riehle, Friedrich-Alexander-University of Erlangen-Nürnberg
Jason Robbins, Google Inc.
Charlie Schweik, Dept of Natural Resources Conservation and Center for Public Policy

and Administration, University of Massachusetts, Amherst
Susan Sim, Institute for Software Research, University of California, Irvine
Michael Twidale, Graduate School of Library and Information Science, University of

Illinois, Urbana-Champaign
Patrick Wagstrom, IBM Research
Tony Wasserman, Carnegie Mellon Silicon Valley
Kangning Wei, Syracuse University
Joel West, San Jose State University
Hyrum Wright, Subversion Corporation

145

Version of 29 November 2010

Acknowledgements

Administrative support for the workshop came from Debra Brodbeck and Kiana Fallah.
Technical and Web services support came from Yuzo Kanomata and Kari Nies. All are
from the Institute for Software Research at the University of California, Irvine.

Last, the 2010 Workshop on the Future of Research in Free/Open Source Software, 10-12
February 2010, was supported by a grant from the Computing Community Consortium
to the Institute for Software Research http://www.isr.uci.edu/ at the University of
California, Irvine. Support for Scacchi, Jensen and others at the UCI Institute for
Software Research is also provided in part from the National Science Foundation grant
#0808783. No review, approval or endorsement is implied. Further information about the
Workshop can be found at: http://foss2010.isr.uci.edu/.

146

http://www.isr.uci.edu/
http://foss2010.isr.uci.edu/

Version of 29 November 2010

References

[2020FLOSS 2010] 2020 FLOSS Roadmap. http://www.2020flossroadmap.org/download/
and http://www.2020flossroadmap.org/wp-content/uploads/2010/09/2020-FLOSS-Roadmap-
2010-Version-1.2.pdf, last accessed 30 September 2010.

[Agerfalk and Fitzgerald 2008] Agerfalk, P. and Fitzgerald, B. (2008). Outsourcing to an
Unknown Workforce: Exploring Opensourcing as a Global Sourcing Strategy. MIS
Quarterly, 32(2): 385-410.

[Aksulu and Wade 2010] Askulu, A. and Wade, M. (2010). A Comprehensive Review
and Synthesis of Open Source Research, J. Association for Information Systems,
11(11), 576-656. November.

[Ajila and Wu 2007] Ajila, S. A. and Wu, D. (2007). Empirical study of the effects of open
source adoption on software development economics. The Journal of Systems and
Software, 80(9): 1517-1529.

[Alberts and Hayes 2003] Alberts, D. S. and Hayes, R. E. (2003). Power to the Edge:
Command and Control in the Information Age. CCRP Publications, Washington, D.C., DoD
Command and Control Research Program. (available at
http://www.dodccrp.org/files/Alberts_Power.pdf)

[Aldea, Jones, et al. 2003] Aldea, F., Jones, M., and Schabe, H. (2003). Checking
Whether SCOS is up to SPEC. ESA Bulletin 115: 58-60.

[Allison, Currall, et al. 2005] Allison, A., Currall, J., Moss, M., and Stuart, S. (2005).
Digital identity matters. Journal of the American Society for Information Science and
Technology, 56(4): 364–372.

[Alspaugh, Asuncion, et al. 2009a] Alspaugh, T. A., Asuncion, H. U., and Scacchi, W.
(2009). Intellectual Property Rights Requirements for Heterogeneously-Licensed
Systems. International Requirements Engineering Conference (RE'09), Atlanta, GA: 24-33.

[Alspaugh, Asuncion, et al. 2009b] Alspaugh, T. A., Asuncion, H. U., and Scacchi, W.
(2009). The Role of Software Licenses in Open Architecture Ecosystems. International
Workshop on Software Ecosystems (IWSECO 2009), Falls Church, VA: 4-18.

[Alter 1999] Alter, S. (1999). Information Systems, A Management Perspective. Third Edition.
Addison-Wesley, Reading, MA.

147

http://www.dodccrp.org/files/Alberts_Power.pdf
http://www.2020flossroadmap.org/wp-content/uploads/2010/09/2020-FLOSS-Roadmap-2010-Version-1.2.pdf
http://www.2020flossroadmap.org/wp-content/uploads/2010/09/2020-FLOSS-Roadmap-2010-Version-1.2.pdf
http://www.2020flossroadmap.org/download/

Version of 29 November 2010

[Andrews 1991] Andrews, G. R. (1991) Paradigms for process interaction in distributed
programs. ACM Computing Surveys, ACM Press, 1991, 23(1), 49-90

[Atkinson, Weeks, et al. 2004] Atkinson, D. C., Weeks, D. C., and Noll J. (2004). The
design of evolutionary process modeling languages. 11th Asia-Pacific Software
Engineering Conference, Busan, Korea: 587–592.

[Augustin, Bressler, et al. 2002] Augustin, L., Bressler, D., and Smith, G. (2002).
Accelerating Software Development through Collaboration. 24th International Conference
Software Engineering (ICSE 2002), Orlando, FL: 559-563.

[Augustin 2010] Augstin, L. (2010). Commercial Open Source for the Enterprise:
Plenary Address. 6th IFIP International Conference on Open Source Systems, Notre Dame
University, South Bend, IN.

[Bajracharya, Ossher, et al. 2009] Bajracharya, S., Ossher, J., and Lopes, C. (2009)
Sourcerer: An Internet-Scale Software Repository. SUITE 2009: First International
Workshop on Search-driven Development – Users, Infrastructure, Tools and Evaluation (co-
located with ICSE 2009), Vancouver, B.C., Canada: 1-4.

[Baldwin and Clark 2003] Baldwin, C. Y. and Clark, K. B. (2003) The Architecture of
Cooperation: Does Code Architecture Mitigate Free Riding in the Open Source
Development Model? Harvard Business School Working Paper, No. 03-209, 03(209): 1-63.

[Baldwin and von Hippel 2009] Baldwin, C. Y. and von Hippel, E. A. (2009). Modeling a
Paradigm Shift: From Producer Innovation to User and Open Collaborative
Innovation. Harvard Business School Working Paper, No. 10-038, 10(038): 1-36.

[Balka, Raasch, et al. 2009] Balka, K., Raasch, C., and Herstatt, C. (2009) Open source
enters the world of atoms: A statistical analysis of open design. First Monday, 14(11).

[Battilana 1995] Battilana, M. C. (1995). The GIF Controversy: A Software Developer's
Perspective. Last revision June 20, 2004. Original text published January 27, 1995. Last
accessed 30 June 2010, from http://www.cloanto.com/users/mcb/19950127giflzw.html

[Becerra-Fernandez, Elam, et al. 2010] Becerra-Fernandez, I., Elam, J., and Clemmons,
S. (2010). Reversing the landslide in computer-related degree programs.
Communications of the ACM, vol 53 (2): 127-133.

[Benkler 2006] Benkler, Y. (2006) The wealth of networks: How social production transforms
markets and freedom. New Haven, CT: Yale University Press.

148

http://www.cloanto.com/users/mcb/19950127giflzw.html

Version of 29 November 2010

[Bertelli, Bovo, et al. 2007] Bertelli, L., Bovo, F., Grespan, L., Galvan, S., and Fiorini, P.
(2007). Eddy: an open hardware robot for education. 4th International Symposium on
Autonomous Minirobots for Research and Edutainment (AMiRE 2007), Buenos Aires,
Argentina.

[Bluedorn, Johnson, et al. 1994] Bluedorn, A., Johnson, R., Cartwright, D., and
Barringer, B. (1994). The Interface and Convergence of the Strategic Management and
Organizational Environment Domains. Journal of Management, 20(2): 201-262.

[Boehm 2006] Boehm, B. E.(2006). A View of 20th and 21st Century Software
Engineering. 28th International Conference on Software Engineering (ICSE 2006), Shanghai,
China: 12-29.

[Boehm and Turner 2003] Boehm, B. E. and Turner, R. (2003). Balancing Agility and
Discipline: A Guide to the Perplexed, Addison-Wesley Professional, New York.

[Bombardieri 2005] Bombardieri, M. (2005). "In computer science a growing gender
gap: Women shunning a field once seen as welcoming." Boston Globe, December 18,
2005,
http://www.boston.com/news/local/articles/2005/12/18/in_computer_science_a_growing
_gender_gap/ retrieved August 11, 2006.

[Bonaccorsi and Rossi 2006] Bonaccorsi, A. and Rossi, C. (2006). Comparing
Motivations of Individual Programmers and Firms to Take Part in the Open Source
Movement. Knowledge, Technology, & Policy 18(4): 40-64.

[Bosch 2000] Bosch, J. (2000). Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley Professional.

[Bosch 2009] Bosch, J. (2009). From software product lines to software ecosystems.
Proc. 13th International Software Product Line Conference (SPLC 2009), San Francisco, CA:
111– 119.

[Bosch and Bosch-Sitjsema 2009] Bosch, J. and Bosch-Sijtsema, P. (2009). From
integration to composition: On the impact of software product lines, global development
and ecosystems. Journal of Systems and Software, 83(1): 67–76.

[Boucharas, Jansen, et al. 2009] Boucharas, V., Jansen, S., Brinkkemper, S. (2009).
Formalizing software ecosystem modeling. First International Workshop on Open
Component Ecosystems (IWOCE’09). Amsterdam, The Netherlands, ACM: 41–50.

