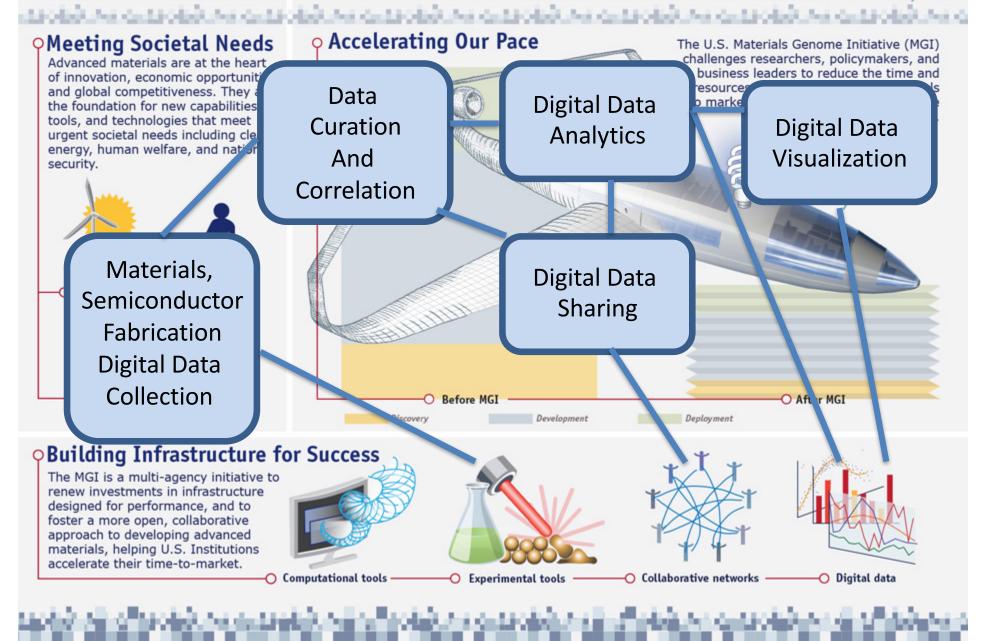
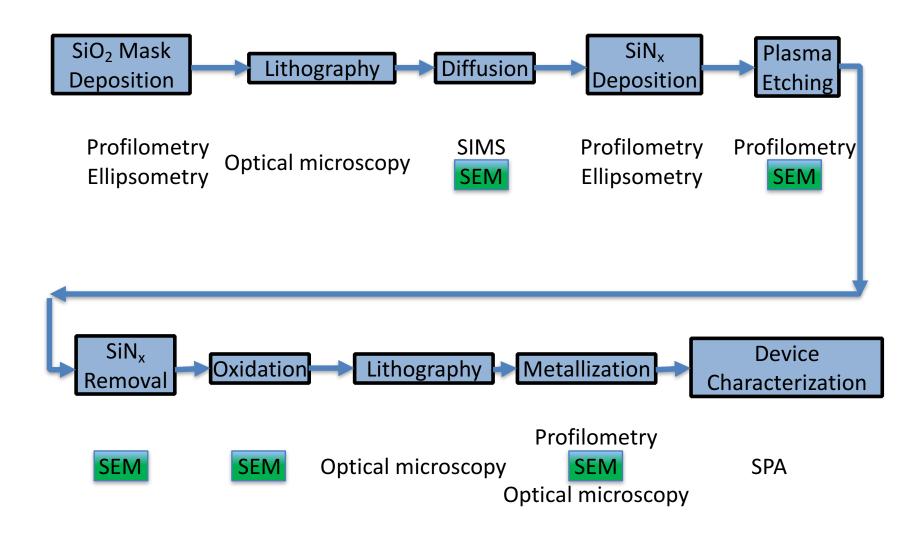
T2C2

Accelerating Science via Smart and Joint Cyber-Infrastructure for Materials and Semiconductor Fabrication Data and Metadata

