
The Crowdsourcing Compiler

Michael Kearns
University of Pennsylvania

modern programming

•  specify broad control and data structures
•  don’t worry about:

–  memory management/allocation/reuse
–  primary/secondary/tertiary
–  loop optimization
–  parallelization, cluster management

•  don’t need to know much about how computers “really” work

imagine a high-level programming language…

•  much like those of today
•  but with built-in functionality for social computation
•  e.g classifying objects, making predictions/decisions, optimization/search
•  perhaps even in the physical world (e.g. taskrabbit, uber)

…whose compiler would decide:

•  human or machine?
•  sequential or parallel?
•  incentives: payment (subject to budget), entertainment, prestige, purpose,…
•  individuals or groups?
•  structure, organization, communication
•  coverage/overlap
•  toy problem: collective short-term memorization
•  sample instantiation: Emery Berger’s AutoMan at UMass; others?

hard questions

•  what should the “components” look like?
•  what should their “operating characteristics” or specs look like?
•  will heterogeneity of “hardware” kill this whole idea?
•  is the whole idea just too creepy to contemplate?

