

Learning Social Signals in Cyber-Physical Systems The Social Macroscope

Tarek Abdelzaher

University of Illinois at Urbana Champaign

Research Goal The "Social Macroscope"

Towards a Science of Social Media as a Measuring Instrument

Research Goal The "Social Macroscope" Towards a Science of Social Media as a Measuring Instrument Events' Reconstructed :witter Signal events and The goal: (Build the science to) reliably exploit social media as an instrument for and nhweiral events **Processing Instagram** interactions The innovation: Develop information-theoretic/estimation-theoretic means for modeling social channel canacity and reliability and optimizing (social channel) canacity. e innovation: Develop information-theoretic/estimation-theoretic means for modeling social channel) capacity, and reliability noise, characterizing the signal, and optimizing (social channel) An application: A learning system to reliably understand ongoing physical events and social media phenomena by exploiting noisy social media

A Physical Analogy Learning the Social Signal

Received signature (energy in multiple signal frequency bands)

Physical event Response of social propagation medium (e.g., tweets)

Received signature (energy in multiple keyword frequency bands)

A Physical Analogy

Physical target

<u>évent</u>

Response of physical opagation medium (e.g., vibration, optical, ...)

ure" uncovers

Received signature (energy in multiple signal frequency bands)

Response of social propagation medium (e.g., tweets)

Received signature (energy in multiple keyword frequency bands)

Physical target

Response of planting operation (e.g., village optical, ...)

Pature" uncovers prover Re

Received signature (energy in multiple signal frequency bands)

nedium

sponse of social propagation medium (e.g., tweets)

Received signature (energy in multiple keyword frequency bands)

A Physical Analogy

Physical target

Response of p edium tical, ...) (e.g

Received signature (energy in multiple signal frequency bands)

nedium

nature" uncovers sponse of social propagation medium (e.g., tweets)

Received signature (energy in multiple keyword frequency bands)

Application: Humans as Sensors A "Signal Detection" Problem

Events

Traffic jams

Disasters

Civil unrest

Sensors

Autonomic Service Stack

Data

Reliable Fact-finding

The Signal: Information "bits"

A binary signal model

Each observation is a "bit" of information: Either true or false

Examples of Twitter "Sensing"

Crash blocking lanes on I-5S @ McBean Pkwy in Santa Clarita

BREAKING NEWS: Shots fired in Watertown; source says Boston Marathon terror bomb suspect has been pinned down

The police chief of Afghanistan's southern Kandahar province has died in a suicide attack on his headquarters.

Yonkers mayor has lifted his gas rationing order. Fill it up!

The Ground-truth State Estimator

Fundamental Information-theoretic

Accuracy Bounds

Approach:

- ■Model the social network as a noisy channel that transforms "ground truth" into noisy observations
- ■Compute accuracy bounds of optimal channel estimator and signal classifier

Network **Physical Event** 1: It happened 0: Rumor Decoder **Estimated** Input (Ground Truth) **Noisy Social Observations**

Social

Physical Reality

Social Network Model

Noisy Channel

Input

Summary

- An emerging area in CPS: Data services for decision support in Cyber-physical Systems
 - Talk focused on social sensing
- Challenge: understand the social sensing modality (acoustic, magnetic, optical, and now social)
 - Physical events impact the social medium which responds with a signature
 - Analyze signature to measure the event
- Challenge: Accurately detect and track physical events (matching an application's interest)
- Challenge: Accurately assess data veracity
- Challenge: Automatically explain measured phenomena of interest