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Overview	
	
On	June	7,	2016,	the	Computing	Community	Consortium	(CCC)	and	Association	for	the	
Advancement	of	Artificial	Intelligence	(AAAI)	hosted	a	roundtable	discussion	on	Artificial	
Intelligence	for	Social	Good.	The	following	response	is	a	summary	of	the	roundtable	
discussions.	A	more	thorough	report	will	be	published	by	the	CCC	later	this	summer,	and	
available	at	http://cra.org/ccc/resources/ccc-led-whitepapers/.	The	remainder	of	this	
document	is	organized	into	a	brief	recitation	of	discussions	for	the	four	areas	discussed	in	
the	workshop,	followed	by	some	cross-cutting	observations	and	recommendations.	
	
AI	for	Urban	Environments	
	
The	urban	computing	workshop	session	focused	primarily	on	transportation	networks,	the	
goal	being	to	use	AI	technology	to	improve	mobility.	However,	transportation	can	be	
viewed	as	a	concrete	example	of	a	service	industry	which	is	very	likely	to	be	transformed	
over	the	coming	decade	by	AI	technologies.	Time	spent	commuting	to	school	or	to	work	is	
time	not	spent	studying	or	with	one’s	family.	Lack	of	transportation	reduces	access	to	
preventative	healthcare,	easy	access	to	supermarkets	with	healthful	food	is	highly	
correlated	with	obesity	(and	hence	heart	disease,	diabetes,	etc.)	and	easy	access	for	people	
to	standard	bank	accounts	is	costly.	AI	technology	has	the	potential	to	significantly	improve	
mobility,	and	hence	substantially	reduce	these	and	other	inefficiencies	in	the	market.	
Technology	exists	that	can	mobilize	people	who	have	been	immobile;	to	increase	
flow/decrease	congestion;	and	autonomous	vehicles	have	the	potential	to	decrease	
emissions.	The	easier	it	becomes	for	people	to	move	about,	the	more	vibrant	our	urban	
areas	will	be;	likewise,	the	more	fruitful	the	social	and	economic	interactions	that	take	
place	inside	them	will	be.	
	
Ubiquitous	connectivity	and	instrumentation	are	enabling	us	to	measure	things	that	were	
previously	unmeasurable.	We	can	now	collect	information	about	individuals’	travel	
patterns,	so	that	we	can	better	understand	how	people	move	through	cities,	thereby	
improving	our	understanding	of	city	life.	AI	technology	can	then	be	leveraged	to	move	from	
descriptive	models	(data	analytics)	to	predictive	ones	(machine	learning)	to	prescriptive	
decisions	(optimization,	game	theory,	and	mechanism	design).	The	potential	of	this	
transformation	is	being	demonstrated	in	pilot	systems	that	optimize	the	flow	of	traffic	
through	cities,	and	in	new	on-demand,	multi-modal	transportation	systems.	It	is	now	
within	the	realm	of	AI	technology	to	optimize	traffic	lights	in	real	time,	continuously	
adapting	their	behavior	based	on	current	traffic	patterns	(Smith,	2016);	and	to	dispatch	
fleets	of	small	vehicles	to	provide	on-demand	transportation,	address	the	“first	and	last	
mile”	problem	that	plagues	many	urban	transit	systems	(Van	Hentenryck,	2016).	More	
pilot	deployments	are	needed	to	fully	understand	the	scope	of	the	transformation	that	is	
under	way	in	our	cities.	



	
In	spite	of	the	significant	promise,	many	challenges	lie	ahead	before	these	new	
opportunities	can	be	fully	realized.	Transportation	systems	are	complex,	socio-technical	
systems	that	operate	over	multiple	spatial	and	temporal	scales.	It	is	critical	that	we	scale	up	
existing	pilots	to	multi-modal	transportation	models	--	incorporating	pedestrians,	bicycles,	
cars,	vans,	and	buses	--	so	that	we	can	begin	to	understand	how	these	models	will	impact	
big	cities.	Fundamental	to	this	effort,	it	is	crucial	that	we	understand	the	human	behavioral	
changes	that	new	forms	of	mobility	will	induce,	and	the	impact	those	behaviors	will	have	
on	the	efficacy	of	our	system.	
	
