SRI Education

Modeling and Analyzing Education Systems: Two Applications for CSLS

Britte Haugan Cheng Presented to CSLS Workshop 2 Ann Arbor, Michigan November 2, 2016

Problem 1: Scaling Educational Innovations Problem 2: Reforming Educational Testing Systems

Problem 1: Scaling Educational Innovations

Challenges to Scaling Educational Innovations

- Emerging theory
 - Implementation models (variation, social dynamics)
 - Context of implementation
- Few resources to aggregate theory, design knowledge, research results
 - Publication is non-functional
 - Aggregating theory requires it's own theory (systemic research is expensive and often narrowly focused)

Current Approaches

- Emerging Theory: Design-based Methods (knowledge to practice)
 - Design-based Implementation Research
 - Research-Practitioner Partnerships
- Resources to Aggregate Results: Large-scale Evaluations
 - RCTs
 - What Works Clearing House

New Solutions via CSLS: Computational Models of Systems

- Emerging Theory: Participatory Modeling of Implementation
 - Models as 'boundary objects'
 - Integrating social networks and dynamics
- Resource to Aggregate Results: Functional, Reusable, Extensible
 - Retrospective analysis and simulation (prediction, experimentation)
 - Demonstrate success and failure
 - Illustrate crucial variation
 - Existing models are valuable in new contexts

Example: STEM recruitment and retention model in Higher Education

Problem 2: Reforming Educational Testing Systems

Challenges to Reforming Testing Systems

- System stakeholder outcomes do not align
 - Formal testing infrastructure vs. Classroom Learning
 - Trends (longitudinal comparisons)
 - Expensive
- Data streams do not converge
 - Classroom data is not easily aggregated or communicated
 - Large-scale data is not timely

Current Approaches

- Aligning system stakeholder outcomes
 - Vertical Assessment Systems (vertical alignment vs. vertical scaling)
 - Learning progressions (developmental alignment/coherence)
- Converging data streams
 - Cognitive models and data models (ITS)
 - Bayesian measurement models (game-based assessment) and emerging products of learning analytics
 - Computer-adaptive testing models

New Solutions via CSLS: Computational Models of Systems

- Aligning system stakeholder outcomes
 - Coordinate cognitive and measurement models across classroom and large-scale assessment contexts
 - Vast variation in student trajectories
 - Infrastructure for establishing this alignment in new contexts
- Converging data streams
 - New data corpuses for learning analytics/educational analytics
 - New insights into data organization and structure

Example: Formative Assessment Systems Model

Thank You

SRI Education

Silicon Valley, CA (SRI International headquarters) 333 Ravenswood Avenue Menlo Park, CA 94025 +1.650.859.2000

Washington, D.C. 1100 Wilson Boulevard Arlington, VA 22209 +1.703.524.2053

www.sri.com/education