149

http://www.boston.com/news/local/articles/2005/12/18/in_computer_science_a_growing_gender_gap/
http://www.boston.com/news/local/articles/2005/12/18/in_computer_science_a_growing_gender_gap/

Version of 29 November 2010

[Bradley 2007] Bradley, J-C. (2007). Open Notebook Science Using Blogs and Wikis.
American Chemical Society Symposium on Communicating Chemistry. Available from Nature
Proceedings, http://dx.doi.org/10.1038/npre.2007.39.1 accessed June 28, 2010.

[Brown and Booch 2002] Brown, A. W. and Booch, G. (2002). Reusing open-source
software and practices: The impact of open-source on commercial vendors. 7th
International Conference on Software Reuse: Methods, Techniques, and Tools (ICSR-7), Austin,
Texas, Lecture Notes In Computer Science: 381–428.

[Capiluppi, Morisio, et al. 2004] Capiluppi, A., Morisio, M., and Lago, P. (2004). Evolution
of Understandability in OSS Projects. Eighth Euromicro Conference on Software
Maintenance and Reengineering (CSMR’04), Tampere, Finland.

[Carter 2006] Carter, L. (2006). Why students with an apparent aptitude for computer
science don't choose to major in computer science. 37th SIGCSE Technical Symposium on
Compute Science Education, Houston, TX.

[Casadesus-Masanell and Ghemawat 2006] Casadesus-Masanell, R. and Ghemawat,
P. (2006). Dynamic Mixed Duopoly: A Model Motivated by Linux vs. Windows.
Management Science, 52(7): 1072-1084.

[Chadwick 2009] Chadwick, A. (2009) Web 2.0: New Challenges for the Study of
EDemocracy in an Era of Informational Exuberance. I/S: A Journal of Law and Policy for
the Information Society, 5 (1): 9-41.

[Chakravarty, Haruvy, et al. 2007] Chakravarty, S., Haruvy, E., and Wu., F. (2007). The
link between incentives and product performance in open source development: an
empirical investigation. Global Business and Economics Review 2007, 9(2/3): 151-169.

[Chan 2004] Chan, A. (2004). Coding Free Software, Coding Free States: Free
Software Legislation and the Politics of Code in Peru. Anthropological Quarterly, 77(3):
531-545.

[Cheliotis 2009] Cheliotis, G. (2009). From open source to open content: Organization,
licensing and decision processes in open cultural production. Decision Support Systems,
47(3):229–244.

[Christiansen and Kirby 2003] Christiansen, M. and Kirby, S. (eds.) (2003). Language
Evolution: The States of the Art, Oxford University Press.

[Citron 2008] Citron, D. K. (2008). Open Code Governance. University of Chicago Legal
Forum, 2008, U of Maryland Legal Studies Research Paper No. 2008-1: 355-387.

150

http://dx.doi.org/10.1038/npre.2007.39.1

Version of 29 November 2010

[Clements and Northrop 2001] Clements, P. and Northrop, L. (2001). Software Product
Lines: Practices and Patterns. Addison-Wesley Professional, New York.

[CMMI 2006] CMMI for Development (CMMI-DEV), Version 1.2,
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm accessed June 2010.

[Conway 1968] Conway, M. E. (1968). How do Committees Invent? Datamation, 14(5):
28–31.

[Cook, Votta, et al. 1998] Cook, J. E., Votta, L. G., and Wolf, A. L. (1998). Cost-Effective
Analysis of In-Place Software Processes. IEEE Transactions on Software Engineering,
24(8): 650-663.

[COSSHF 2010] Comparison of Open Source Software Hosting Facilities,
http://en.wikipedia.org/wiki/Comparison_of_free_software_hosting_facilities, accessed
15 July 2010.

[Crowston, et al., 2003] Crowston, K., H. Annabi, & J. Howison. 2003. “Defining Open
Source Project Success,” In Proceedings of the 24th Int.l Conf. on Info. Systems, ICIS,
Seattle.

[Crowston and Howison 2006] Crowston, K., and Howison J. (2006). Assessing the
Health of Open Source Communities. Computer, 39(5): 89 - 91.

[Crowston, Wei, et al. 2010] Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2010).
Free/libre open source software development: what we know and what we do not know.
ACM Computing Surveys, (in press).

[Dahlander and Magnusson 2008] Dahlander, L. and Magnusson, M. (2008). How do
Firms Make Use of Open Source Communities? Long Range Planning, 41(6): 629-649.

[DataOne 2010] DataOne, https://dataone.org/ accessed June 28, 2010.

[David 2004] David, P. A. (2004). Understanding the emergence of ‘open science’
institutions: Functionalist economics in historical context. Industrial and Corporate
Change, 13(4): 571– 589.

[David and Shapiro 2008] David, P. A. and Shapiro, J. S. (2008). Community-based
production of open-source software: What do we know about the developers who
participate? Information Economics and Policy, 20(4): 364-398.

151

https://dataone.org/
http://en.wikipedia.org/wiki/Comparison_of_free_software_hosting_facilities
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm

Version of 29 November 2010

[David and Spence 2003] David, P. A. and Spence, M. (2003). Towards an Institutional
Infrastructure for E-Science: The Scope and Challenge. Oxford Internet Institute Report
No. 2.

[David, Waterman, et al. 2003] David, P. A., Waterman, A., and Arora, S. (2003).
FLOSS-US: The Free/Libre/Open Source Software Survey for 2003. Stanford Institute for
Economic Policy Research SIEPR. Available at http://www.stanford.edu/group/floss-us/.
Accessed July 13, 2009.

[Delorey, Knutson, et al. 2007] Delorey, D., Knutson, C., Chun, S. (2007). Do
Programming Languages Affect Productivity? A Case Study Using Data from Open
Source Projects. First International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS'07), Minneapolis, MN.

[Deshpande and Riehle 2008] Deshpande, A. and Riehle, D. (2008). The Total Growth
of Open Source. Fourth IFIP International Conference on Open Source Systems (OSS2008),
Milan, IT, Springer Boston.

[De Souza, Quirk, et al. 2007] De Souza, C. R. B., Quirk, S., Trainer, E., and Redmiles,
D. F. (2007). Supporting Collaborative Software Development through the Visualization
of Socio- Technical Dependencies. 2007 Intern. ACM Conference on Supporting Group
Work, Sanibel Is, FL, ACM Press:147-156.

[Di Penta, German, et al. 2010] M. Di Penta, M., German, D. M., Gueheneuc, Y.-G., and
Antoniol, G. (2010). An Exploratory Study of the Evolution of Software Licensing. 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, Cape Town, South
Africa, ACM: 145-154.

[Dinkelacker, Garg, et al. 2002] Dinkelacker, J., Garg, P. K., Miller, R., and Nelson, D.
(2002). Progressive Open Source. 24th International Conference Software Engineering
(ICSE 2002), Orlando, FL: 177-184.

[Ducheneaut 2005] Ducheneaut, N. (2005). Socialization in a open source software
community: a socio-technical analysis. Computer Supported Cooperative Work (CSCW),
14(4): 323-368.

[Dutton 2008] Dutton, W. H. (2008). The Wisdom of Collaborative Network
Organizations: Capturing the Value of Networked Individuals. Prometheus: Critical Studies
in Innovation, 26(3), 211-230. September.

152

http://www.stanford.edu/group/floss-us/

Version of 29 November 2010

[Ekbia 2009] Ekbia, H. (2009). Digital artifacts as quasi-objects: Qualification, mediation,
and materiality. Journal of American Society for Information Science and Technology, 60(12);
2554-2566.

[Ekbia and Gasser 2008] Ekbia, H., and Gasser, L. (2008). Seeking reliability in
freedom: The case of F/OSS. In Computerization Movements and Technology Diffusion:
From Mainframes to Ubiquitous Computing, K. L. Kraemer & M. Elliott (Eds.), Medford, NJ,
Information Today, Inc.: 420-449.

[Elliott and Kreamer 2008] Elliott, M. and Kraemer, K. L. (Eds.) (2008). Computerization
Movements and Technology Diffusion: From Mainframes to Ubiquitous Computing, ASIST
Monograph Series, Information Today, Inc.

[Elliott and Scacchi 2003] Elliott, M. and Scacchi, W. (2003). Free Software Developers
as an Occupational Community: Resolving Conflicts and Fostering Collaboration. 2003
International ACM SIGGROUP Conference on Supporting Group Work, Sanibel Island, FL,
ACM New York, NY: 21-30.

[Elliott and Scacchi 2008] Elliott, M. and Scacchi, W. (2008). Mobilization of Software
Developers: The Free Software Movement. Information, Technology and People, 21(1), 4-
33.

[English and Schweik 2007a] English, R. and Schweik, C. M. (2007). Identifying
Success and Abandonment of Free/Libre and Open Source (FLOSS) Commons: A
Preliminary Classification of Sourceforge.net projects. Upgrade: The European Journal for
the Informatics Professional, Vol. VIII(6).

[English and Schweik 2007b] English, R., and Schweik , C. M. (2007). Identifying
Success and Tragedy of FLOSS Commons: A Preliminary Classification of
Sourceforge.net Projects. First International Workshop on Emerging Trends in FLOSS
Research and Development (FLOSS'07: ICSE Workshops 2007), Minneapolis, MN, IEEE.

[ESA 2007] ESA (European Space Agency). (2007). European Cooperation for Space
Standardisation (ECSS), last accessed on June 28, 2010, available at
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECMKDUXBQE_2.html

[Everts 2006] Everts, S. (2006). Open Source Science. Chemical & Engineering
News, 84(30): 34.

[Fang and Neufeld 2009] Fang, Y. and Neufeld, D. (2009). Understanding Sustained
Participation in Open Source Software Projects. Journal of Management Information
Systems, 25(4): 9-50.