Sustainability	
	
Sustainability	can	be	interpreted	narrowly	as	the	conservation	of	endangered	species	and	
the	sustainable	management	of	ecosystems.	It	can	also	be	interpreted	broadly	to	include	all	
aspects	of	sustainable	biological,	economic,	and	social	systems	that	support	human	
wellbeing.	In	this	panel,	the	discussion	focused	primarily	on	the	ecological	component,	but	
the	larger	issues	of	social	and	economic	sustainability	must	be	considered	as	well.	
Automated	data	collection	systems	develop	and	deploy	sensor	networks	(e.g.	Trans-Africa	
Hyrdo-Meteorological	Observatory;	www.tahmo.org),	camera	traps	to	collect	image	or	
acoustic	data,	or	unmanned	aerial	vehicles	to	obtain	video	imagery.	AI	algorithms	are	
applied	to	optimize	the	locations	of	these	sensors	and	traps.	Crowd-	sourcing	and/or	
employing	technically-trained	people	to	collect	data,	such	as	the	freshwater	stream	surveys	
conducted	by	the	EMAP	project	(https://archive.epa.gov/emap/archive-
emap/web/html/),	are	being	married	with	computer	vision	methods	as	another	hybrid	
method	of	data	collection.	
	
Techniques	from	data	mining,	statistics,	and	machine	learning	are	used	to	discover	trends	
and	fit	models.	Such	models	can	predict	migration,	dispersal,	reproduction,	and	mortality	of		
species.	Virtually	every	ecosystem	management	problem	combines	an	ecological	model		
with	an	economic	model	of	the	economic	costs	and	benefits	of	various	policy	outcomes.	
Examples	include	the	design	of	a	schedule	for	purchasing	habitat	parcels	to	support	the		
spatial	expansion	of	the	Red	Cockaded	Woodpecker	(Sheldon,	et	al.,	2010;	Sheldon,	et	al.,	
2015),	and	the	use	of	detailed	bird	migration	models	developed	by	the	Cornell	Lab	of	
Ornithology	to	rent	rice	fields	in	California	(Nicol,	et	al.,	2015).	Algorithms	for	computing	
these	policies	combine	ideas	from	network	cascade	analysis	(maximizing	spread	in	social	
networks)	with	techniques	from	machine	learning,	AI	planning	and	decision-making,	and	
Monte	Carlo	optimization.	Finally,	the	PAWS	project	(Fang,	et	al.,	2016)	applies	AI	
algorithms	for	game	theory	to	optimize	the	patrol	routes	of	game	wardens	in	order	to		
maximize	their	deterrent	effect	while	minimizing	costs.	
	
A	major	challenge	for	the	medium	term	is	to	develop	methods	that	can	collect	and	model	
data	encompassing	a	broad	range	of	species	at	continental	scales.	A	related	challenge	for	
current	modeling	efforts	is	that	they	generally	assume	stationary	(steady-state)	climate,	
land	use,	and	species	behavior	whereas	the	real	systems	are	experiencing	climate	change,	
rapid	economic	development,	and	continuing	evolution,	dispersal,	and	natural	selection	of	



species.	Furthermore,	as	the	scale	of	policy	questions	grows,	it	is	no	longer	possible	to	
focus	only	on	the	biological	components	of	a	system.	Instead,	one	must	incorporate	models	
of	social,	cultural,	and	economic	activity.	Finally,	sustainability	hot	spots	are	often	located	
in	developing	countries.	Issues	that	arise	include	poor	networking	infrastructure,	little	
access	to	high-performance	computing	resources,	lack	of	local	personnel	with	sufficient	
education	and	training,	and	persistent	corruption.	
	
