Accelerating Science: A Grand Challenge for Al

Chandra Bhagavatula Research Scientist (Semantic Scholar)

Allen Institute for Artificial Intelligence

18 November, 2016

Allen Institute for AI (AI2)

Founded by Paul Allen in 2014 Now 70 people and growing

Al for the Common Good

Moore's Law of Scientific Publication

The number of scientific papers has doubled every nine years since World War II

Web Images More		
Google	deep learning	
Scholar	About 3,810,000 results 0.04 sec)	
Articles Case law My library	Learning in science: A comparison of deep and surface approaches C Chin, DE Brown - Journal of research in science teaching, 2000 - Wiley Online Library Abstract The purpose of this study was to explore in greater depth what has been called by previous researchers, a deep versus surface approach to learning science. Six Grade 8 students judged as typically using learning approaches ranging from deep to surface were Cited by 397 Related articles All 5 versions Cite Save	
Any time Since 2016 Since 2015 Since 2012 Custom range	Why does unsupervised pre-training help deep learning? <u>D Erhan, Y Bengio, A Courville</u> , PA Manzagol of Machine Learning, 2010 - jmlr.org Abstract Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language data sets Cited by 722 Related articles All 27 versions Cite Save	
Sort by relevance Sort by date	[PDF] Multimodal deep learning J Ngiam, <u>A Khosla</u> , M Kim, <u>J Nam</u> machine learning (, 2011 - machinelearning.wustl.edu Abstract Deep networks have been successfully applied to unsupervised feature learning for single modalities (eq. text. images or audio). In this work, we propose a powel application of	
 ✓ include patents ✓ include citations 	deep networks to learn features over multiple modalities. We propose a nover application of Cited by 519 Related articles All 29 versions Cite Save More	

Information Overload

Challenge: Researchers are swamped; Virtually impossible to read all papers

Opportunity: Leverage AI to combat information overload

Semantic Scholar (S2)

Home in on key papers, citations, and results.