153

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECMKDUXBQE_2.html

Version of 29 November 2010

[Fernandez-Ramil, Izquierdo-Cortazar, et al. 2009] Fernandez-Ramil, J., Izquierdo-
Cortazar, D. and Mens, T. (2009). What Does It Take to Develop a Million Lines of Open
Source Code? In C. Boldyreff, et al. (Eds.) Open Source Ecosystems: Diverse Communities
Interacting, (IFIP Advances in Information and Communication Technology series),
Berlin, Heidelberg, Springer Berlin Heidelberg, Vol 299: 170-184.

[Feller, Finnegan, et al. 2008] Feller, J., Finnegan, P., Fitzgerald, B. and Hayes, J.
(2008). From Peer Production to Productization: A Study of Socially Enabled Business
Exchanges in Open Source Service Networks. Information Systems Research, 19(4): 475--
494.

[Feiler and Humphrey 1993] Feiler, P. and Humphrey, W. (1993). Software Process
Development and Enactment: Concepts and Definitions. Software Process, 1993. Second
International Conference on the Software Process: Continuous Software Process Improvement,
Berlin, Germany: 28-40.

[Fontana, Kuhn, et al. 2008] Fontana, R., Kuhn, B. M., Molgen, E., et al. (2008). A Legal
Issues Primer for Open Source and Free Software Projects. Software Freedom Law Center,
Version 1.5.1. Retrieved June 28, 2010, 2010, from
http://www.softwarefreedom.org/resources/2008/foss-primer.html
and http://www.softwarefreedom.org/resources/2008/foss-primer.pdf.

[FOSSology 2010] FOSSology. http://fossology.org/about_us (last accessed June 28,
2010).

[Foster 2005] Foster, A. L. (2005). "Student interest in computer science plummets." The
Chronicle of Higher Education, Washington, DC, 51: A31 – A32.

[Freeman 2007] Freeman, S. (2007). The material and social dynamics of motivation:
Contributions to Open Source language technology development. Science Studies, 20(2):
55- 77.

[Freeman, Crawford, et al. 2005] Freeman, P., Crawford, D., Kim, S., and Munoz, J.
(2005). Cyberinfrastructure for science and engineering: Promises and challenges.
Proceedings of the IEEE, 93(3): 682–69.

[Gabora 1997] Gabora, L. (1997). The Origin and Evolution of Culture and Creativity.
Journal of Memetics - Evolutionary Models of Information Transmission, 1.

[Gao, Van Antwerp, et al. 2007] Gao, Y., Van Antwerp, M., Christley, S., and Madey, G.,

154

http://www.softwarefreedom.org/resources/2008/foss-primer.pdf
http://fossology.org/about_us
http://www.softwarefreedom.org/resources/2008/foss-primer.html

Version of 29 November 2010

(2007). A Research Collaboratory for Open Source Software Research. First
International Workshop on Emerging Trends in FLOSS Research and Development,
Minneapolis, MN, IEEE Computer Society: 4.

[Garg, Gschwind, et al. 2004] Garg, P. J., Gschwind, T., and Inoue, K. (2004). Multi-
Project Software Engineering: An Example. International Workshop on Mining Software
Repositories, Edinburgh, Scotland.

[Gasser , Ripoche, et al. 2004] Gasser, L., Ripoche, G. and Sandusky, R. (2004).
Research Infrastructure for Empirical Science of F/OSS. International Workshop on
Mining Software Repositories, Edinburgh, Scotland.

[Gasser and Scacchi 2003] Gasser, L. and Scacchi, W. (2003). Continuous Design of
Free/Open Source Software: Workshop Report and Research Agenda. UCI-UIUC
Workshop on Continuous Design of Open Source Software. (report available
http://www.isr.uci.edu/events/ContinuousDesign/Continuous-Design-OSS-report.pdf)

[Gasser and Scacchi 2008] Gasser, L. and Scacchi, W. (2008). Towards a Global
Research Infrastructure for Multidisciplinary Study of Free/Open Source Software
Development. In Open Source Development, Community and Quality, IFIP International
Federation for Information Processing, B. Russo, E. Damiani, S. Hissan, B. Lundell, and
G. Succi (Eds.), Boston, Springer, Vol. 275: 143-158.

[German and Mockus 2003] German, D. and Mockus, A. (2003). Automating the
Measurement of Open Source Projects. 3rd Workshop Open Source Software
Engineering, Portland, OR: 63-68.

[German and Hassan 2009] German, D. and Hassan, A (2009). License Integration
Patterns: Addressing license mismatches in component-based development. IEEE 31st
International Conference on Software Engineering, Vancouver, BC, Canada, IEEE Computer
Society: 188-198.

[Gerson 1983] Gerson, E. M. (1983). Scientific work and social worlds. Science
Communication, 4(3): 357-377.

[Ghosh 2005] Ghosh, R. A. (2005). Understanding free software developers: Findings
from the FLOSS study. In Perspectives on Open Source and Free Software, J. Feller, B.
Fitzgerald, S. A. Hissam, and K. R. Lakhani (ed.), Cambridge, MA: MIT Press: 23-46.

[Ghosh 2006] Ghosh, R. A. (2006). Study on the: Economic impact of open source
software on innovation and the competitiveness of the Information and Communication
Technologies (ICT) sector in the EU. Official Reports and Studies – 20 November 2006 – EU

155

Version of 29 November 2010

Institutions – Open Source Software, EU Institutions: UNU-MERIT, the Netherlands;
Universidad Rey Juan Carlos, Spain; University of Limerick, Ireland; Society for Public
Information Spaces, France; Business Innovation Centre of Alto Adige-Südtirol, Italy.

[Ghosh, Glott, et al. 2002] Ghosh, R. A., Glott, R., Krieger, B., and Robles, G. (2002).
Free/Libre and Open Source Software: Survey and Study. Workshop on Advancing the
Research Agenda on Free / Open Source Software, Brussels, Belgium.

[Gobeille 2008] Gobeille, R. (2008). The FOSSology project. 2008 International working
conference on Mining Software Repositories (MSR '08), Leipzig, Germany, ACM: 47-50.

[Godfrey and German 2008] Godfrey, M. W., and German, D. M. (2008). The past,
present, and future of software evolution. International Conference of Software Maintenance
and Evolution (ICSM’08): Frontiers of Software Maintenance, 129-138.

[Gomulkiewicz 2009] Gomulkiewicz, Robert W. (2009). Open Source License
Proliferation: Helpful Diversity or Hopeless Confusion? Washington University Journal of
Law & Policy, 30: 261.

[Gonzalez-Barahona, Robles, et al. 2009] Gonzalez-Barahona, J. M., Robles, G.,
Michlmayr, M., Amor, J. J.,and German, D. M. (2009). Macro-level software evolution: a
case study of a large software compilation. Empirical Software Engineering, 14(3): 262-
285.

[Gould 2002] Gould, S. J. (2002). The Structure of Evolutionary Theory, Cambridge, MA,
Belknap Press of Harvard University Press.

[Gousios and Spinellis 2009] Gousios, G. and Spinellis, D. (2009). Alitheia core: An
extensible software quality monitoring platform. 31st International Conference on Software
Engineering, Vancouver, Canada, IEEE Computer Society: 579-582.

[Gurbani, Garvert, et al. 2010] Gurbani, V.K., Garvert, A., and Herbsleb, J.D. (2010).
Managing a Corporate Open Source Software Asset, Communications of the ACM,
53(2), 155-159.

[Hadoop 2010] Hadoop (2010). Welcome to Hadoop, http://hadoop.apache.org/. Also see,
http://wiki.apache.org/hadoop/ and http://en.wikipedia.org/wiki/Hadoop, Accessed 28
June 2010.

[Haefliger, von Krogh, et al. 2008] Haefliger, S., von Krogh, G., and Spaeth, S. (2008).
Code Reuse in Open Source Software. Management Science, 54(1): 180-193.

156

http://en.wikipedia.org/wiki/Hadoop
http://wiki.apache.org/hadoop/
http://hadoop.apache.org/

Version of 29 November 2010

[Hahn 2002] Hahn, R. W. (ed.) (2002). Government policy toward open source software.
Washington, DC: Brookings Institution Press.

[Hahsler and Koch 2005] Hahsler, M. and Koch, S. (2005). Discussion of a Large-Scale
Open Source Data Collection Methodology. 38th Annual Hawaii International Conference
on System Sciences - Volume 07, IEEE Computer Society: 197-202.

[Hann, Roberts, et al. 2002] Hann, I.-H., Roberts, J., Slaughter, S. and Fielding, R.
(2002). Economic incentives for participating in open source software projects. Twenty-
Third International Conference on Information Systems (ICIS) ICIS 2002, Barcelona, Spain:
365- 372.

[Hann, Roberts, et al. 2005] Hann, I.-H., Roberts, J. and Slaughter, S. A. (2005). Why
developers participate in open source software projects: An empirical investigation.
Twenty-Fifth International Conference on Information Systems: 821-830.

[Hannan and Carroll 1992] Hannan, M. T. and Carroll, G. R. (1992). Dynamics of
Organizational Populations: Density, Legitimation and Competition, New York, NY, Oxford
University Press, USA.

[Harrison 2001] Harrison, W. (2001). Editorial: Open Source and Empirical Software
Engineering. Empirical Software Engineering, 6(3), 193-194.

[Hars and Ou 2008] Hars, A. and Ou, S. S. (2002). Working for free? Motivations for
participating in open-source projects. International Journal of Electronic Commerce 6(3):
25-39.

[Hauge, Ayala, et al. 2010] Hauge, O., Ayala, C. and Conradi, R. (2010). Adoption of
Open Source Software in Software-Intensive Organizations - A Systematic Literature
Review. Information and Software Technology, (in press).