In	the	longer	term,	we	must	confront	the	fact	that	the	long	term	behavior	of	ecological,	
economic,	and	social	systems	is	radically	uncertain.	How	can	artificial	intelligence	methods	
deal	with	the	uncertainty	of	these	“unknown	unknowns”?	When	formulating	and	
optimizing	management	policies,	we	should	adopt	risk-sensitive	methods.	This	is	an	active	
area	of	research	(see,	e.g.,	Chow,	et	al.,	2015),	and	much	more	work	is	needed	to	
understand	how	we	can	ensure	that	our	models	are	robust	to	both	the	known	unknowns	
(as	in	traditional	risk	management	methods)	and	the	unknown	unknowns.	
	
Healthcare		
	
AI	is	well-positioned	to	have	a	broad	and	sustained	impact	on	many	aspects	of	healthcare.	
Social	media	analytics	is	emerging	as	an	alternative	or	complementary	approach	for	
instantly	measuring	public	health	at	large	scale	and	with	little	or	no	cost.	The	nEmesis	
system,	for	example,	helps	health	departments	identify	restaurants	that	are	the	source	of	
food-borne	illness	(Sadilek	et	al.	2016).	Decision	support	in	a	clinical	environment	is	a	
second	important	area.	The	Surgical	Critical	Care	Initiative	(SC2i),	a	Department	of	Defense	
funded	research	program,	has	deployed	two	clinical	decision	support	tools	(CDSTs)	to	
realize	the	promise	of	precision	medicine	for	critical	care	(Belard	et	al.	2016).	The	invasive	
fungal	infection	CDST	was	deployed	in	2014	to	assist	military	providers	with	treatment	
decisions	both	near	point	of	injury	and	at	definitive	treatment	centers.	The	massive-
transfusion	protocol	(MTP)	CDST	is	currently	being	assessed	under	a	two-year	clinical	trial	
at	Emory-Grady,	one	of	the	two	SC2i	civilian	hospitals.	Automated	real-time	surveillance	
tools,	operating	from	the	electronic	health	record,	identify	individuals	at	risk	for	severe	
sepsis	and	septic	shock	at	the	early	stages	of	decline,	and	much	earlier	than	standard	of	
care	(Henry	et	al.,	2015).	
	
Opportunities	in	this	space	include:	
	
Targeted	therapy	decisions:	Many	chronic	diseases	are	difficult	to	treat	because	of	high	
variation	among	affected	individuals.	Computational	subtyping,	for	example,	seeks	to	refine	
disease	definition	by	identifying	groups	of	individuals	that	manifest	a	disease	similarly		
(Saria	&	Goldenberg,	2015)	(Collins,	2015).	These	subtypes	can	be	used	within	a	
probabilistic	framework	to	obtain	individualized	estimates	of	a	patient’s	future	disease	
course	(Schulam	&	Saria,	2015).	
	
New	sensors,	new	healthcare	delivery:	AI	can	be	used	to	analyze	social	media	data	and	
discover	and	suggest	behavioral	and	environmental	impacts	on	health	--	e.g	tracking	
influenza	or	quantifying	alcohol	and	drug	abuse	in	communities.	Social	networks	can	also	
be	used	to	address	the	informational	and	psychosocial	needs	of	individuals	and	the	



opportunity	for	cost-effective	interventions	for	addressing	mental	health,	addiction,	and	
behavioral	health	issues	using	modern	low	cost	sensing	technologies.	Low	fidelity	sensors,	
some	of	which	are	diagnostic,	together	with	AI	and	internet	technologies	can	enable	low	
barrier	telemedicine	for	example	for	chronic	healthcare.	Advances	in	natural	language	
processing	and	machine	reading	can	be	used	to	synthesize,	integrate	and	appropriately	
disseminate	new	medical	knowledge	(e.g.,	as	reported	in	journal	articles).	
	
