

Information Management for Wearable Cameras

Vitaly Shmatikov, Cornell Tech Sanjeev Khudanpur, JHU Yaser Sheikh, CMU Greg Hager, CCC/JHU

The Backdrop: Prior Roundtable

Video Analysis for Body-worn Cameras in Law Enforcement

Jason J. Corso, University of Michigan Alexandre Alahi, Stanford University Kristen Grauman, University of Texas at Austin Gregory D. Hager, Johns Hopkins University, CCC Louis-Philippe Morency, Carnegie Mellon University Harpreet Sawhney, SRI Yaser Sheikh, Carnegie Mellon University

http://cra.org/ccc/wp-content/uploads/sites/2/2015/01/CCCWhitepaperonBodyCamerasinLawEnforcement.pdf

Information Flow

Challenges: Collection

- Integrity protection and tamper resistance
- Source authentication
- Policy compliance

Challenges: Storage

- Access control
- Integrity protection and tamper resistance, chain of custody verification

- Authorized deletion
- Uncircumventable audit trail
- Untrusted third-party storage services
- What is the trust model?

Challenges: Retrieval

- Depends on use cases
 - Courtroom evidence
 - FOIA request
 - Internal affairs investigation
 - Response to a bias accusation
- Many technology issues
 - Query policies; searching + encryption; etc.

Protection Technologies

- Encryption, integrity hashes, access control
 - Strong guarantees but limited policy support
- Sandboxing
- Content modification
 - Redaction, de-identification
 - Typically no provable guarantees

Need to understand threats and use cases

Enabling Technologies: Audio

- Audio segmentation and labeling
 - speech, music, natural sounds, artificial noises, ...
- Speaker Recognition: speaker identity (SID) from audio
 - Verification: 1 known v/s 1 questioned: same/ different?
 - Identification: Several known v/s 1 questioned
 - Similarly, gender, language and dialect recognition
- NIST benchmark tests for SID are conducted biennially
 - Controlled audio (broadcast, telephone)
 - Include forensically motivated scenarios (FBI, USSS)
 - Typically better than human performance with limited sample durations, yet not up to evidentiary standards

Content-Based Audio Search: E.g. keyword search for PII in speech

Content-Based Audio Search: State-of-the-Art and Challenges

NIST benchmarks

- Metrics minimize weighted average of false alarms and missed detection
- New metrics may be needed for different use-cases (training, PII removal, FOIA)
- New search modalities may need to be supported
 - Query by example "find more instances of this"
 - Non-linguistic queries (e.g. gunshot, dog barking)
 - Paralinguistic queries (e.g. raised voice, scream)
 - Specific/Known individuals (speaker recognition)

Masking Identities in Audio

Audio redaction:

- Off-camera voices, not just visible persons
- Accurate speaker recognition will be critical
- Typical SID metrics may be inadequate
- Content-preserving voice conversion:
 - Still in its infancy (mainly for spoofing SID)
 - Preserving paralinguistic cues unstudied
 - Identity "leak" due to idiolect always a risk

Opportunities for Training & QA

- (Semi-)Automatic tools could be created to
 - Locate an officer's interactions with
 - Members of the public or other officers
 - Of different race/gender/rank/unit
 - Characterize the interaction and dialog-flow
 - Evaluate adherence to policies and protocols
 - Detect positive and adverse interactions
 - Support <u>personalized officer training</u> programs
- Requires creation of annotated datasets
 - Datasets have <u>tremendous</u> long-term value

Enabling Technologies: Video

Semantic Scene Understanding from Video

- Object detection
- Face and body tracking
- Affordance understanding
- Reaching human performance in some tasks

3D Scene Reconstruction from Video

- Localize the user in 3D
- Localize objects relative to one another
- Determine camera/user motion in the scene

Major Research Opportunity: Search Opportunities in Video

- Sketch-based event retrieval: Draw relative position of people
- Activity-based event retrieval: e.g., Handshakes, shoving, chases
- Scene-based retrieval: e.g., parking lots, schools, shopping areas
- Person/Group specific retrieval:

Emerging focus on body worn cameras

- Lack of standardized datasets
- Lack of benchmarks and use cases
- Rapidly maturing low-level visual analysis tools (reconstruction+recognition)

Video Deidentification

Standard Approaches

(c) Pixelation

(d) Bar Mask

(e) Negative

(a) Original

Standard methods

- destroy information about head pose and gaze
- destroy information about driver behavior (e.g., facial expression)

Can we retain event information while removing personal identifiers?

Slide credit: Fernando De la Torre

De-identification: Face replacement

Video credit: Fernando De la Torre

De-identification: Face replacement

Advances in Body Tracking

Body Worn Cameras : Challenges

- Closed and proprietary versus open and standardized platforms
 - Current bodycam acquisition and storage is closed/ proprietory
 - Means it is difficult to pull and share data from these systems
 - Need to cultivate an open ecosystem of development around these platforms.
- Bootstrap development with curated video
 - Data drives development in experimental research communities
 - Sources of such curated bodycam video unavailable
 - Multimodal labeling correlating audio and video is critical to success

Summary

- Well structured data sets will allow research and commercial communities to engage
- Clearly described use-cases necessary to define problems and metrics
- Partnership models with existing funding programs could leverage ongoing work into this area
- Annual meetings around benchmarks define community and progress