[Heller 1998] Heller, Michael. (1998). The tragedy of the anticommons. Harvard Law
Review, 111. January.

[Henkel 2006] Henkel, J. (2006). Selective revealing in open innovation processes: The
case of embedded Linux. Research Policy, 35: 953-969.

[Hertel, Neidner, et al. 2003] Hertel, G., Neidner, S., and Hermann, S. (2003). Motivation
of software developers in Open Source projects: an Internet-based survey of
contributors to the Linux kernel. Research Policy, 32(7): 1159-1177.

[Herz, Lucas, et al. 2006] Herz, J.C., Lucas, M., Scott, J. (2006). Open Technology

157

Version of 29 November 2010

Development, Roadmap Plan. DoD Advanced Systems & Concepts, Version 3.1 (Final).
http://www.acq.osd.mil.asc, (accessed 24 June 2010).

[Hey and Trefethen 2005] Hey, T and Trefethen, A. E. (2005). Cyberinfrastructure for
escience.Science, 308(5723):817–821.

[Hissam, Weinstock, et al. 2010] Hissam, S., Weinstock, C., Bass, L. (2010). On Open
and Collaborative Software Development in the DoD. Proc. 7th Annual Acquisition
Research Symposium, Monterey, California.

[Hoepman and Jacobs 2007] Hoepman, J. and Jacobs, B. (2007). Increased security
through open source. Communications of the ACM, 50(1): 79-83.

[Hofman and Riehle 2009] Hofmann, P., and Riehle, D. (2009). Estimating Commit
Sizes Efficiently. In C. Boldyreff, et al. (Eds.) Open Source Ecosystems: Diverse Communities
Interacting, (IFIP Advances in Information and Communication Technology series),
Berlin, Heidelberg, Springer Berlin Heidelberg, Vol 299: 105-115.

[Howison 2009] Howison, J. (2009). Alone Together: A socio-technical theory of motivation,
coordination and collaboration technologies in organizing for free and open source software
development. PhD Dissertation. School of Information Studies, Syrcause University.
(Available at http://james.howison.name/pubs/dissertation.html)

[Howison, Conklin, et al. 2006] Howison, J., Conklin, M., and Crowston, K. (2006).
FLOSSmole: A collaborative repository for FLOSS research data and analyses.
International Journal of Information Technology and Web Engineering (IJITWE), 1(3): 17-26.

[Hughes 1987] Hughes, T. J. (1987). The Evolution of Large Technological Systems. In
The Social Construction of Technological Systems, W. Bijker, T. Hughes, and T. Pinch (eds.),
The MIT Press, Cambridge, MA: 51-82.

[Hughes, Lang, et al. 2007] Hughes, J., Lang, K. R., Clemons, E. K., and Kauffman, R.
J. (2007). A unified interdisciplinary theory of open source culture and entertainment.
Technical Report 1077909, SSRN.

[Hull, Wolstencroft, et al. 2006] Hull, D.,Wolstencroft, K., Stevens, R., Goble, C., Pocock,
M. R., Li, P. and Oinn, T. (2006). Taverna: a tool for building and running workflows of
services. Nucleic Acids Research, 34(2): W729–732.

[Iivari 2008] Iivari, N. (2008). Empowering the users? A critical textual analysis of the
role of users in open source software development. AI & Society, 23(4): 511-528.

158

http://james.howison.name/pubs/dissertation.html
http://www.acq.osd.mil.asc/

Version of 29 November 2010

[Jansen, Beinkkemper, et al,. 2009] Jansen, S., Brinkkemper, S., Finkelstein, A. (2009).
Business network management as a survival strategy: A tale of two software
ecosystems. First International Workshop on Software Ecosystems (IWSECO-2009), S.
Jansen, S. Brinkkemper, A. Finkelstein, and J. Bosch (ed.), Falls Church, Virginia: 34-
48.

[Jansen, Finkelstein, et al. 2009] Jansen, S., Finkelstein, A., and Brinkkemper, S. (2009).
A sense of community: A research agenda for software ecosystems. 31st International
Conference on Software Engineering (ICSE ’09), Companion Volume, Portland, OR: 187–
190.

[Jensen and Scacchi 2004] Jensen, C. and Scacchi, W. (2004). Collaboration,
Leadership, Control, and Conflict Negotiation in the NetBeans.org Community. Proc.
Fourth Workshop on Open Source Software Engineering ICSE04-OSSE04, Edinburgh,
Scotland: 48-52.

[Jensen and Scacchi 2005] Jensen, C. and Scacchi, W. (2005). Process Modeling
Across the Web Information Infrastructure, Software Process: Improvement and Practice,
10(3): 255-272.

[Jensen and Scacchi 2007] Jensen, C. and Scacchi, W. (2007). Role migration and
advancement processes in OSSD projects: A comparative case study. 29th International
Conference on Software Engineering, Minneapolis, MN, ACM: 364-374.

[Jensen and Scacchi 2010] Jensen, C. and Scacchi, W. (2010). Governance in Open
Source Software Development Projects: A Multi-Level Comparative Case Study. Proc. 6th

International Conference Open Source Systems, Notre Dame, IN: 130-142.

[Kaufeler, Jones, et al. 2001] Kaufeler, J.-F., Jones, M., and Karl, H.-U. (2001).
Promoting ESA Software as a European Product: The SCOS-2000 Example. ESA
Bulletin, 108: 72-772.

[Kawaguchi, Garg, et al. 2003] Kawaguchi, S., Garg, P.K., Matsushita, M., and Inoue, K.
(2003). On Automatic Categorization of Open Source Software. 3rd Workshop on Open
Source Software Engineering, Portland, OR: 63-68.

[Kelty 2001] Kelty, C. (2001). Free Software/Free Science. First Monday, 6(12).

[Kepler 2010] The Kepler Project. https://kepler-project.org/ (last accessed June 28,
2010).

159

Version of 29 November 2010

[Klawe, Whitney, et al. 2009] Klawe, M. M., Whitney, T., and, Simard, C. (2009). Women
in computing - take 2. Communications of the ACM, 52(2): 68-76.

[Kling and Scacchi 1982] Kling, R. and Scacchi, W. (1982). The Web of Computing:
Computing Technology as Social Action. in Advances in Computers, M. Yovits
(Ed.), Academic Press, New York, 21: 3-75.

[Koch 2005] Koch, S. (2005). Evolution of Open Source Software Systems—A Large-
Scale Investigation. 1st International Conference on Open Source Systems, Genoa, Italy.

[Kolata 2010] Kolata, G. (2010). Sharing of data leads to progress on Alzheimer’s. New
York Times, 8/13/2010. http://www.nytimes.com/2010/08/13/health/research/13alzheimer.html?
_r=1&emc=eta1 (accessed August 16, 2008).

[Krein, MacLean, et al. 2009] Krein, J. L., MacLean, A. C., Delorey, D. P., Eggett, D. L.,
and Knutson, C. D. (2009). Language Entropy: A Metric for Characterization of Author
Programming Language Distribution. Fourth International Workshop on Public Data about
Software Development (WoPDaSD '09), Skovde, Sweden.

[Kuehnel 2008] Kuehnel, A.-K. (2008). Microsoft, open source and the software
ecosystem: of predators and prey—the leopard can change its spots. Information &
Communication Technology Law, 17(2): 107–124.

[Lakhani, Jeppesen, et al. 2007] Lakhani K.R., Jeppesen, L., Lohse, P., Panetta, J.
(2007). The value of openness in scientific problem solving. Harvard Business School
Working Paper, No. 07–050, Harvard Bus. School, Cambridge, MA

[Lakahani and Wolf 2005] Lakhani, K. R., and Wolf, R. G. (2005). Why hackers do what
they do: Understanding motivation and effort in free/open source software projects.
In Perspectives on free and open source software, Joseph Feller, Brian Fitzgerald, Scott A.
Hissam, and Karim R. Lakhani (eds.), Cambridge, MA: MIT Press 3-22.

[Lang, Shang, et al. 2007] Lang, K. R., Shang, D., and Zicklin, R. (2007). Designing
markets for open source production of digital culture goods. ICEC ’07: Proceedings of the
ninth international conference on Electronic commerce, New York, NY, USA. ACM: 283–292.

[Larsen and Klischewski 2004]Larsen, M. H. and Klischewski, R. (2004). Process
Ownership Challenges in IT-Enabled Transformation of Interorganizational Business
Processes. Proc. 37th Annual Hawaii International Conference on System Sciences, Big Island,
Hawaii.

160

http://www.nytimes.com/2010/08/13/health/research/13alzheimer.html?_r=1&emc=eta1
http://www.nytimes.com/2010/08/13/health/research/13alzheimer.html?_r=1&emc=eta1

Version of 29 November 2010

[Lee 2006] Lee, J.-A. (2006). New Perspectives on Public Goods Production: Policy
Implications of Open Source Software. Vanderbilt Journal of Entertainment and Technology
Law, Vol. 9(1).

[Lehman 1980] Lehman, M. M. (1980). Programs, Life Cycles, and Laws of Software
Evolution, Proceedings of the IEEE, 68, 1060-1078.

[Lehman and Belady 1985] Lehman, M. M. and Belady, L. A. (1985). Program Evolution –
Processes of Software Change, Academic Press, London.

[Lerner and Tirole 2002] Lerner, J., and Tirole, J. (2002). Some simple economics of
open source. Journal of Industrial Economics, 50 (2): 197–234.

[Lerner and Tirole 2005a] Lerner, J., and Tirole., J. (2005). The economics of technology
sharing: Open source and beyond. Journal of Economic Perspectives, 19(2): 99-120.