Pivoting	from	personalized	medicine	to	personalized	health	will	keep	people	from	going	to	
the	hospital	in	the	first	place,	and	dealing	with	life	issues	and	not	just	specific	disease.	For	
this,	we	need	to	move	to	modeling	of	the	health	of	individuals	and	populations	by	using	
integrated	data	sets---	electronic	health	records	data	and	other	data	gathered	within	the	
health	system	with	genomic,	socio-economic,	demographic,	environmental,	social	network	
and	social	media	and	other,	non-traditional	data	sources,	such	as	social	service	and	law	
enforcement	data.	
	
Collaborative	Decision-Making	approaches	that	allow	decision	makers	to	reason	with	
models	of	the	health	of	individuals	are	needed.	For	example,	can	a	healthcare	provider	ask	
how	would	a	health	trajectory	change	if	the	individual	was	being	treated	with	two	different	
drugs?	
	
Challenges	include:	1)	addressing	Bias	that	arises	in	fitting	models	from	observational	
health	data	sources;	2)	privacy	and	security	methods	that	support	work	with	data	in	a	way	
that	both	sustains	its	utility	while	the	decisions	and	outcomes	of	working	with	the	data	do	
not	reveal	information	about	individuals	is	essential;	3)	incentive	alignment	
to	encourage	various	actors	in	the	health	ecosystem	a	reason	to	collect	additional	data	and	
make	their	data	available	to	the	rest	of	the	healthcare	ecosystem;	and	4)	cloud-based	data	
science	platforms	and	common	data	models	should	be	developed	and	promoted	in	order	to	
reduce	the	barrier	to	entry	for	researchers	and	increase	the	likelihood	of	societally	
beneficial	outcomes.	
	
Public	Welfare	
	
AI	has	not	had	a	lot	of	impact	on	fundamental	issues	our	society	faces	today.	However	
many	opportunities	exist.	For	example,	the	University	of	Chicago	partnered	with	Chicago	
Department	of	Public	Health	to	build	a	system	to	predict	which	children	are	at	risk	of	lead		
poisoning	to	allow	CDPH	to	deploy	inspectors	and	proactively	address	lead	hazards.	Over	
the	past	several	years,	several	school	districts	around	the	US	have	been	collaborating	with	
universities	to	develop	AI	based	systems	to	help	them	identify	at-risk	students	who	are	
unlikely	to	finish	high	school	on	time.	Finally,	the	University	of	Chicago	has	been	working,	
as	part	of	the	White	House	Police	Data	Initiative,	to	identify	officers	who	are	at	risk	of	
adverse	incidents	early	and	accurately	so	supervisors	can	effectively	target	interventions.	
	
Work	in	this	area	requires	deep	and	sustained	interaction	and	efforts	between	the	target	
community	and	AI	researchers,	but	there	isn’t	a	ready	supply	of	trained	AI	researchers	(or	
practitioners)	who	are	familiar	with	the	unique	aspects	of	working	on	public	welfare	
problems.	Likewise,	government	and	policymakers	have	little	experience	working	directly	



with	the	research	community.	Finding	funding	mechanisms	that	bring	both	communities	
together	to	address	local	needs	--	e.g.	the	NSF	Data	Hubs	model	--	is	essential.	Highlighting	
ongoing	projects	(and	successes)	to	both	raise	awareness	and	to	provide	a	roadmap	is	
essential	to	growing	this	community.	Platforms	that	are	able	to	access,	structure,	and	
curate	appropriate	data	sets	do	not	exist.	
	
Projects	need	to	have	a	long-term	structure,	with	appropriate	intermediate	goals,	to	avoid	
short-term	fixes,	or	quick,	but	ephemeral,	“feel-good”	stories.	Legal	and	regulatory	hurdles	
including,	access	to	data,	and	to	populations	to	evaluate	against,	will	require	substantial	
investment	of	time,	planning,	and	resources	to	effect.	Creating	a	framework	for	ethical	
evaluation	of	costs	and	benefits	must	be	established.	Understanding	the	impact	of	
innovations	will	require	an	understanding	of	the	level	of	compliance,	and	possibly	methods	
to	manage	or	pivot	solutions	in	response	to	perception,	trust,	and	compliance	of	the	target	
population.	
	