Klara Nahrstedt University of Illinois at Urbana-Champaign

A timely and trusted curator and coordinator of scientific data





THE U.S. MATERIALS GENOME INITIATIVE

"...to discover, develop, and deploy new materials twice as fast, we're launching what we call the Materials Genome Initiative" – President Obama, 2011

Example of Semiconductor Device Fabrication Process

ILLINOIS

Example of Collected Data

An example of the result from an experiment at MNTL

Result image of 07302013-Oxidation experiment Experimental setting:

Time 13min Temp 425 C

Notes:

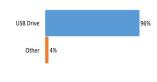
Oxidation depth is about 12um. Oxidation layer composed of Al(0.98)GaAs with thickness of 30 nm. Furnace in 2111 MNT L, 2" diameter quartz.

(Structured meta data)

(Free text)

T2C2

Current State of Data Capture in Materials and Semiconductor Domains


• Current situation for experimental data involves manual processes for data capture and storage leading to poor documentation of results

How are you currently transferring data from lab to pc

- Data transfer is often done via "sneaker-net" techniques using flash drives or email
- No data file conversion is available

Percentage of Users

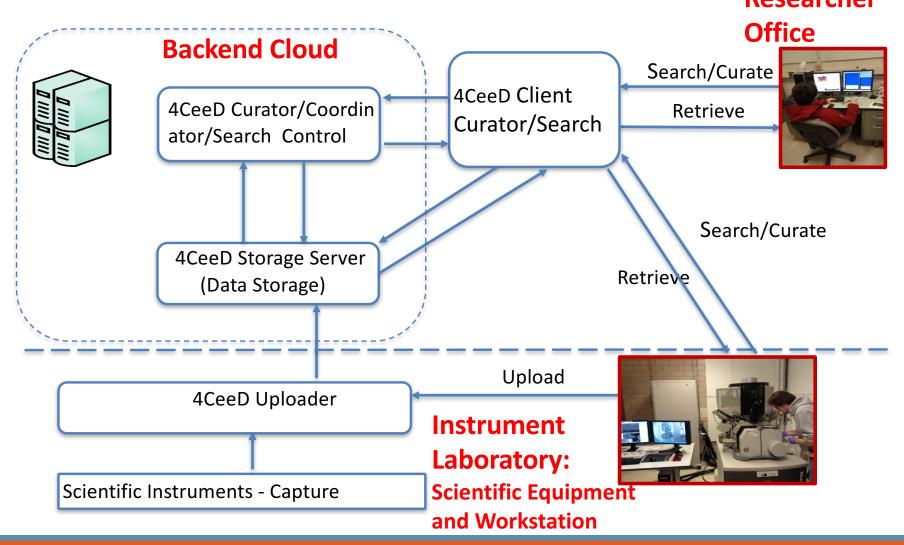
 "Best" results and images are kept, but what is "best" is determined by a narrow, specific scientific objective.
"Imperfect" data is often discarded or not available for others to review.

• Data only correlated only through publications

T2C2

Effects of Current State

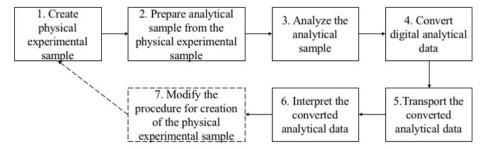
- Measurements on multiple instruments for a new material may not be well correlated due to mechanisms to encode the linkages between measurements.
- Novel device prototypes can be difficult to reproduce due to a lack of proper capture of "recipes" used.
- In addition, previous experiments in the deposition systems may affect subsequent experiments.
- Curation of system information can greatly improve the reproducibility and understanding of results.

