### Panel on Uncertainty

Peter M. Chen Andreas Haeberlen Z. Morley Mao Ratul Mahajan

# **Opening statements**

- Andreas
- Peter
- Morley
- Ratul



 Distributed systems have always had to deal with some uncertainty

# What is changing?

 Prediction: The next generation of distributed systems will need to grapple with a greater degree of uncertainty than systems today

#### Where will this uncertainty come from?

- Trend: New models that sacrifice accuracy or determinism to get better speed, or to save energy
- Trend: More sensors, but cheaper ones → Input quality degrades
- Trend: Mobility and wireless links are becoming the common case rather than the exception

### Trend: MAD distributed systems



- The very notion of what constitutes a distributed system is changing
  - Result: Uncertainty in the very fabric of the system
  - Parts of the system might misbehave, collude, wander off, ...

# Challenge: Interfaces

#### Should systems expose uncertainty?

- Option: Work hard to mask uncertainty whenever possible
- But: In the 'offline world', we deal with uncertainty every day
- Analogy to Butler Lampson's "Computer Security in the Real World"?

#### If so, how?

- Simplest approach: Show confidence intervals
- Could (some) systems be allowed to 'be wrong' sometimes, especially if they fix problems quickly?

# Challenge: Good abstractions

### So far, solutions tend to be very specific

- Example: Confidence intervals for timing
- Doesn't work for many apps, or for other kinds of uncertainty
- Can we find abstractions that work for larger classes of distributed systems?
- Can we have a toolbox of useful mechanisms for dealing with uncertainty?
  - Examples: Speculation, secure provenance, accountability, ...



- If we treat uncertainty as a 1st-class citizen...
- can we build better systems?
  - Example: Google's Spanner system [OSDI'12]
  - Exposes timing uncertainty  $\rightarrow$  global, consistent database
- can we enable interesting tradeoffs?
  - Example: Approximate computing
  - Maybe also less restrictive/expensive security?
- can we obtain surprising new properties?
  - Example: Use of uncertainty in differential privacy

# **Opening statements**

- Andreas
- Peter NEXT
- Morley
- Ratul

### Uncertainty is a certainty

- Old sources of uncertainty: imprecise knowledge of the future
  - Failures
  - Intrusions
  - Bugs
  - Timing of concurrent accesses
- New sources of uncertainty: imprecise knowledge of the present
  - Approximate hardware
  - Fuzzy sensors
  - Approximate queries

### Case study: concurrency control

### Prevent/reduce uncertainty

- Acquire mutex
- Mask uncertainty
  - Optimistic concurrency control
  - Detect bad events and recover
- Expose uncertainty
  - Conflict exceptions

### Some research questions

- How to estimate uncertainty as it enters the system?
- How to track uncertainty as it propagates through the system?
- How to estimate uncertainty as it is computed on?
- How to represent uncertainty and uncertainty bounds?
- How to cheaply detect when uncertainty exceeds allowable bound?
- How to support distributed rollback due to uncertainty errors?
- Who is responsible for handling uncertainty?
- How to communicate uncertainty in the interface between system and applications?

# **Opening statements**

- Andreas
- Peter
- Morley NEXT
- Ratul

### Uncertainty is inevitable

Proprietary systems, unknown configurations

- E.g., Load balancing algorithms in a middlebox are proprietary
- E.g., Network configurations are not exposed
- Specifications (RFCs) leaving out details
  - Many variants of the TCP protocol
- Difficulties in modeling user behavior
  - Unknown workload

### How to address uncertainty?

#### Our models can be inaccurate

- It's OK, we don't rely on them for correctness, but only for performance optimization
- For security, we need to be conservative, i.e., not make assumptions that may not hold.

#### Conservatively assume the worst scenario

- Build into the system ways to deal with uncertainty, e.g., variable network conditions
- Do not rely on modeled behavior
- Explore the tradeoffs of directly addressing the uncertainty or optimistically assuming the most common behavior

### Examples

- Radio resource allocation behavior differs across cellular carriers
  - Need an abstraction to identify these differences to support efficient data scheduling.
- Malicious mobile apps may exploit side channels to violate user privacy
  - Impose the policy to actively prevent un-trusted apps from running in the background.

# Questions for discussion

- What are the current approaches to deal with uncertainty? What are their limitations?
- How do we model uncertainty as a part of our design? (e.g., leverage robust optimization)
- Can security solutions for dealing with broad attack surfaces be used to address uncertainties?
- How do we measure/characterize/quantify uncertainty?

# **Opening statements**

- Andreas
- Peter
- Morley
- Ratul

# Uncertainty

Ratul Mahajan Microsoft Research

#### Failed attempt at a taxonomy

| Type of uncertainty | Applicable techniques |
|---------------------|-----------------------|
| Input (workload)    | Build models          |
| Output              |                       |
| Processing          |                       |
| Control             |                       |
| System state        |                       |
| •••••               |                       |

#### Control uncertainty

Delays or failures in devices implementing commands

Two general (?) techniques for fast, robust control

- Absolute commands
- Planned transitions (optimization)

#### Uncertainty in system state

What the system state is right now or will be in the future

- Changes from "below"
- Application interaction and conflicts

Two general (?) techniques for reducing uncertainty

- Continuous polling of complete state
- "Don't care" state or multiple acceptable outputs

### Chaining uncertain inferences

Applications can handle uncertainty in domain-specific manner but chaining is problematic

General (?) techniques for reducing uncertainty

### Discussion: Help fill this

| Type of uncertainty | Applicable techniques |
|---------------------|-----------------------|
| Input (workload)    | Build models          |
| Output              |                       |
| Processing          |                       |
| Control             |                       |
| System state        |                       |
|                     |                       |