Machine Learning for Sustainable Development and Biological Conservation

Tom Dietterich
Distinguished Professor, Oregon State University
President, Association for the Advancement of Artificial Intelligence
Computational Sustainability

- The study of computational methods that can contribute to the sustainable management of the earth’s ecosystems
Data Acquisition

- Africa is very poorly sensed
 - Only a few dozen weather stations reliably report data to WMO (blue points in map)
- Project TAHMO (tahmo.org)
 - TU-DELFT & Oregon State University
 - Deploy 20,000 stations across Africa
 - Provide data to farmers and to enable crop insurance industry
 - Increase agricultural productivity
- Computational Problem
 - Where to place the weather stations?
 - Krause, Singh & Guestrin, 2008
Data Interpretation

- Insect identification for population counting
- Raw data: image
- Interpreted data: Count by species
- Method: Computer Vision
- Lytle, et al., 2010

<table>
<thead>
<tr>
<th>Species</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limne</td>
<td>3</td>
</tr>
<tr>
<td>Taenm</td>
<td>15</td>
</tr>
<tr>
<td>Asiop</td>
<td>4</td>
</tr>
<tr>
<td>Epeor</td>
<td>25</td>
</tr>
<tr>
<td>Camel</td>
<td>19</td>
</tr>
<tr>
<td>Cla</td>
<td>12</td>
</tr>
<tr>
<td>Cerat</td>
<td>21</td>
</tr>
</tbody>
</table>

www.epa.gov
Data Integration

- Virtually all ecosystem prediction problems require integrating heterogeneous data sources
 - Landsat (30m; monthly)
 - land cover type
 - MODIS (500m; daily/weekly)
 - land cover type
 - Census (every 10 years)
 - human population density
 - Interpolated weather data (15 mins)
 - rain, snow, solar radiation, wind speed & direction, humidity

Model Fitting with Machine Learning

- **Species Distribution Models**
 - create a map of the distribution of a species

- **Migration and Dispersal Models**
 - model the trajectory and timing of movement
eBird Project

- Volunteer Bird Watchers
- Time, place, duration
- Species seen

- 8,000-12,000 checklists uploaded per day
- Computational Method: Collective Graphical Model (Sheldon et al., 2011)
Fitted Migration Model
Ruby-Throated Humming Bird

Reconstruction: 01-Jan-2009 to 07-Jan-2009

Sheldon, Sun, Liu, Dietterich unpublished
Policy Optimization

- Compute optimal policies for managing ecosystems
- Incorporate uncertainty about the future

Computational Tools
- MDPs (Markov Decision Problems)
- POMDPs (Partially-Observable MDPs)
Protecting Coastal Habitat to Protect Migrating Birds from Sea Level Rise

- East Asia-Australia migratory pathways
- Sea Level Rise destroys habitat unless areas further inland have been protected
- Timing and location of protection depends on the timing of future sea level rises
- POMDP formulation
- Nicol, et al. 2015
Results: Much More Successful than Existing Bottleneck Heuristic
Policy Execution

- Repeat
 - Observe Current State
 - Update Models and Re-Optimize
 - Choose and Execute Optimal Action
Summary

- Locating weather stations in Africa
- Images \rightarrow Insect Species
- Multiscale Data
- Bird Migration Models fit to eBird Data
- Where and when to purchase coastal habitat?
- Action!
References