[Lerner and Tirole 2005b] Lerner, J., and Tirole, J. (2005). The Scope of Open Source
Licensing. Journal of Law Economics & Organization, 21(1): 20-56.

[Lessig 2006] Lessig, L. (2006). Code: And Other Laws of Cyberspace, Version 2.0. Basic
Books.

[Lewis, 2010] Lewis, J.A. Government Open Source Policies.
http://csis.org/publication/government-open-source-policies. (Last accessed Sept 3,
2010).

[Lin 2005] Lin, Y. (2005). The future of sociology of FLOSS. First Monday, (Special Issue
#2: Open Source).

[Long and Siau 2007] Long, Y. and Siau, K. (2007). Social Network Structures in Open
Source Software Development Teams. Journal of Database Management, 18(2): 25-40.

[MacCormack, Baldwin, et al. 2010] MacCormack, A., Baldwin, C., and Rusnak, J.
(2010). The Architecture of Complex Systems: Do Core-Periphery Structures Dominate? MIT
Sloan School of Management Working Paper, 4770-10.

[Madey, Freeh, et al. 2002] Madey, G., Freeh, V., and Tynan, R. (2002). The Open
Source Software Development Phenomenon: An Analysis Based on Social Network
Theory. Americas Conference on Information Systems (AMCIS2002), Dallas, TX: 1806-1813.

161

http://csis.org/publication/government-open-source-policies

Version of 29 November 2010

[Madey, Freeh, et al. 2005] Madey, G., Freeh, V., and Tynan, R. (2005). Modeling the
F/OSS Community: A Quantitative Investigation. in Free/Open Source Software
Development, Koch, S. (ed.), Idea Group Publishing, Hershey, PA: 203-221.

[Madhavji, Ramil, et al. 2006] Madhavji, N.H., Ramil, J.F., and Perry, D. (eds.)
(2006). Software Evolution and Feedback: Theory and Practice, John Wiley and Sons Inc,
New York.

[Markus 2007] Markus, M. L. (2007). The governance of free/open source software
projects: Monolithic, multidimensional, or configurational? Journal of Management and
Governance 11(2): 151-163.

[Messerschmitt and Szyperski 2003] Messerschmitt, D. G. and Szyperski, C.
(2003). Software Ecosystem: Understanding an Indispensable Technology and Industry. MIT
Press, Cambridge, MA.

[Michlmayr and Hill 2003] Michlmayr, M. and Hill, B. M. (2003). Quality and the Reliance
on Individuals in Free Software Projects. 3rd Workshop on Open Source Software
Engineering: Taking Stock of the Bazaar, Portland, OR.

[MITRE 2003] MITRE (2003). Use of Free and Open-Source Software (FOSS) in the U.S.
Department of Defense, Version 1.2.04, January 2, 2003.
http://cio-nii.defense.gov/sites/oss/2003survey/dodfoss_pdf.pdf (last accessed
September 2010).

[Mockus, Fielding, et al. 2002] Mockus, A., Fielding, R.T., and Herbsleb, J. (2002). Two
case studies of open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology, 11(3):309-346.

[Morelli, Tucker, et al. 2009] Morelli, R.A., Tucker, A., Danner, N., de Lanerolle, T., Ellis,
H.J.C., Izmirli, O., Krizanc, D., and Parker, G. (2009). Revitalizing computing education
through free and open source software for humanity. Communications of the ACM, 52(8):
67- 75.

[Mylyn 2010] Mylyn Eclipse Plugin Project. http://www.eclipse.org/mylyn/ (last accessed
June 28, 2010).

[NEES 2010] NEES, Network for Earthquake Engineering Simulation https://www.nees.org
(last accessed June 28, 2010).

162

https://www.nees.org/
http://www.eclipse.org/mylyn/
http://cio-nii.defense.gov/sites/oss/2003survey/dodfoss_pdf.pdf

Version of 29 November 2010

[Niederman 2004] Niederman, F. (2004). IT Employment Prospects in 2004: A Mixed
Bag. Computer, 37(1): 69-77.

[Nelson and Winter 1985] Nelson, R.R. and Winter, S.G. (1985). An Evolutionary Theory
of Economic Change, Belknap Press, Cambridge, MA.

[NEON, 2010] The National Ecological Observatory Network (NEON). http://www.neoninc.org
(last accessed June 28, 2010).

[Noll 2008] Noll, J. (2008). Requirements Acquisition in Open Source Development:
Firefox 2.0. Open Source Development Communities and Quality, IFIP International
Federation for Information Processing, B. Russo, E. Damani, S. Hissam, B. Lundell, and
G. Succi (ed.), Boston, Springer, Vol. 275: 69-79.

[Noll and Scacchi 1991] Noll, J. and Scacchi, W.(1991). Integrating Diverse Information
Repositories: A Distributed Hypertext Approach. Computer, 24(12): 38-45.

[Noll and Scacchi 1999] Noll, J. and Scacchi, W. (1999). Supporting Software
Development in Virtual Enterprises. Journal of Digital Information, 1(4).

[Noll and Scacchi 2001] Noll, J. and Scacchi, W. (2001). Specifying process-oriented
hypertext for organizational computing. Journal Network and Computer Applications, 24(1):
39-61.

[Northrop, Feiler, et al. 2006] Northrop, L., Feiler, P., Gabriel, R. P., Goodenough, J.,
Linger, R., Longstaff, T., Kazman, R., Klein, M., Schmidt, D. Sullivan, K., and Wallnau,
K. (2006). Ultra-Large-Scale Systems: The Software Challenge of the Future. Software
Engineering Institute, Carnegie Mellon University.

[NSF 2007] National Science Foundation - NSF (2007). Cyberinfrastructure Vision for 21st

Century Discovery. National Science Foundation, Cyberinfrastructure Council: Arlington,
VA. URL http://purl.access.gpo.gov/GPO/LPS80410

[NSF 2010] National Science Foundation - NSF (2010). NSF, Program Solicitation,
Broadening Participation in Computing (BPC), Retrieved from
http://www.nsf.gov/pubs/2009/nsf09534/nsf09534.html, March 1, 2010.

[Ogawa, Ma, et al. 2007] Ogawa, M., Ma, K.-L., Devanbu, P., Bird, C., and Gourley, A.
(2007). Visualizing social interaction in open source software projects. 2007 Asia-Pacific
Symposium on Visualisation (APVIS'07), Sydney, Australia, IEEE Computer Society: 25-32.

163

http://www.nsf.gov/pubs/2009/nsf09534/nsf09534.html
http://www.neoninc.org/

Version of 29 November 2010

[Ogawa and Ma 2008] Ogawa, M. and Ma, K.-L. (2008). StarGate: A Unified, Interactive
Visualization of Software Projects. IEEE PacificVis Conference 2008, Kyoto, Japan: 191-
198.

[O'Neil 2009]O'Neil, M. (2009). Cyberchiefs: Autonomy and authority in online tribes. New
York, NY: Pluto Press.

[O'Mahony 2007] O'Mahony, S. (2007). The governance of open source initiatives: What
does it mean to be community managed? Journal of Management and Governance, 11(2):
139- 150.

[O'Mahony and Ferraro 2007] O'Mahony, S., and Ferraro., F. (2007). The emergence of
governance in an open source community. Academy of Management Journal, 50 (5): 1079-
1106.

[Open Design 2010] Open Design - http://www.ronen-kadushin.com/Open_Design.asp
(last accessed June 28, 2010).

[Open Design Club 2010] Open Design Club http://www.opendesignclub.com/ (last
accessed June 28, 2010).

[Open Design of Circuits 2010] Open Design of Circuits
http://www.opencollector.org/history/OpenDesignCircuits/reinoud_index.html (last
accessed June 28, 2010).

[Open Hardware Products 2010] Open Hardware Products https://fossbazaar.org/content/lca -
devbiz-january-2010,(last accessed June 28, 2010).

[OpenSourceCinema.org 2010] OpenSourceCinema, Open video
production http://www.opensourcecinema.org/ (last accessed June 28, 2010).

[Orman 2008] Orman, W. H. (2008). Giving It Away for Free? The Nature of Job-Market
Signaling by Open-Source Software Developers. The B.E. Journal of Economic Analysis &
Policy, 8(1): Article 12.

[Ossher, Bajracharya, et al. 2009] Ossher, J., Bajracharya, S., Linstead, E., Baldi, P.,
and Lopes. C. (2009). SourcererDB: An Aggregated Repository of Statically Analyzed
and Cross- Linked Open Source Java Projects. 6th IEEE Working Conference on Mining
Software Repositories (MSR 2009), Vancouver, Canada.

164

http://www.opensourcecinema.org/
http://www.opencollector.org/history/OpenDesignCircuits/reinoud_index.html
http://www.opendesignclub.com/
http://www.ronen-kadushin.com/Open_Design.asp
https://fossbazaar.org/content/lca-devbiz-january-2010
https://fossbazaar.org/content/lca-devbiz-january-2010
https://fossbazaar.org/content/lcadevbiz-

Version of 29 November 2010

[Ovaska, Rossi, et al., 2003] Ovaska, P., Rossi, M. and Marttiin, P. (2003). Architecture
as a Coordination Tool in Multi-Site Software Development, Software Process--
Improvement and Practice, 8(3), 233-247.

[Parastatidis, Viegas, et al. 2009] Parastatidis S., Viegas, E., and Hey, T. (2009)
Viewpoint: A 'smart' cyberinfrastructure for research. Communications of the ACM, 52(12):
33–37.

