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Meeting background 
 
Under the auspices of the Network Science and Engineering (NetSE) Council, a small, 
invitation-only meeting was held in August 2008 just before ACM SIGCOMM in Seattle.  
Invitees included those with long standing involvement in NetSE and the predecessor 
GENI effort; those with interest and partial prior involvement; and representatives from 
NSF and the GENI Project Office.   A complete list of attendees is attached. 
 
The meeting was organized around five sessions on Architecture, Adaptability, 
Accessibility, Accountability and Edge/Enterprise Networks.  Each session consisted of 
1-2 talks of 15 minutes, followed by discussion.   
 
The Network Design and Engineering part of the NetSE intellectual space is relatively 
well trodden, as represented in the Research Plan produced by the Planning Group 
(editor: David Clark (and Scott?)) and the “Why We Dream of GENI” document written 
by Scott Shenker.  The focus of this meeting was to extract a small number of themes that 
best exemplify the research challenges and opportunities in the area.   
 
Themes 
 
Theme 1: Complexity of Requirements 
 
Exemplar question: Should a future Internet achieve five 9’s reliability?   
 
We have entered the age of the “ities” in system design, where performance requirements 
are augmented with other criteria such as security, manageability, adaptability, 
predictability. While it is easy to agree on the high level value of these criteria, it remains 
a significant challenge to figure out how to reflect them in design.  David Clark observes 
that the problem starts with the criteria themselves, which are not, in fact, requirements.  
Instead, they are a wish list of ill-defined properties.   Requirements are have-to-haves, 
while wishes are nice-to-haves; it is possible, even likely, that not all items on a wish list 
can be simultaneously satisfied.  The ill-defined nature of these properties limits our 
ability to make substantive progress, since we are lacking even common agreement and 
terminology about what we are trying to accomplish.   
 
Put in terms of the 5 9’s question, we cannot answer the question without understanding 
(1) what it means and (2) what it costs, in real dollars and in the possible sacrifice of 
other desirata such as universal access.   Neither of these is trivial. 
 
Intellectual opportunities abound.  [two versions below – one is statements and the other 
is questions – need to pick one or write a hybrid] 
 



How are high level desirata unpacked to reveal specific, well-formed requirements?  
Given a collection of specific requirements, are they expressed in minimal form (i.e., 
does any one subsume another)? Given a collection of specific requirements, are they all 
simultaneously achievable?  If not, which represent fundamental tradeoffs?  Which 
requirements are related and suggest a modularity in the system?  Can requirements that 
conflict be de-conflicted?  What are the specifications of the mechanisms a system should 
implement to achieve the requirements?  
 
Each high level criterion needs to be unpacked to reveal specific, well-formed 
requirements that are associated with the terminology. This process isn’t easy; 
requirements tend to get “slippery” when one attempts to make them precise.   After a 
collection of specific requirements have been identified, they must be considered in 
concert for interactions, both positive and conflicting.  Positive interactions between 
components suggest modularity in network design; conflicting interactions may reveal 
fundamental tradeoffs.   
 
 
Theme 2: Abundance of Technology 
 
Exemplar question:  How do we enable on-the-fly composition of network protocols 
across heterogeneous devices? 
 
In addition to a long list of criteria for networks, we are experiencing tremendous 
advances in the technologies available to help satisfy requirements.  The design space is 
rich and interesting and growing.  More computation and storage per data unit are 
available, enabling paradigms such as store-carry-forward in mobile networks, where 
packets are stored in intermediate nodes while waiting for contacts with other mobile 
nodes.  Programmability goes all the way down to the optical photon or radio-frequency 
waveform, making standards obsolete at the physical and medium-access-control layers 
and leading to the development of platforms such as software-defined radios.  Edge 
networks are increasingly heterogeneous.  Virtualization has decoupled physical and 
logical views of network resources and enabled unprecedented sharing. 
 
The current Internet architecture is able to leverage advances in technologies that line up 
well with Internet modularity – physical/MAC layer and application layer advances.  The 
current Internet has difficulty exploiting advances that do not fit well in the architecture 
and may violate design principles such as a common narrow waist, and sharply change 
the application of other principles such as the end-to-end argument.  Greater processing 
and storage capabilities inside the network are both advances that have difficulty fitting 
into the Internet’s modularity.    
 
Programmability down to the physical layer suggests an essentially unlimited design 
space for networks.  At the extreme, a network could be custom programmed, on-the-fly 
and based on current conditions, for every invocation of an application.  How should this 
design space be explored?  How should a software-driven network be modularized? 
 