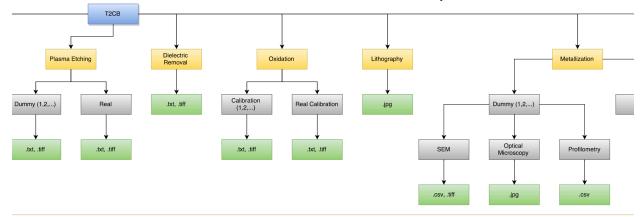


Important Question

- How do we accelerate pace of material science and semiconductor fabrication ?
- Approach: MUST ACCELERATE AT MULTIPLE LEVELS!!
 - Accelerate Lab Sessions for scientists at microscopes
 - Make it easy to curate multi-modal science data (allow free text)
 - Enable correlation of material data and semiconductor fabrication processes using AI techniques to enable easy and fast search of correlated multi-modal data

Our Approach: Distributed Real-Time "Smart" Data Cyber-Infrastructure - 4CeeD





Acceleration of Science - User Process and Data Model

Example of an experiment task flow

4CeeD Data Model organizes projects into collections, datasets, and files. These can then be shared in spaces.

IILLINOIS

Acceleration of Users' Lab Sessions - 4CeeD Uploader

sting collections		Browse Drag & Drop Files
	Existing Datasets	Drag & Drop Files
earch your collections	New Dataset	3). 2015_06_19_10-50_24-RT_0003.dm3 (16.58 MB) File Comments:
Right click a collection to create a sub-collection.	Basic Load Custom	
2016_01_12_Au-PEG_cell	Load a template Clear	
Au-shelled micelles	Choose a dataset template:	Cancel
D130-SingleModeVCSEL	polyvillic nanoparticles	2). 2015_06_19_10-50_24-RT_0002.dm3 (16.58 MB)
D140-SingleModeVCSEL	her A rune converting and	File Comments:
D141-SingleModeVCSEL	Choose a name for your dataset:	
D143-ZnDiffusionMask	Example Sample Name, PECVD Oxide, Diffusion	<i>t</i>
D20-SingleModeVCSEL		
D200-ZnDiffusion_InP	Add	Cancel
Dc1-OxidationCalibration	Name: Value:	1). 2015_06_19_10-50_24-RT_0001.dm3 (16.58 MB)
In situ project	Remove	File Comments:
In vitro growth	Name: Value:	
Zinc Diffusion Calibration	Incubation1 time (min) : Remove	
📃 🚇 polyvilli		Cancel
📃 🚚 root	Create Dataset	
v Root Collection		Submit

Optional: Choose template and enter metadata

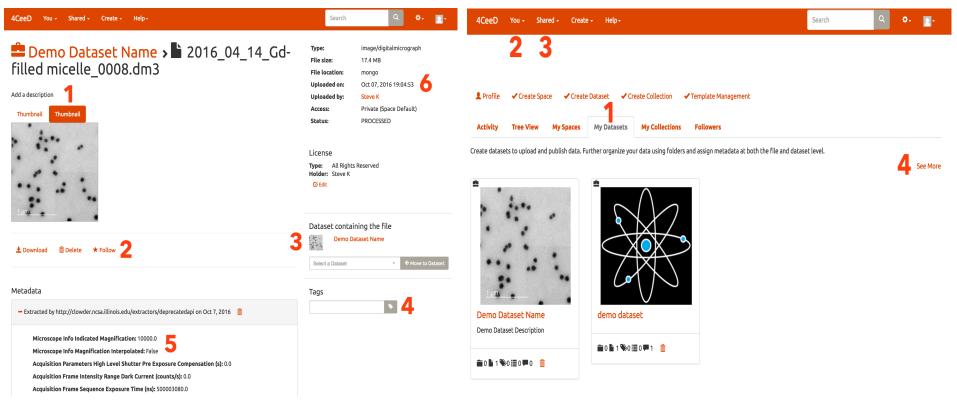
CLIENT Video

Acceleration of Users' Lab Sessions – Adding User Templates

	Plain text only	
02 Ch	poose a dataset what's this?	New I
		Bas
Existing	Datasets	Load
New Data	aset	Choo
Basic	Load Custom	poly
Choose a	name for the new dataset:	Choo
Example	Sample Name, PECVD Oxide, Diffusion	Exa
User defir	ned metadata:	Add
Example	a Time, Temp, Pressure, Current	Name
	Create Dataset	Incub
	Greate Dataset	Name
		Incub
		Name
		Oleyla
		Name

