
Jonathan	Katz		

Be,er	Privacy	and	Security	via		
Secure	Computa9on	



Security/privacy	would	be		
much	easier…	



…if	there	were	someone		
			we	could	all	TRUST	

with	our	data	



Be8er	data	mining	--	using	MORE	data,	
while	respec@ng	users’	PRIVACY	







CONTROLLED	informa@on	sharing	







Be8er	privacy/security	
for	EVERYONE	









Would	be	nice	if	there	were	someone	
we	could	all	TRUST	with	our	data…	



But	there	isn’t	



•  Legal/regulatory	restric@ons	
• Not	economically	viable	(cost	+	
liability	vs.	value)	

•  Central	point	of	failure/a8ack	
•  Incompa9ble	trust	frameworks	



Would	be	nice	if	there	were	someone	
we	could	all	TRUST	with	our	data…	
Would	be	even	be,er	if	we	could	AVOID	
the	need	for	trust	in	the	first	place!	







Secure	computa9on	ensures:	

•  Confiden9ality	
– No	party’s	input	is	revealed	

•  Integrity	
– Correct	output	is	computed	

•  Availability	
– All	par@es	obtain	the	output	

•  Input	independence	
– Each	party’s	input	is	independent	of	the	others’	

Caveats	



Assump9ons/caveats	

•  Number	of	malicious	par@es	(some@mes)	

•  Ac9ons	of	malicious	par@es	(some@mes)	

•  Cryptographic	hardness	(some@mes)	

• Weaker	guarantees	(some@mes)	



Secure	computa@on	of	any	func@on,	with	
security	against	arbitrary	behavior	
of	any	number	of	par@es,	is	possible	



Two-party	seRng	

•  Start	with	a	boolean	circuit	for	f	
•  P1	sends	a	“garbled	circuit”	for	f	to	P2	
along	with	keys	for	its	own	input	
•  P2	obtains	the	keys	for	its	input	using	
oblivious	transfer	
•  P2	evaluates	the	garbled	circuit	

This	gives	semi-honest	
security	only!	



General	feeling	(~2000):		
Hopelessly	imprac@cal	



Efficiency	(semi-honest)	

0	

5	

10	

15	

20	

25	

Fairplay	 PSSW09	 TaSTY	 HEKM11	 LR15	

AES	

@me	(log	scale)	

0.5	ms	



Efficiency	(malicious)	

0	

5	

10	

15	

20	

25	

PSSW09	 SS11	 AMPR14	 LR15	 WMK16	

AES,	40-bit	sta9s9cal	security	

@me	(log	scale)	

	65	ms	



Efficiency	

0	

5	

10	

15	

20	

25	

2004	 2009	 2011	 2015/6	

Semi-honest	
Malicious	



Real-world	interest	

•  Par9sia	(3-party)	
– Danish	sugar-beet	auc@on	(2008-present(?))	
– Wireless-spectrum	auc@ons	

•  Sharemind	(3-party)	
– Sta@s@cal	analysis	of	financial	data	

•  Sepior,	Dyadic	(2-party)	
– AES	

•  IARPA	SPAR,	DARPA	PROCEED/Brandeis	



Research	ques9ons	

•  “Cryptographic”	
– Mul@-party	sehng	
• Protocols,	“real-world”	issues	

– Post-quantum	security	
– Alternate	models	of	computa@on	
– Composability	
– What	func@ons	are	“safe”	to	compute?	



Research	ques9ons	

•  “Non-cryptographic”	
– Usability	
– PL/compiler	support	
– Formal	verifica@on	of	protocols,	
implementa@ons	



Real-world	ques9ons	

• Will	secure	computa@on	be	of	niche	
interest,	or	will	it	be	more	widespread?		
• What	is	the	business	model?	
• What	security	requirements	suffice?	
• What	are	the	right	cost	metrics?	
• What	is	the	barrier	to	more	widespread	
use	of	secure	computa@on?	



Real-world	ques9ons	

• Will	there	be	mul9ple	applica@ons	of	
secure	computa@on,	or	just	a	few?	
– Should	we	focus	on	generic	systems,	or	
op@mize	for	specific	“killer	applica@ons”?	
– What	are	the	“killer	applica@ons”?	

• Who	will	be	wri@ng	code?	
– Where	should	we	focus	our	a8en@on	when	
wri@ng	compilers?	



Conclusions	

•  Tremendous	advances	in	past	few	years	
	

•  Greater	deployment	in	the	near	
future(?)	



Acknowledgments	

	
Research	supported	by		
– NSF	(“TC:	Large:	Collabora@ve	Research:	Prac@cal	
Secure	Computa@on:	Techniques,	Tools,	and	
Applica@ons”)	

– US	ARL/UK	MoD	(“Secure	Informa@on	Flows	in	
Hybrid	Coali@on	Networks”)	

– DARPA	(“Toward	Prac@cal	Cryptographic	Protocols	
for	Secure	Informa@on	Sharing”)	



Thank	you!	

Papers	and	code	available	from	
h,p://www.cs.umd.edu/~jkatz/papers.html	


