Toward a goal of understanding the mind

Naomi Feldman
University of Maryland

December 4, 2014
Language in the mind

- How to learners acquire speech sound categories?
- How do listeners perceive speech in noisy situations?
- How do listeners represent the speech they hear?

- Higher-level questions about grammar, discourse, etc.
A common approach

- Behavioral and neural data from humans in the lab
- Cognitive model of the phenomenon being studied

measurements from the lab
A recurring theme in cognition

Well-designed systems are tuned to fit their environment

“emergent” “optimal” “data-driven”
(neural modeling) (cognitive science) (computer science)
A recurring theme in cognition

Well-designed systems are tuned to fit their environment

“emergent” (neural modeling) “optimal” (cognitive science) “data-driven” (computer science)

To understand the mind, we need to study the environment
Understanding the mind

From cognitive/brain science

- Behavioral and neural data from humans in the lab
- Cognitive model of the phenomenon being studied

measurements from the lab
Understanding the mind

From computing/engineering
- Collections of data from the environment (e.g., corpora)
- Features that help systems generalize from those data

From cognitive/brain science
- Behavioral and neural data from humans in the lab
- Cognitive model of the phenomenon being studied
“Big data for cognitive science”
- Jimmy Lin
An example from language

How is speech represented?

- Dynamic signal that’s changing continuously
- Contains information in both frequency and time

Supported by NSF BCS-1320410
Developing representations

Speech perception becomes tuned to the native language

(Werker & Tees, 1984; Kuhl et al., 1992)
Developing representations

Speech perception becomes tuned to the native language

6-8 months: discriminate non-native consonant contrasts

10-12 months: poor discrimination of non-native consonant contrasts

(Werker & Tees, 1984; Kuhl et al., 1992)
Developing representations

Speech perception becomes tuned to the native language

6 months: some language-specific perception of vowels
6-8 months: discriminate non-native consonant contrasts
10-12 months: poor discrimination of non-native consonant contrasts

(Werker & Tees, 1984; Kuhl et al., 1992)
Representation matters

People are much better than speech recognition systems at generalizing from the data they hear
Representation matters

People are much better than speech recognition systems at generalizing from the data they hear.

Non-native listeners often fail to perceive unfamiliar phonetic distinctions.
How is speech represented?

From computing/engineering
- Speech corpora from many different languages
- Effective methods for representing the speech signal

From cognitive/brain science
- Extensive data from human listeners
- Cognitive models of language acquisition and processing

characteristics of the environment → measurements from the lab
How is speech represented?

Cognitive model that connects distributions of sounds in the input to performance on a laboratory task

(Feldman et al., 2009)
How is speech represented?

Different representations imply different input distributions

Speech Representation 1

Speech Representation 2

“same” or “different”?

listeners’ performance on a discrimination task

Which representations best predict human discrimination data?
Speaker normalization

![Graph showing log likelihood vs number of dimensions. The graph compares unnormalized and normalized data. The x-axis represents the number of dimensions, while the y-axis shows log likelihood values ranging from -1,800 to 0. The graph includes two lines: one for unnormalized data and another for normalized data.](Richter et al., in prep)
A central role for the mind

From computing/engineering
- Collections of data from the environment (e.g., corpora)
- Features that help systems generalize from those data

From cognitive/brain science
- Behavioral and neural data from humans in the lab
- Cognitive model of the phenomenon being studied
Benefit to cognitive science

- Ecological validity for evaluating hypotheses about cognitive representations of speech
- Engineering tools provide hypotheses and insights regarding cognitive representations
 - Methods for normalizing across speakers (Wegmann et al., 1996)
 - RASTA is essentially an edge detector for speech (Hermansky & Morgan, 1994)
Benefit to engineering

- Speech representations that yield good performance on speech recognition tasks also predict human data best (Richter et al., in prep)

- Can cognitive models of phonetic learning improve zero-resource speech recognition systems that learn representations from unlabeled data?
Connections to neuroscience?

- Existing data on neural activity in when listening to speech (e.g., Mesgarani et al., 2014; Näätänen et al., 1997; Toscano et al., 2010)

- Use neural data to investigate relationships between neural activation patterns and cognitive representations
 → How do feature representations relate to neural activations computed from the same stretch of speech?