Custom Select/Create Template

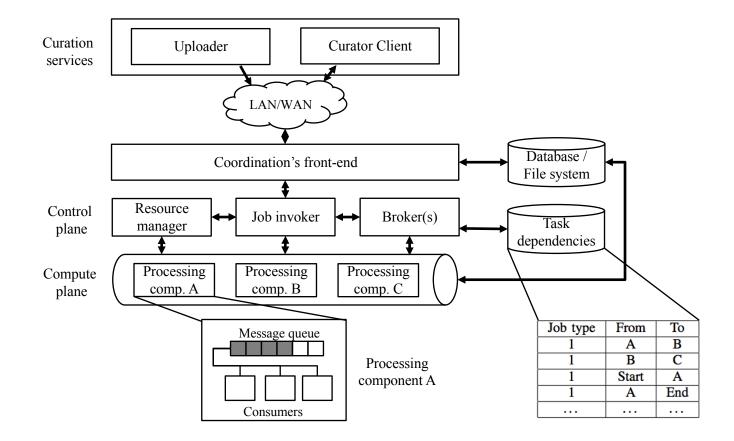
New Dataset						
Basic Load Custom Load a template Clear						
Choose a dataset template:						
polyvillic nanoparticles						
Choose a name for your dataset: Example Sample Name, PECVD Oxide, Diffusion						
Name:	Value:					
Incubation1	:	Remove				
Name:	Value:					
Incubation2		Remove				
Name:	Value:					
Oleylamine	;;	Remove				
Name:	Value:					
PEG		Remove				
Name:	Value:					
Au3+		Remove				
Name:	Value:					


Many user-defined datasets incorporate a dozen or more key/value pairs. Allowing users to select a global template or save their own template saves time and avoids errors.

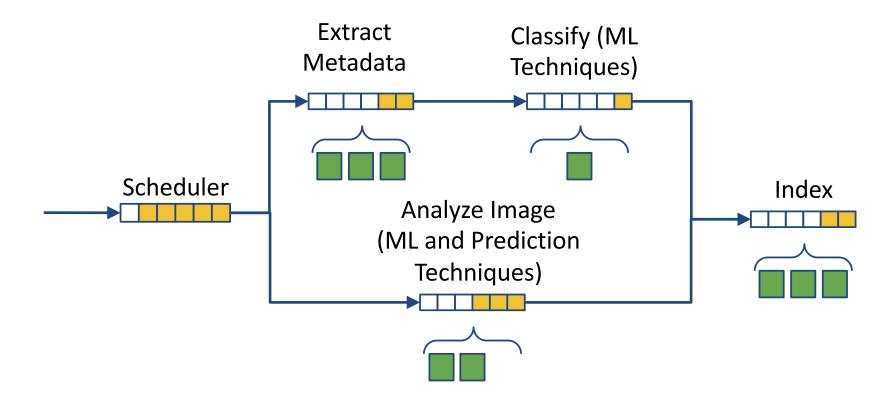
Acceleration of Data Manipulation - 4CeeD Curator

