Differential Privacy and the Right to be Forgotten

Cynthia Dwork, Microsoft Research

Limiting Prospective Use

Lampson's approach empowers me to limit the use of my data, prospectively

Limiting Future Use: Raw Data

Get me off Your ing Mailing List

Figure 1: Get me off your leaking mailing list.

David Mazières and Eddie Kohler New York University University of California, Los Angeles http://www.mailavenger.org/

Abstract

Get me off your faling mailing list. Get me off your faling mail-

your facting mailing list. Get me off your

Limiting Future Use: Raw Data

Limiting Future Use: Entangled Data

Re-Compute Without Me?

- Expensive; Great vector for denial of service attack
- Privacy compromise

Sickle cell trait: 33

Sickle cell trait: 32

Differential Privacy as a Solution Concept

- Definition of privacy tailored to statistical analysis of big data
- "Nearly equivalent" to not having had one's data used at all
- Safeguards privacy even under re-computation

"Can't learn anything new about Nissenbaum"?

- "Can't learn anything new about Nissenbaum"?
- Then what is the point?

- "Can't learn anything new about Nissenbaum"?
- Then what is the point?

Ideally: learn same things if Nissenbaum is replaced by another random member of the population

Ideally: learn same things if Nissenbaum is replaced by another random member of the population ("stability")

- Stability preserves Nissenbaum's privacy AND prevents over-fitting
- Privacy and Generalization are aligned!

Differential Privacy

- The outcome of any analysis is essentially equally likely, independent of whether any individual joins, or refrains from joining, the dataset.
 - Nissenbaum's data are deleted, Sweeney's data are added, Nissenbaum's data are replaced by Sweeney's data, etc.
 - "Nearly equivalent" to not having data used in the first place

Formally

M gives ϵ -differential privacy if for all pairs of adjacent data sets x,y, and all subsets S of possible outputs

$$\Pr[M(x) \in S] \le (1+\epsilon) \Pr[M(y) \in S]$$

Randomness introduced by M

Properties

- Immune to current and future(!) side information
- Automatically yields group privacy
- Understand behavior under composition
 - Can bound cumulative privacy loss over multiple analyses
 - Permits "re-computation" when data are withdrawn
- Programmable
 - Complicated private analyses from simple private building blocks

Rich Algorithmic Literature

- Counts, linear queries, histograms, contingency tables (marginals)
- Location and spread (eg, median, interquartile range)
- Dimension reduction (PCA, SVD), clustering
- Support Vector Machines
- Sparse regression/LASSO, logistic and linear regression
- Gradient descent
- Boosting, Multiplicative Weights
- Combinatorial optimization, mechanism design
- Privacy Under Continual Observation, Pan-Privacy
- Kalman filtering
- Statistical Queries learning model, PAC learning
- False Discovery Rate control
- Pan-Privacy, privacy under continual observation ...

The Algorithmic Foundations of Differential Privacy

Cynthia Dwork and Aaron Roth

se assente of knowledge

Which is "Right"?

Which is "Right"?

- Stability preserves Nissenbaum's privacy AND prevents over-fitting
- Differential privacy protects against false discovery / overfitting due to adaptivity (aka exploratory data analysis)

Not a Panacea

Fundamental law of information recovery

e: a nexus of policy and technology

Thank you!

Washington, DC, May 10, 2016