Workshop on Extensible Distributed Systems

Security Panel

Geoffrey M. Voelker January 21, 2015

(Coming from Cybercrime)

Security Ramblings

- Large-scale pervasive distributed systems
 - Vision is incredible
 - Security is incredibly scary
- Who wants to attack pervasive systems?
 - Not just how a system can be hacked, but why
- End with a laundry list of thoughts/challenges
 - And by "challenges", I mean questions

Researchers

- Automobiles, voting machines, pacemakers, airplanes, cameras, ...
- Unless a system receives security pressure, it is going to be more vulnerable
 - Research applies that pressure before attackers
 - ("Experimental Security Analysis of a Modern Thermostat")
- How to experiment with devices? (pacemakers...)
- How to navigate issues on reverse engineering?
- How to fund?

Profiteers

- How will people profit from hacking pervasive devices?
 - Target (oh so ironically named) a good example
 - (Thermostat? Hmm, how can an attacker monetize?)
- Can we proactively/predictively use lessons learned from existing cybercrime activity?

Tracking/Surveillance

- Industry and government
- Pervasive devices → Unprecedented ability to track what people do, when, where, etc.
 - Google knows what you browse
 - LG knows what you watch
 - Sears knows what's in your fridge
- How to reason about privacy when everywhere you go, everything you do is logged?
 - Medical devices alone are a compelling domain

Nation State

- Tracking and surveillance
- Disruption
- Cyberwarfare
- Censorship
- Adding pervasive systems into the picture only makes the situation worse
- How do you secure pervasive systems when the adversary has the deep pockets of a national government?

Challenges

- Fault tolerance & security: Chocolate & peanut butter?
 - FT a hallmark of distributed systems
 - How can security take advantage of redundancy, failure detection, etc., that distributed systems provide so well?
 - (And vice-versa: anomalies as failures)
- Detecting attacks
 - Run anti-virus on every device? (Norton ToasterAV)
 - Run IDS on every embedded network? (CarBro)
 - Is there a more holistic approach incorporating information across devices, networks? (ADT Cyber)
 - » Take advantage of pervasive to improve security/privacy?

More Challenges

- Devices/systems will be hacked
 - How to respond?
 - » May not be able to update devices (e.g., cars)
 - Safety becomes a real issue (medical devices)
 - » Tend not to consider in typical Internet security
- How to get pervasive device ecosystem to adopt security practices?
 - (Which we can't even get traditional platforms to adopt)
 » (Amazes me that we don't use CFI, XFI, etc.)
 - Ray of hope: PL, formal verification finally ready?

Even More Challenges

- Human factors: Usability, understandability, flexibility
 - How do users define/select security, data policies?
 - Medical devices particularly challenging
 - » Private but for authorized access (doctor, nurse)...but also emergency access override (EMT)...insurance gets access?
- Security metrics (sorry, makes me cringe, too)
 - How do we quantify whether security is better?
 - (Price of commodities on underground markets...)

Grand Challenge?

- "... an exa-op data center that consumes no more than 10 megawatts (MW), a peta-op departmental server that consumes no more than 10 kilowatts (KW), a teraop portable device that consumes no more than 10 watts (W), and a giga-op sensor system that consumes no more than 10 milliwatts (mW)." [Hill]
- Can we articulate a similar grand challenge in terms of security?