There	are	several	related	technical	challenges.	Privacy	issues,	transparency	and	traceability	
of	data	collection	and	decision-making,	and	understanding	of	social	context	must	be	
considered	within	the	research	context.	Issues	surrounding	data	bias	and	uncertainty	have	
direct	implications	to	fairness	and	the	evaluation	of	the	utility	of	possible	decision	paths.	
Related	(government)	organizational	and	(population)	sociological	constraints	must	also	
be	considered.	More	technical	problems	include:	1)	data	analytics	and	machine	learning	
models	that	are	robust	to	systematic	bias,	missing	data,	and	data	heterogeneity;	2)	the	
development	of	models	or	simulations	that	sufficiently	predict	to	inform	decision-making,	
and	which	also	can	then	be	adapted	“closed-loop”	as	additional	data	is	collected	with	time;	
3)	advanced	models	of	decision-making	and	planning	that	incorporate	social	dynamics,	
resource	constraints,	and	utility	models	for	multiple	actors;	4)	consistent,	cost-effective,	
and	scalable	models	for	measurement	or	data	collection;	and	5)	methods	for	causal	
reasoning	and	explanation.	
	
Some	near	term	opportunities	include:	1)	tracking	of	location	data	and	understanding	how	
to	better	predict/deploy	first	responders,	2)	using	individual	public	transit	and	other	
transportation	data	(uber,	bikeshare,	etc.)	to	understand	mobility	patterns	of	people	to		
understand	gaps	in	transit	(where	they	live	-	where	they	work	-	what	services	they	need)	
and	also	to	assess	impact	of	policy	changes;	3)	better	detection	of	women	who	may	be	at	
risk	of	adverse	births	to	target	human	services	programs	and	resources;	4)	better	detection	
of	adults	in	danger	of	becoming	homeless/incarcerated;	5)	increase	the	number	of	kids	
who		are	performing	at	grade	level	by	creating	interventions	that	would	influence	and	
change	behavior;	and	6)	enhancing	access	to	services/food/health.	
	
Longer-term	opportunities	will	build	on	the	establishment	of	a	platform	for	evidence-based	
decision	making	by	government	informed	by	more	detailed	and	nuanced	models.	For	
example,	is	it	possible	to	predict	the	acceptance	or	engagement	of	the	population	to	a	
particular	policy	change.	Also,	such	models	could	move	toward	a	“systems	of	systems”	
analysis	where	information	about	welfare	impacts	education	impacts	law	enforcement	
impacts	health.	Achieving	these	ends	will	require	methods	to	integrate	multiple	AI	systems,	
and	monitor,	detect,	diagnose,	and	adapt	to	multi-faceted	population	behaviors.	



	
Cross-cutting	Observations	and	Recommendations	
	
To	date,	AI	has	typically	focused	around	deploying	narrow	wedges	of	technology	in	narrow	
application	areas.	However,	as	we	look	across	application	spaces,	we	see	a	common	thread	
of	needs	and	approaches	that	are	necessary	to	scale	these	“niche”	approaches	to	address	
broad	socio-technical	themes.	Common	themes	in	this	report	and	our	discussions	include:	
1)	improving	data	quality	and	availability;	2)	supporting	technology	and	policies	that	
ensure	individual	privacy	and	data	security;	3)	mechanisms	to	promote	collaboration	(at	
development	time)	and	adoption	(at	deployment	time)	of	innovations;	4)	mechanisms	to	
ensure	fairness,	transparency,	accountability,	reliability	of	decision;	5)	methods	to	
accurately	measure	and	assess	the	effect	of	a	technology	intervention	over	varying	
timescale;	6)	long-term	programs	that	train	scientists	in	developing	AI	methods	for	
complex	socio-technical	systems.	
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