[Patterson 2006] Patterson, D. A. (2006). Computer science education in the 21st
century. Communications of the ACM, 49(3): 27–30.

[Paulson, Succi, et al. 2004], Paulson, J.W., Succi, C., and Eberlein, A. (2004). An
Empirical Study of Open and Close Source Software Products. IEEE Transactions on
Software Engineering, 30(4), 246-256.

[Pawlowski, Robey, et al. 2000] Pawlowski, S. Robey, D., Raven, A. (2000). Supporting
shared information systems: boundary objects, communities, and brokering. Twenty First
International Conference on Information Systems, Brisbane, Queensland, Australia.

[Peccia 2007] Peccia, N. (2007). ESA open-source software supports Germany's
TerraSAR-X. ESA, (March 28, 2007), last retrieved June 28, 2010, from
http://www.esa.int/esaCP/SEMDV1T4LZE_index_2.html.

[Perens 2005] Perens, B. (2005). The Emerging Economic Paradigm of Open Source.
First Monday, 10(2).

[Peters 2009] Peters, M. A. (2009). Open Education and the Open Science
Economy. Yearbook of the National Society for the Study of Education, 108(2), 203-225.

[Raasch, Herstatt, et al. 2009] Raasch, C., Herstatt, C. and Balka, K. (2009). On the
open design of tangible goods. R&D Management, 39(4): 382-393.

[Reding 2007] Reding, V. (2007). Speech at Truffle 100 event: Towards a European Software
Strategy, European Commission on Information Society and Media, Brussels,
http://ec.europa.eu/commission_barroso/reding/docs/speeches/brussels_20071119.pdf ,19
November 2007.

[Rhoten and Powell. 2007] Rhoten, D. and Powell, W. W. (2007). The Frontiers of
Intellectual Property: Expanded Protection versus New Models of Open Science. Annual
Review of Law and Social Science, 3, 345-373.

165

http://ec.europa.eu/commission_barroso/reding/docs/speeches/brussels_20071119.pdf
http://www.esa.int/esaCP/SEMDV1T4LZE_index_2.html

Version of 29 November 2010

[Riehle, Ellenberger, et al. 2009] Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski,
B., Natchetoi, Y., Naveh, B., and Odenwald, T. (2009). Open Collaboration within
Corporations Using Software Forges. IEEE Software, 26(2): 52-58.

[Ripoche and Gasser 2003] Ripoche, G. and Gasser, L. (2003). Scalable automatic
extraction of process models for understanding F/OSS bug repair. Intern.Conf. Software
& Systems Engineering and their Applications (CSSEA'03), Paris, France.

[Ripoche and Sameonnet 2006] Ripoche, G., and Sansonnet, J-P. (2006). Experiences
in Automating the Analysis of Linguistic Interactions for the Study of Distributed
Collectives. Computer Supported Cooperative Work (CSCW), 15(2-3): 149-183.

[Roberts, Hann, et al. 2006] Roberts, J., Hann, I.-H., and Slaughter, S. A. (2006).
Understanding the Motivations, Participation, and Performance of Open Source
Software Developers: A Longitudinal Study of the Apache Projects. Management Science,
52(7): 984- 999.

[Robles and Gonzalez-Barahona 2006] Robles, G. and Gonzalez-Baharona, J. M.
(2006). Contributor Turnover in Libre Software Projects. In Open Source Systems, E.
Damiani, B. Fitzgerald, W. Scacchi, M. Scotto and G. Succi (ed.), Springer Boston, 203:
273- 286.

[Robles, Gonzalez-Barahona, et al. 2003] Robles, G., Gonzalez-Barahona, J. M.,
Centeno-Gonzalez, J., Matellan-Olivera, V., and Rodero-Merino, L. (2003) Studying the
evolution of libre software projects using publicly available data. 3rd Workshop on OSS
Engineering, Portland, OR: 111-115.

[Robles, Gonzalez-Barahona, et al. 2004] Robles, G., Gonzalez-Barahona, J.M., Ghosh,
R., and Carlos, J. (2004) GluTheos: Automating the Retrieval and Analysis of Data from
Publicly Available Software Repositories. International Workshop on Mining Software
Repositories, Edinburgh, Scotland.

[Robles, Gonzalez-Barahona, et al. 2006] Robles, G., Gonzalez-Barahona, J. M.,
Merelo, J. (2006) Beyond source code: the importance of other artifacts in software
development. J. Systems and Software, 79(9): 1233-1248.

[Robles, Koch, et al. 2004] Robles, G., Koch, S., Gonzalez-Barahona, J. M., and Carlos,
J. (2004). Remote analysis and measurement of libre software systems by means of the
CVSAnalY tool. 2nd ICSE Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS), Edinburgh, Scotland: 51-55.

166

Version of 29 November 2010

[Rosen 2004] Rosen, L. (2004). Open Source Licensing: Software Freedom and Intellectual
Property Law. Prentice Hall. (Available online at http://www.rosenlaw.com/oslbook.htm)

[Rosenberg 2008] Rosenberg, S. (2008). Dreaming in Code: Two Dozen Programmers,
Three Years, 4732 Bugs, and One Quest for Transcendent Software, Three Rivers Press.

[Rossi, Russo, et al. 2010] Rossi, B., Russo, B., and Succi, G. (2010). Download
patterns and releases in open source software projects: A perfect symbiosis? Open
Source Software: New Horizons, Springer Boston, 319: 252-267.

[Rossi 2006] Rossi, M. A. (2006). Decoding the Free/Open Source (F/OSS) Software
Puzzle: A survey of theoretical and empirical contributions. Chapter 2 in The Economics
of Open Source Software Development. J. Bitzer and P. J. H. Schroder. Amsterdam,
Elsevier Press. (2006): 15-56.

[Rowe 2009] Rowe, D. (2009). Open Hardware Business Models. 2009 linux.conf.au
Business Development mini conf, (video of presentation). https://fossbazaar.org/content/david-
rowe-open-hardware-business-models (last accessed June 28, 2010).

[Rusovan, Lawford, et al. 2005] Rusovan, S., Lawford, M., and Parnas, D. L. (2005).
Open Source Software Development: Future or Fad? In J. Feller, B. Fitzgerald, S. A.
Hissam, and K. R. Lakhani (eds.),Perspectives on Free/Open Source Software Development,
J Cambridge, MA: MIT Press: 107-121.

[Sack, Detienne, et al. 2006] Sack, W., Detienne, F., Ducheneaut, Burkhardt,
Mahendran, D., and Barcellini, F. (2006). A Methodological Framework for Socio-
Cognitive Analyses of Collaborative Design of Open Source Software, Computer
Supported Cooperative Work, 15(2/3): 229-250.

[Sapp 2009] Sapp, J. (2009). The New Foundations of Evolution: On the Tree of Life. Oxford
University Press.

[Saviotti and Mani 1995] Saviotti, P. P., and Mani, G. S. (1995). Competition, Variety and
Technological Evolution: A Replicator Dynamics Model. Journal of Evolutionary
Economics, 5(4): 369-392.

[Scacchi 2001] Scacchi, W. (2001). Redesigning Contracted Service Procurement for
Internet-Based Electronic Commerce: A Case Study, Information Technology and
Management, 2(3): 313-334.

[Scacchi 2002] Scacchi, W. (2002). Understanding the Requirements for Developing
Open Source Software Systems, IEE Proceedings--Software, 149(1): 24-39.

167

http://www.rosenlaw.com/oslbook.htm
https://fossbazaar.org/content/david-rowe-open-hardware-business-models
https://fossbazaar.org/content/david-rowe-open-hardware-business-models

Version of 29 November 2010

[Scacchi 2004] Scacchi, W. (2004). Free/Open Source Software Development Practices
in the Computer Game Community, IEEE Software, 21(1): 59-66.

[Scacchi 2006] Scacchi, W. (2006). Understanding Open-Source Software Evolution.
In Software Evolution and Feedback: Theory and Practice, N.H. Madhavji, J.F. Ramil, and D.
Perry (eds.), John Wiley and Sons Inc, New York: 181-206.

[Scacchi 2007] Scacchi, W. (2007). Free/Open Source Software Development: Recent
Research Results and Emerging Opportunities. Proc. 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. (ESEC/FSE 2007), Dubrovnik, Croatia, ACM Press, 459–468.

[Scacchi 2008] Scacchi, W. (2008). Emerging Patterns of Intersection and
Segmentation when Computerization Movements Interact, in M.S. Elliott and K.L.
Kraemer (Eds.), Computerization Movements and Technology Diffusion: From Mainframes to
Ubiquitous Computing, ASIST Monograph Series, Information Today, Inc. 381-404.

[Scacchi 2009] Scacchi, W. (2009). Understanding Requirements for Open Source
Software. In Design Requirements Engineering: A Ten-Year Perspective, K. Lyytinen, et
al. (Eds.), Lecture Notes in Business Information Processing, Springer Verlag, Berlin,
14: 467- 494.

[Scacchi 2010a] Scacchi, W. (2010). Collaboration Practices and Affiordanced in
Free/Open Source Software Development, in I. Mistrík, J. Grundy, A. van der Hoek, and
J. Whitehead, (Eds.), Collaborative Software Engineering, Springer, New York, 307-328.

[Scacchi 2010b] Scacchi, W. (2010). Computer Game Mods, Modders, Modding, and
the Mod Scene. First Monday, 15(5).

[Scacchi and Alspaugh 2008] Scacchi, W. and Alspaugh, T. (2008). Emerging Issues in
the Acquisition of Open Source Software within the U.S. Department of Defense. 5th

Annual Acquisition Research Symposium, Naval Postgraduate School, Monterey, CA, NPS-
AM-08- 036, Vol. 1: 230-244.