File View

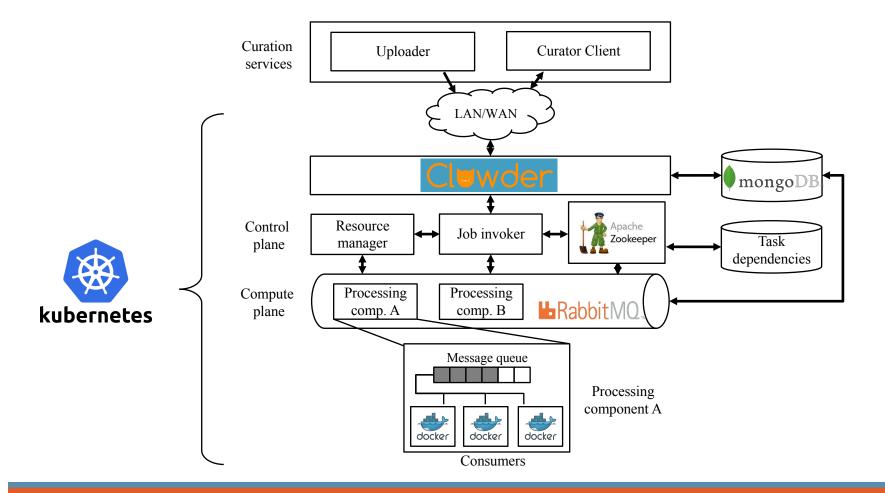
Dashboard View


[Preview, annotate, download, extracted metadata]

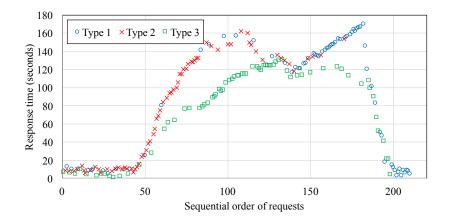
[Dashboard management]

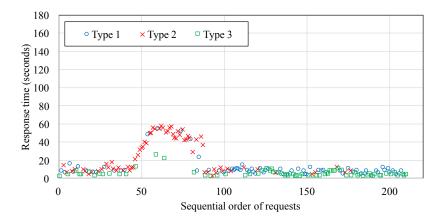

Acceleration of Science - 4CeeD Cloud Coordinator

Workflow Execution with AI Tasks on Science Data (Example of Type 1 workflow)



Other Tasks in Workflow: Natural Language Processing (NLP) of Free Text describing experiment; Filtering, Clustering, Tagging

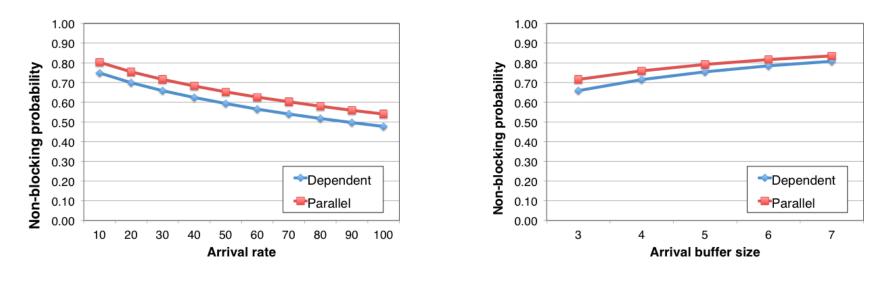

4CeeD Coordinator Implementation

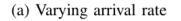

ILLINOIS

T2C2

Acceleration of Task Workflow Processing with Speed-Up in Response Time

Jobs' average response time without resource adaptation




Jobs' average response time using our elastic resource adaptation

Acceleration of Jobs Processing with Efficient Global Resource Provisioning Strategies

(b) Varying buffer size

"Parallel execution when possible"

"From global to local bottleneck"

Conclusions

- Acceleration of Lab Session for Users
 - Saving time and money (the same amount of lab data is now processed in 20 minutes instead of 60 minutes)
 - Producing more data (going from Mbytes to Gigabytes)
 - Preserving more metadata (richer metadata available)
- Acceleration of Cloud Processing on Science Data (e.g., Response time speed up from 160 sec to 60 sec)

IILLINOIS

- Developed Training and Installation Material
 - Repository and installation instructions at <u>github.com/4ceed</u>

T2C2 Product page: 4ceed.github.io

Acknowledgment

- NSF ACI DIBBs Funding Joint Work with
 - Steve Konstanty
 - Todd Nicholson
 - Phuong Nguyen
 - Tim Spila
 - Michael Chan
 - Kenton McHenry
 - Tommy O'Brien
 - Aaron Schwarz-Duval

- NSF ACI DIBBs Funding Joint Work with
 - Paul Braun
 - Brian Cunningham
 - Roy Campbell
 - Indranil Gupta
 - Narayana Aluru

IILLINOIS

- John Rogers