Q Find it fast

Try: Open information extraction POS tagging Dependency parsing

Computer Science and (recently) Neuroscience research articles

Semantic Scholar

<u>Demo</u>

Faceted Search

Filer Results Page 1 Set let results Filer Results Image: Control of Contecont on Contr	Semantic Scholar	deep learning	٩	SIGN IN			
 Petied study Petied to there Petied to there Petied to there Petied to there Petied to the end to	Filter Results:	Page 1		Sort by: Relevance \$			
Addication War Control Analysis Section War Section Ward Section Ward Section Ward Section Ward Section Ward Section Ward Section Ward Section Ward Section Ward Author Its paper describes our deep learning-based approach to multilingual aspect-based sentiment analysis as part of Se-mEVal 2016 Tax 5. We use a convol-utional neural network (KNN) for both aspect extraction and aspect-based sentiment analysis. We cast aspect tax 5. We use a convol-utional neural network (KNN) for both aspect extraction and aspect-based sentiment analysis. We cast aspect tax 5. We use a convol-utional neural network (KNN) for both aspect extraction and aspect-based sentiment analysis. We cast aspect tax 5. We use a convol-utional neural network (KNN) for both aspect extraction and aspect-based sentiment analysis. Main (1) Section Ward Its Section 2000 (2748) 11:00 AM - 12 Sep 2018 Section 2000 (2748) 11:00 AM - 12 Sep 2018 Section 2000 (2748) 11:00 AM - 12 Sep 2018 Section 2000 (2748) 11:00 AM - 12 Sep 2018 Section 2000 (2748) 11:00 AM - 12 Sep 2018 Section 2000 (2748) 11:00 AM - 12 Sep 2018 Section 2000 (2	Field of Study 🗸	INSIGHT-1 at SemEval-2016 Ta	sk 5: Deep Learning for Multilingua	al Aspect-based 🛛 💬 Trending			
Image: Constraint of the second s	Publication Year	Sebastian Ruder, Parsa Ghaffari, John G. Bre	slin • SemEval@NAACL-HLT • 2016				
Author ▼ Key Phrase ▲ ✓ (NN (1,562) ● ● Dep Learning (87) ● ● Dep Learning (87) ● ● ANN (7) ■ ● Regularization (13) ■ ● Autoencoder (8) ● ● Deep Neural Network (8) ● ● Supervised (9) Petited Publications More Publication Venue ▼ ● Deta Set Used ♥	1980 2017	This paper describes our deep learning -based approach to multilingual aspect-based sentiment analysis as part of Se-mEval 2016 Task 5. We use a convo-lutional neural network (CNN) for both aspect extraction and aspect-based sentiment analysis. We cast aspect extraction as a multi-label classification problem , outputting probabilities over aspects (More)					
Key Phrase	Author V	Mentioned in To tweets.					
Image: Circle Circl	Key Phrase	CS CL @arxiv_cscl	Follow				
□ DNN (81) □ Deep Learning (87) □ Deep Learning (87) □ ANN (7) □ RBM (10) ● 1 1 2 2 0 □ ANN (7) ● 1 1 2 2 0 □ ANN (7) ● 1 1 2 2 0 □ ANN (7) ● 1 1 2 2 0 □ Autoencoder (8) ● 1 2 0 □ Deep Neural Network (8) ● 1 2 0 □ Deep Neural Network (8) ● 1 2 0 □ Deep Neural Network (8) ● 2 0 □ Deep Neural Network (8) ● 2 0 □ Duep Set Used	CNN (1,562)	NSIGHT-1 at SemEval-2016 Task 5:	Deep Learning for				
□ Deep Learning (87) 11:40 AM - 12 Sep 2016 □ ANN (7) RBM (10) □ Regularization (13) Image: Construction of the second of t	DNN (81)	Multilingual Aspect-based Sentiment arxiv.org/abs/1609.02748	Analysis				
_ NNN (1)	Deep Learning (87)	11:40 AM - 12 Sep 2016					
 Incent (to) Regularization (13) Autoencoder (8) Deep Neural Network (8) Deep Neural Network (8) MNIST (20) Supervised (5) Publication Venue Data Set Used Deep Learning in Neural Networks (action and many other domains such as drug discovery and genomics. Deep (More) • 16 Ø View On PubMed I Related Publications I View Slides More Deep Learning in Neural Networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More) • 5 #II 232 I Wer PDF I Related Publications More 	ANN (7)	45 127 1 ♥ 2					
Autoencoder (8) Deep Neural Network (8) MNIST (20) Supervised (5) Publication Venue Data Set Used Composition of the state of the sta	Regularization (13)	View PDF Related Publications More					
 Deep Neural Network (8) MNIST (20) Supervised (9) Publication Venue Data Set Used Max Set Usede	Autoencoder (8)						
Image: Supervised (5) Yann LaCun, Yoshua Bengio, Geoffrey E, Hinton · Nature · 2015 Publication Venue ✓ Data Set Used ✓ Data Set Used ✓ Deep Learning in Neural Networks: An Overview Jürgen Schmidhuber · Neural Networks · 2015 In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More) ● 5 till 232 Image: Year Deep Reserved	Deep Neural Network (8)	Deen learning					
Supervised (5) Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep (More) Data Set Used ✓ Deep Learning in Neural Networks: An Overview Jürgen Schmidhuber • Neural Networks • 2015 In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More) • 5 till 232 • View VPF ● Related Publications More	MNIST (20)	Yann LeCun, Yoshua Bengio, Geoffrey E. Hint	ton - Nature - 2015				
Publication Venue multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep (More) 	Supervised (5)	Deep learning allows computational models	that are composed of multiple processing layers to	elearn representations of data with			
Data Set Used 16 View On PubMed Pelated Publications View Slides More Data Set Used 16 View On PubMed Pelated Publications View Slides More Deep Learning in Neural Networks : An Overview Jürgen Schmidhuber - Neural Networks - 2015 In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More) 	Publication Venue	multiple levels of abstraction. These methods recognition, object detection and many other	have dramatically improved the state-of-the-art in domains such as drug discovery and genomics. D	speech recognition, visual object eep (More)			
Deep Learning in Neural Networks: An Overview Jürgen Schmidhuber - Neural Networks - 2015 In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More) 9 5 till 232 View PDF Related Publications More	Data Set Used 🗸 🗸	🕈 16 🖉 View On PubMed 🛛 📳 Related P	ublications I View Slides More				
Jürgen Schmidhuber • Neural Networks • 2015 In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More) 5 till 232		Deen Learning in Neural Netwo	orks: An Overview				
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning . This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More) • 5 Ill 232 View PDF Related Publications More		Jürgen Schmidhuber · Neural Networks · 201	5				
• 5 11 232 View PDF Related Publications More		In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning . This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of (More)					
		• 5 till 232 📓 View PDF 📳 Related	Publications More				