[Scacchi, Feller, et al. 2006] Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., and
Lakhani, K. (2006). Understanding Free/Open Source Software Development
Processes. Software Process: Improvement and Practice, 11(2): 95-105.

[Scacchi, Jensen, et al. 2006] Scacchi, W., Jensen, C., Noll, J., and Elliott, M. (2006).
Multi- Modal Modeling, Analysis and Validation of Open Source Software Development

168

Version of 29 November 2010

Processes. International Journal on Information Technology and Web Engineering, 1(3): 49-
63.

[Scacchi and Mi 1997] Scacchi, W. and Mi, P. (1997). Process Life Cycle Engineering: A
Knowledge-Based Approach and Environment. Intelligent Systems in Accounting, Finance,
and Management, 6(2): 83-107.

[Schmerken 2009] Schmerken, I. (2009). Wall Street Opens Doors to Open Source
Technologies. Wall Street & Technology, May 11, 2009. (Available at
http://www.wallstreetandtech.com/it%20infrastructure/showArticle.jhtml?articleID=217400216,
last accessed 28 June 2010).

[Schryen and Kadura 2009] Schryen, G. and Kadura, R. (2009). Open source vs. closed
source software: towards measuring security. 2009 ACM Symposium on Applied
Computing SAC '09, Honolulu, Hawaii, ACM, New York, NY: 2016-2023.

[Schweik 2005] Schweik, C. M. (2005). An institutional analysis approach to studying
libre software Commons. Upgrade: The European Journal for the Informatics Professional,
vol. VI(3): 17-27.

[Schweik and English 2007] Schweik, C. M., and English, R. (2007). Tragedy of the
FOSS Commons? Investigating the institutional designs of free/libre and open source
software projects. First Monday, 12(2).

[Schweik, English, et al. 2010]. Schweik, C.M., English, R., Paienjton, Q. and Haire, S.
(2010). Success and Abandonment in Open Source Commons: Selected Findings from
an Empirical Study of Sourceforge.net Projects Proceedings of the Sixth International
Conference on Open Source Systems (OSS 2010) Workshops: 91-101.

[Schweik and Kitsing, 2010] Schweik, C.M. and Kitsing, M. "Applying Elinor Ostrom’s
Rule Classification Framework to the Analysis of Open Source Software Commons"
Transnational Corporations Review 2.1 (2010): 13-26.

[Seaman and Basili 1998] Seaman, C.B. and Basili, V. (1998). Communication and
Organization: An Empirical Study of Discussion in Inspection Meetings. IEEE
Transactions Software Engineering, 24(7): 559-572.

[Sen, Subramanian, et al. 2008] Sen, R., Subramaniam, C., and Nelson, M. (2008).
Determinants of the Choice of Open Source Software Licenses, J. Management
Information Systems, 25(3), 207-240, Winter.

169

http://www.wallstreetandtech.com/it%20infrastructure/showArticle.jhtml?articleID=217400216

Version of 29 November 2010

[Shah 2006] Shah, S. K. (2006). Motivation, governance, and the viability of hybrid
forms in open source software development. Management Science, 52(7): 1000-1014.

[Simal 2010] Simal - A Project Registry Framework. Retrieved June 28, 2010, from
http://simal.oss-watch.ac.uk/.

[Simpson 2003] Simpson, H. R. (2003). Protocols for process interaction. IEE
Proceedings - Computers and Digital Techniques, 150(3): 157-182.

[Snow, Fjeldstad, et al. 2010] Snow, C. C., Fjeldstad, O. D., Lettl, C., and Miles, R. E.
(2010). Organizing Continuous Product Development and Commercialization: The
Collaborative Community of Firms Model. Journal of Product Innovation Management,
Winter 2010.

[Sommerville 2006] Sommerville, I. (2006). Software Engineering, 8th. Edition. Addison-
Wesley, New York.

[SourceForge 2010] Sourceforge.net. Available online at www.sourceforge.net , last
accessed 24 June 2010.

[Sowe, Stamelos, et al. 2006] Sowe, S., Stamelos, I., Angelis, L. (2006). Identifying
knowledge brokers that yield software engineering knowledge. Information and Software
Technology, 48(11): 1025-1033.

[Sjoeberg, D.I.K., et al. 2005] Sjoeberg, D.I.K.; Hannay, J.E.; Hansen, O.; Kampenes,
V.B.; Karahasanovic, A.; Liborg, N.-K.; Rekdal, A.C.; (2005) A survey of controlled
experiments in software engineering, IEEE Transactions on Software Engineering, 31(9):
733- 753.

[Squire and Duvall 2009] Squire, M., and Duvall, S. (2009). Using FLOSS Project
Metadata in the Undergraduate Classroom. In Open Source Ecosystems: Diverse
Communities Interacting, Springer Boston, vol. 299: 330-339.

[Star 1990] Star, S. L. (1990). The Structure of Ill-Structured Solutions: Boundary
Objects and Heterogeneous Distributed Problem Solving. In Distributed Artificial
Intelligence, L. Gasser and M. N. Huhns, (eds.), Pitman, London, Vol. 2: 37-54.

[Star and Ruhleder 1996] Star, S. L. and Ruhleder, K. (1996). Steps Toward an Ecology
of Infrastructure: Design and access for large information spaces. Information Systems
Research, 7(1): 111-134.

170

http://simal.oss-watch.ac.uk/

Version of 29 November 2010

[Starrett 2007] Starrett, E. (2007). Software Acquisition in the Army. Crosstalk: The
Journal of Defense Software Engineering: 4-8.

[Stewart, Ammeter, et al. 2006] Stewart, K.J., Ammeter, A.P., and Maruping, L.M.
(2006). Impacts of License Choice and Organizational Sponsorship on User Interest
and Development Activity in Open Source Software Projects, Information Systems
Research, 17(2), 126-144, June.

[Strauss 1978] Strauss, A. (1978). A social world perspective. In Studies in Symbolic
Interaction, Norman Denzin (ed.), Greenwich, Connecticut, JAI Press, Volume 1: 119–
128.

[Subramaniam, Sen, et al. 2009] Subramaniam, C., Sen, R., and Nelson, M. L. (2009).
Determinants of open source software project success: A longitudinal study. Decision
Support Systems, 46(2): 576–585.

[Subramanyam and Xia 2008] Subramanyam, R. and Xia, M. (2008). Free/Libre Open
Source Software development in developing and developed countries: A conceptual
framework with an exploratory study. Decision Support Systems, 46(1): 173-186.

[SWEBOK 2004] SWEBOK (2004). Guide to the Software Engineering Body of Knowledge
(SWEBOK), 2004 edition, IEEE Computer Society. (Available in online
form: http://www.computer.org/portal/web/swebok/htmlformat)

[Swedlow and Eliceiri 2009] Swedlow, J. R. and Eliceiri, K. W. (2009). Open source
bioimage informatics for cell biology. Trends in Cell Biology, 19(11-3 Special Issue -
Imaging Cell Biology): 656-660.

[Terry, Kay, et al. 2008] Terry, M., Kay, M., Van Vugt, B., Slack, B., and Park, T. (2008).
Ingimp: introducing instrumentation to an end-user open source application. Twenty-Sixth
Annual SIGCHI Conference on Human Factors in Computing Systems CHI '08, Florence, Italy,
ACM, New York, NY: 607-616.

[Toral, Martinez-Torres, et al. 2010] Toral, S.L., Martinez-Torres, M.R., and Barrero, F.
(2010). Analysis of virtual communities supporting OSS projects using social network
analysis. Information and Software Technology, 52: 296-303.

[Tuunanen, Koskinen, et al. 2009] Tuunanen, T., Koskinen, J. and Karkkainen, T.
(2009). Automated software license analysis. Automated Software Engineering, 16(3-
4):455-490.

171

http://www.computer.org/portal/web/swebok/htmlformat

Version of 29 November 2010

[UN 2004] United Nations (2004) Report of the Expert Meeting on Free and Open-Source
Software: Policy and Development Implications. United Nations Conference on Trade and
Development, Geneva, Switzerland. TD/B/COM.3/EM.21/2.
http://www.unctad.org/en/docs/c3em21d2_en.pdf

[Van Antwerp and Madey 2008] Van Antwerp and Greg Madey (2008) Advances in the
SourceForge Research Data Archive (SRDA). The 4th International Conference on Open
Source Systems, IFIP 2.13 - (WoPDaSD 2008), Milan, Italy.

[van Gurp, Prehofer, et al. 2010] van Gurp, J., Prehofer, C., Bosch, J. (2010).
Comparing practices for reuse in integration-oriented software product lines and large
open source software projects. Software — Practice & Experience, 40 (4): 285–312.

[Ven and Mannaert 2008] Ven, K., Mannaert, H. (2008). Challenges and strategies in
the use of open source software by independent software vendors. Information and
Software Technology, 50 (9-10): 991–1002.

[Verma, Jin, et al. 2005] Verma, S., Jin, L., and Negi, A. (2005) Open Source Adoption
and Use: A Comparative Study Between Groups in the US and India. Americas
Conference on Information Systems (AMCIS 2005), Omaha, Nebraska.

[VisTrails 2010] VisTrails. http://www.vistrails.org last retrieved June 28, 2010.

[von Hippel 2001] von Hippel, E. (2001). Innovation by user communities: Learning from
open-source software. MIT Sloan Management Review, 42(4): 82-86.

[von Hippel 2005] von Hippel, E. (2005). Democratizing Innovation. MIT Press,
Cambridge, MA.