Similarly, sharply increased storage capabilities in the network – indeed, along any path 
in the network – offers the possibility that anyone can cache anything in the network and 
the challenge of how to use this richness of storage space to maximum effect.  If we 
pollinate this semi-infinite in-network cache with the idea of on-the-fly, custom protocols 
from the previous paragraph, we find challenges in reconciling shared in-the-network 
caches with individualized protocol suites.  Are these two concepts in conflict?  Or are 
they pointers to a radical revision of how we modularize data networks? 
 
Pushing these issues one step further, we can see the potential for truly disruptive 
technologies in our future.  For instance, suppose quantum computers actually start to 
work? Quantum computing is a disruptive technology for networks, potentially rendering 
obsolete the most frequently used mechanisms for network security while simultaneously 
demanding new types of networking technology (quantum repeaters) to enable distributed 
quantum computation.  How should future networks plan for disruptive technologies?   
 
Theme 3: Need for Experimentation 
 
It is well understood that experimentation, together with analysis and simulation, is a 
critical tool for understanding how to build good systems.  Experimentation can reveal 
behavior that was previously unanticipated by analysis and simulation, where reality is 
always modeled with some approximations.  Experimentation assists in the creation and 
refinement of models that, when well constructed, can lead to better analysis and 
simulations.  Experimentation is not a panacea; indeed, the design of good experiments 
can be as challenging as the design of good systems.    The challenges of good 
experimental design increase as the scale of the experiment increases, and our field would 
benefit from more science to add to the art of experimentation. 
 
Experimentation is useful at many scales, from small in-the-lab experiments to Planet-lab 
scale experiments that utilize geographically distributed endpoints and wide-area paths.   
 
The trend in programmability has as its limit the ability to change the network, from top 
to bottom, on the time scale of software compilation.  This has two important 
consequences for experimentation.  First, this rapid idea-test cycle could lead to a 
paradigm shift in the speed and style of innovation both in the research lab and in the 
commercial innovation sector.  A low bar for large-scale experimentation can also mean a 
low bar for large-scale innovation.   Second, full programmability produces a huge design 
space.  The ability to experiment with point solutions in that large design space is 
essential for developing an understanding of the space.  



Meeting Agenda 
 
Session 1: Architecture 
 
 
4-6pm  Session 1: Architecture 
  What are the challenges and opportunities in future network 
  architectures? 
  Talk 1 – David Clark 
  Talk 2 – Craig Partridge 
  Discussion 
 
6:00pm Break  
 
6:30-8pm Dinner and Session 2: Adaptability 
  How can future networks adapt to changes in technology, applications 
  and use? 
  Talk – Jen Rexford 
  Discussion 
 
Day 2: Monday, August 18th 
 
8-9am  Breakfast 
 
9-10:30am Session 3: Accessibility 
  What are the design considerations for making networks and 
   their information widely available and accessible? 
  Talk – Nick Feamster 
  Discussion 
 
10:30-11am Break 
 
11-12:30pm Session 4: Accountability 
  What accountability primitives belong in networks?   
  Talk – David Andersen 
  Discussion 
 
12:30-1:30pm Lunch 
 
1:30-3pm Session 5: Enterprise Networks 
  How are edge networks changing? 
  Talk – Amin Vahdat 
  Discussion 
   
3-4pm  Meeting wrap-up 
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Ellen Zegura, GT 



My notes – DELETE AT THE END!!! 
 
Free form writing:  Our field has always benefited from experimentation.  Experiments 
complement analysis.  Experiments are essential for developing models that may make 
future experiments unnecessary.  We convert our experimental observations into theories.  
Experimentation fills the gap between theory and reality.  “Then a miracle occurs” is 
replaced by  “then an experiment occurs”.   A very large design space benefits from 
exploration of point solutions – guy with a machete in unchartered territory.  
Experimentation for research purposes and experimentation for deployment purposes can 
be indistinguishable.  That’s a great thing – innovation at the speed of grad student or -
entrepreneur compilation.  We will ever reach a point where we can go from analysis to 
real system, working just as anticipated?  Maybe.  Should we try to do this?  Sure.  What 
are examples?  Electrical circuit design, from VHDL to silicon?   Complex systems 
always involve unchartered territory.  Need to be able to explore easily to jump start and 
understand limits of models.  Pattern – new phenomenon, experiments, formalisms, more 
experiments, …  Build-learn-build-learn-build-deploy.  Supporting innovation is the 
same as supporting experimentation (true??).   
 