Faceted Search

Semantic Scholar		Songbird Basal Ganglia	📑 SIGN IN 🥹	
Filter Results:	_	Page 1	Sort by: Relevance	
Field of Study	~	Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in	in Songbird Basal	
Publication Year	~	Ganglia Nucleus Area X Sebestian Macelar, Christella Bashafart, Basiamin Caarri, Brund Liamamid, Bauel Onton, Caratanae Sebarff, Bl aS biology, 2007		
Publication Type	~	The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full an language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language (rticulatory power of human	
Author	~	fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have.	(More)	
Key Phrase	~			
Publication Venue	~	Organization of the songbird basal ganglia, including area X.		
Brain Region	~	Abigail L Person, Samuel D Gale, Michael A Farries, David J Perkel • The Journal of comparative neuro Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its imm	blogy - 2008 mediate surround, the medial	
Cell Type	~	striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-traci the targets of Area X and MSt with those of the lateral striatum (LSt) and globus (More)	ing techniques to compare directly	
Method	~	• 1 C View On PubMed Related Publications More		
Organism		Automatically extracted using statistical m	nodels	
U Zebra Finch (616)		Vocal learning in songbirds requires a basal ganglia circuit termed the anterior forebrain pathway (AFF song production, and its role in song learning is not well understood. Like the mammalian striatum, the Area X, receives dense dopaminergic innervation from the midbrain. Since dopamine (DA) (More)	P). The AFP is not required for e striatal component of the AFP,	
Rat (24)		View PDF Related Publications More		
Mouse (14)		Vocal Experimentation in the Juvenile Senabird Requires a Recal Con-	alia Circuit	
Drosophila (5)		Bence P. Ölyeczlov, Aaron S. Andelman, Michale S. Ees, Pl. oS. biology, 2005	gila Olicult	
C. elegans (2)		Songbirds learn their songs by trial-and-error experimentation, producing highly variable vocal output i own sounds to the song of a tutor, young songbirds gradually converge to a stable song that can be a tutor song. Here we show that vocal variability in the learning songbird is induced by a (More)	as juveniles. By comparing their a remarkably good copy of the	

Extracted Key Elements

Staying up-to-date

Cornell University Library

arXiv.org > cs

Computer Science

Authors and titles for recent submissions, skipping first 205

- Thu, 17 Nov 2016
- Wed, 16 Nov 2016
- Tue, 15 Nov 2016
- Mon, 14 Nov 2016
- Fri, 11 Nov 2016

[total of 516 entries: 1–25 | ... | 131–155 | 156–180 | 181–205 | **206–230** | 231–255 | 256–280 | 281–305 | ... | 506–516] [showing 25 entries per page: fewer | more | all]

Tue, 15 Nov 2016 (showing first 25 of 158 entries)

[206] arXiv:1611.04581 [pdf, other]

How to scale distributed deep learning? Peter H. Jin, Qiaochu Yuan, Forrest landola, Kurt Keutzer Comments: Extended version of paper accepted at ML Sys 2016 (at NIPS 2016) Subjects: Learning (cs.LG)

- Idea: Daily feed of most relevant papers
- Research Challenges:
 - Identify topics in a documents
 - Model user's topic preference
 - Rank by relevance

Deeper Understanding of a Document

autoencod	lers
<u>-</u>	
Induction	
	tructure
-	upervised st

d prediction

CoNLL 2007

Entity Extraction

Deeper Understanding of a Document

Type Identification

Deeper Understanding of a Document

Relation Extraction

Deeper Understanding of the Literature

Literature Graph

Citeomatic: Who should I cite?

- Disseminating Research by Writing papers
 - Comprehensive review of related work is challenging

Citeomatic: A brief overview

- Input:
 - The title and abstract of a query paper
- Output:
 - A list of related work, that should be reviewed, ordered by confidence

Citeomatic

Citeomatic: Network Architecture

Feature / Idea	Addresses Information Overload in	Research Challenges
Faceted Search	Finding Relevant Documents	Search
Automatically extracted important elements	Reading Relevant Documents	Information Extraction (IE)
Daily Feed	Staying Up-to-date	Recommendation
Literature Graph	Understanding and Relating to existing Knowledge	NER, KB Construction etc.
Citeomatic	Writing and Publishing	Document Similarity

Directions of Future Work

- Hypothesis Generation
 - Method X has been found to be effective for task Y. Task Y and Z are related. Maybe X can be applied to Z
- What's at my knowledge-frontier?
 - I know about X and Y, what should I know next?
- Topic dependencies
 - I want to learn X, what are its pre-requisites?

Conclusion

"No human could possibly read the entirety of medical literature, personal health records, and case file histories that might inform a doctor's professional opinion when trying to save a cancer patient's life. But a machine can."

- fortune.com on Nov 2, 2016

Scientific Research is facing tremendous Information Overload

Advances in AI, ML and NLP can help !

Please visit: <u>semanticscholar.org</u>