[von Hippel, von Krogh, et al. 2003] von Hippel, E., and von Krogh, G. (2003). Open
Source Software and the “Private-Collective” Innovation Model: Issues for Organization
Science, Organization Science, 14(2): 209-223.

[Vortex-Winds 2010] Vortex-Winds, https://www.vortex-winds.org last retrieved June 28,
2010.

[Wasserman and Capra 2007] Wasserman, A. I. and Capra, E. (2007). Evaluating
Software Engineering Processes in Commercial and Community Open Source Projects.
First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS
'07), Minneapolis, MN.

172

https://www.vortex-winds.org/
http://www.vistrails.org/
http://www.unctad.org/en/docs/c3em21d2_en.pdf

Version of 29 November 2010

[Wasserman, Pal, et al. 2006] Wasserman, A. I., Pal, M., and Chan, C. (2006). The
Business Readiness Rating Model: an Evaluation Framework for Open Source. EFOSS
– Evaluation Framework for Open Source Software, Como, Italy.

[Weathersby 2007] Weathersby, J. M. (2007). Open Source Software and the Long
Road to Sustainability within the U.S. DoD IT System. The DoD Software Tech News,
10(2): 20-23.

[West and Gallagher 2006] West, J. and Gallagher, S. (2006). Patterns of Open
Innovation in Open Source Software. Chapter 5 in Open Innovation: Researching a New
Paradigm, Henry Chesbrough, Wim Vanhaverbeke and Joel West, eds., Oxford: Oxford
University Press: 82.

[Wheeler 2007] Wheeler, D.A. (2007) Open Source Software (OSS) in U.S. Government
Acquisitions, DoD Software Tech News, 10(2), June 2007.

[Wiggins and Crowston 2010] Wiggins, A. and Crowston, K. (2010). Reclassifying
Success and Tragedy in FLOSS Projects. Proceedings of the Sixth International Conference
on Open Source Software (OSS 2010), Notre Dame, IN.

[Wiggins, Howison, et al. 2009] Wiggins, A., Howison, A. J., and Crowston, K. (2009).
Heartbeat: Measuring Active User Base and Potential User Interest in FLOSS Projects.
Proc. Fifth International Conference on Open Source Software, Skövde, Sweden, Springer
Boston, vol. 299: 94-104.

[Willinsky 2005] Willinsky, J. (2005). The unacknowledged convergence of open source,
open access, and open science. First Monday, 10(8).

[Wimsatt. and Schank 2004] Wimsatt, W. and Schank, J. C. (2004). Generative
Entrenchment, Modularity and Evolvability: When Genic Selection meets the Whole
Organism, in Modularity in Development and Evolution, G. Schlosser and G Wagner,
(Eds.), University of Chicago Press, Chicago: 359-394.

[Wing, Hirsh, et al. 2008] Wing, J., Hirsh, H., Kannan, S., and Znati, T. (2008). “Dear
Colleague” Letter: Rethinking Software. National Science Foundation,
CISE. http://www.nsf.gov/cise/news/2008_09_rethink_soft.jsp (Accessed 28 June
2010).

[Weiner 1995] Weiner, J. (1995). The Beak of the Finch: A Story of Evolution in Our
Time, Vintage Press, New York.

173

http://www.nsf.gov/cise/news/2008_09_rethink_soft.jsp

Version of 29 November 2010

[Weiss, 2005] Weiss, D. 2005. “Measuring Success of Open Source Projects Using
Web Search Engines,” Proceedings of the First International Conference on Open Source
Systems, Genova, 11th-15th July 2005. Marco Scotto and Giancarlo Succi (Eds.), Genoa,
2005, pp. 93-99.

[Wennergren 2009] Wennergren, D.M. (2009). Clarifying Guidance Regarding Open Source
Software (OSS), MEMORANDUM Dated October 16 2009, DoD Chief Information Officer,
Department of Defense, Washington DC. http://cio-nii.defense.gov/sites/oss/ (last
accessed September 2010).

[Xu, Jones, et al. 2009] Xu, B., Jones, D. R., and Shao, B. (2009). Volunteers'
involvement in online community based software development. Information &
Management, 46(3): 151-158.

[Ye and Kishida 2003] Ye, Y. and Kishida, K. (2003). Toward an Understanding of the
Motivation of Open Source Software Developers. 25th International Conference on
Software Engineering (ICSE2003), Portland, OR, IEEE Computer Society: 419-429.

[Ye, Nakajoki, et al. 2005] Ye, Y., Nakajoki, K., Yamamoto, Y., and Kishida, K. (2005).
The Co-Evolution of Systems and Communities in Free and Open Source Software
Development In Free/Open Source Software Development, S. Koch (ed.), IGI Publishing,
Hershey, PA: 59-82.

174

http://cio-nii.defense.gov/sites/oss/

	Executive Summary
	Recommendations:

	 				Part I															The Science of FOSS
	Motivational Transformations
	Overview
	What are open source systems and what are FOSS systems?
	Where does FOSS Research belong?
	Why we need a national research program in FOSS systems
	FOSS exists as a high-impact socio-technical phenomenon on its own right
	FOSS system code and related artifacts can be accessed, studied, modified, archived, and redistributed by anyone
	FOSS is a technological “extremophile” in several domains
	FOSS system development is participatory and engages active user involvement
	FOSS development projects enable large-scale, domain-specific learning
	FOSS systems are an engine of innovation
	FOSS systems are transforming scientific research practice across disciplines
	FOSS development is helping to resolve outstanding problems in large-scale software engineering practice
	FOSS systems are transforming the global software and IT industries
	FOSS systems are transforming governments, society, and culture
	Many key FOSS system projects are U.S. led

	What have we learned so far about FOSS Systems? Observations on FOSS systems studies
	Where is the action? Areas and impacts for FOSS systems research

	 				Part II																	The Current State of FOSS
	FOSSD Processes, Practices, and Project Forms
	Overview
	Our scientific research goals
	The traditional view of software development processes, practices, and projects
	What are FOSS Development processes, practices, and projects and how do they differ from those traditional to Software Engineering?
	What else do we know about FOSS processes, practices, and project forms?
	Additional Research Opportunities for FOSSD and SE
	Conclusions

	Collaboration
	Overview
	Observation and Intervention
	Research Findings
	Collaboration among individual FOSS developers
	Collaboration among FOSS projects
	Collaboration among multi-project FOSS ecosystems
	Collaboration on a regional government or global scale

	Outstanding or Emerging Research Problems
	Contributor-Level Collaboration
	Project-Level Questions
	Collaborative structure and process
	New Users and Members
	Collaborative Infrastructure

	Cross-Cutting Concerns

	Conclusions

	Ecosystems
	Overview
	Characterizing Interaction Among Projects in a Software Ecosystem
	Interprocess Communication Among Projects in a Software Ecosystem
	Process Integration
	Process Conflict

	A Sample of FOSS Ecosystems
	Networked computer game ecosystems
	Scientific computing ecosystems for X-ray astronomy and deep space imaging
	World Wide Web ecosystems

	Research findings
	Effects of the broader ecosystem on FOSS projects
	Effects of FOSS on the broader ecosystem

	Open research questions
	Conclusions

	Evolution
	Overview
	What is missing?
	What do we currently know?
	What do we need to know?
	Evolution of FOSSD Processes, Practices and Project Forms
	Evolution of FOSSD Project Infrastructure
	Evolution of FOSSD Project Communities
	Evolution of FOSS Ecosystems
	Evolution of Licensing Arrangements

	Conclusions

	 				Part III																FOSS Data, Analytics, and Research Infrastructure
	A Research Infrastructure to Support New Science of Open Source Systems
	Overview
	Purpose of the New Infrastructure
	Examples of Research Infrastructures in Other Domains
	Benefits of a FOSS Research Infrastructure

	Building the Infrastructure
	Data collection
	Data curation and cleaning
	Metadata
	Data analysis
	Using the data and talking about the data
	Summary of Infrastructure Requirements

	Current Status of Infrastructure Requirements
	Challenges for the FOSS research infrastructure
	Conclusions

					Part IV																Broader Impacts of FOSS Research
	Broader Impacts Areas for Research in FOSS Systems
	Overview
	Software Development
	Education and Learning
	Innovation
	Science, Industry, and Government

	Recommendations for Action
	Recommendation 1: Stimulate investment in projects for scientific research and technology development that build FOSS systems as a way to stimulate workforce development.
	Recommendation 2: Create a new cross-cutting research program within the CISE Directorate that supports all aspects of FOSS systems research—FOSS development processes, work practices, and alternative project forms; collaboration in development and use of FOSS systems; FOSS ecosystems; and FOSS system evolution.
	Recommendation 3: Stimulate research in development and use of FOSS systems in other science research programs, health, energy, climate, defense, and National Engineering Challenge domains.
	Recommendation 4: Stimulate research in Gender and FOSS, and Collaboration and Diversity in FOSSD.
	Recommendation 5: Invest in and encourage cross-cultural studies of FOSS, especially in non-English cultures.
	Recommendation 6: Stimulate the research and development of FOSS systems for humanitarian aid and relief, especially those that provide opportunities for graduate, undergraduate, and secondary students to contribute.
	Recommendation 7: Stimulate existing research programs in Software Engineering, Human-Centered Computing, and Networking Technology and Systems to investigate and develop new approaches to the challenges of engineering FOSS systems and real-world systems that rely of FOSS.
	Recommendation 8: Establish and support shared research repositories for FOSS data as part of the new research infrastructure.
	Recommendation 9: Pursue development of advanced data analysis tools for examining FOSS data as part of the new FOSS systems research infrastructure.

	Contributors
	Acknowledgements
	References

