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Abstract 

 
We describe a study of the use of decision-theoretic policies for optimally joining 

human and automated problem-solving efforts. We focus specifically on the 

challenge of determining when it is best to transfer callers from an automated 

dialog system to human receptionists.  We demonstrate the sensitivities of transfer 

actions to both the inferred competency of the spoken-dialog models and the 

current sensed load on human receptionists. The policies draw upon probabilistic 

models constructed via machine learning from cases that were logged by a call 

routing service deployed at our organization. We describe the learning of models 

that predict outcomes and interaction times and show how these models can be 

used to generate expected-utility policies that identify when it is best to transfer 

callers to human operators.  We explore the behavior of the policies with 

simulations constructed from real-world call data.  
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1. Introduction 

  

Machine learning and reasoning methods promise to introduce new efficiencies into the world. However, 

a number of attempts to field fully automated reasoning methods, such as spoken dialog systems, have 

been associated with disappointment.1  In many cases, frustrating situations come as intermittent failures 

in otherwise valuable and competent services. A promising path to fielding computational intelligence, 

even when such methods are not fully competent, is to exploit statistical methods to identify valuable 

couplings of human and machine automation—and to bring human effort to bear when such efforts will 

be most useful in bridging gaps and deficiencies in automated reasoning.  We refer to methods that mesh 

together the intelligences of reasoning systems and people via explicit policies about when and how to 

engage people as complementary computing.  Although automated systems are often designed to default 

to human service providers when failures occur, complementary computing is more than a back-off 

strategy.  It considers the most efficacious way to leverage both human and machine resources, allowing 

for the possibility that some callers may not even encounter the automated system at all.   

The importance of developing computing solutions that are designed to complement human intelligence 

and resources has been highlighted in the past within the realm of personal computing [6,7].  Methods 

that attempt to interleave the efforts of people and machines at multiple places during a dialog or 

problem-solving challenge, including situations that involve fast-paced shifts of contribution, are often 

referred to as performing mixed-initiative interaction.  However, while complementary computing 

includes activities referred to in typical uses of the phrase mixed initiative, it more generally encompasses 

methods that attempt to optimize how automated reasoning and human resources should be best coupled 

in the provision of services.  The approach includes the identification of ideal patterns of initiative, flows 

of analysis, and configurations within problem-solving systems composed of both human and 

computational components.  We shall focus in this paper on a class of complementary computing 

problems that center on the development of effective principles, and machinery with the ability to 

understand how and when the skills of people should be called upon to take over or to bolster imperfect 

automated reasoners to solve a problem at hand.   

We report, as a representative analysis and case study, the use of machine learning to enhance the 

coupling of human receptionists and an automated spoken dialog system for handling calls within the 

Microsoft Corporation. We focus on the use of machine learning and expected-value decision making to 

 
1 See [4] for a reflection from the business community about the failure to date of automated speech recognition systems to 

penetrate widely. 



 

 3 

decide when a user’s interaction with an automated dialog system should be transferred to a human 

receptionist.  We take the ideal-transfer challenge as an example that alludes to a larger space of 

opportunities with balancing computational competencies and human resources in the provision of 

services.  In the case of the call transfer challenge, receptionists are drawn from a team of personnel that 

faces a changing call load, leading to callers waiting in queues with durations that vary from moment to 

moment.  As we shall see, the ideal time to transfer a user to a human operator for assistance depends on 

the current availability of operators as well as on the probability distributions over the ultimate outcomes 

and durations of the conversation that is currently in progress.   

Rather than building a dialog system from scratch, we explored how machine learning can be used to 

overlay a decision-theoretic policy for call-transfer on top of a legacy automated dialog system. We 

learned probabilistic models from a log of real-world cases that predict the ultimate outcomes and the 

durations of interactions with the legacy dialog system. We show how we can employ the models to 

generate real-time policies for transferring people interacting with an automated call routing system to a 

human operator, based on an analysis of a call session as the dialog progresses, and the current load on 

the staff of human operators. The study highlights the promise of using probabilistic techniques to better 

mesh human resources with automated methods that have competencies and policies that can be 

characterized via machine learning. 

In many real-world applications, the competencies of systems may change with ongoing training or with 

shifts in the distribution of challenges being seen. Thus, it can be important for such methods to employ 

ongoing learning about the competency of automated components to optimize the best way to employ 

computing and human resources.  As we shall see, the approach allows for the ongoing re-optimization of 

the complementary computing policies as new operators are added to the staff and as the competencies of 

an automated dialog system change over time.  By continuing to collect data about how a dialog system 

performs, adjustments can be made in the transfer policies.  For example, the speech recognition 

component of the dialog system might be enhanced, such as through the integration of an updated 

language model associated with greater recognition accuracies for some or all situations. The speech 

recognizer’s accuracy may also degrade over time.  This was the case for the system deployed at our 

organization.  The recognition accuracy for names of people at the company was dropping for a period of 

time with the churn of people at the organization.   When the system was initially fielded, experts were 

employed to tune the acoustic model of the recognition system, and to provide hints to the system about 

the common pronunciations of first and last names for a large number of employees at the company.  

However, such manual tuning effort was not regularly performed.  System operators noticed that 
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recognition rates would drop during lulls in the maintenance of the acoustic models, as employees left the 

company and new employees were hired.  

The methodology we describe adapts in an elegant manner to changes in the competencies of the core 

speech recognition component of the automated dialog system. Thus, the system can take into 

consideration the changing competency of the speech recognition component, shifting gracefully 

depending on the most recent analysis of the recognizer’s accuracy in different situations.    

 
2. A Status-Quo Call Handling System 
 

Organizations have been turning away from touch-tone routing systems for call routing, and have been 

turning to automated dialog systems that employ speech recognition and natural language processing to 

assist users.  There is evidence that such a policy is warranted, based on studies of callers’ reactions to 

touch-tone routing [14].  Dialog systems utilize automatic speech recognition (ASR) to facilitate requests 

in natural language, which customers appear to favor over touch-tone menus [13].    

For several years at the Microsoft Corporation, an automated dialog and call routing system named 

VoiceDialer has fielded all internal directory assistance calls.  Using speech recognition, VoiceDialer 

attempts to uniquely identify one of over twenty thousand name entries in the company’s global address 

book.  In building telephony applications for task-oriented domains, system designers can choose from a 

wide array of approaches to dialog representation, such as finite state controllers, slot-filling templates, 

and rule-based models [1].  The dialog flow for the VoiceDialer legacy system was fully specified by a 

finite state controller.   Although we centered our studies on this specific dialog system, we point out that 

the overall approach of applying expected-value decision making to identify complementary-computing 

solutions is agnostic about the underlying dialog representation.  System designers can choose a dialog 

representation that best characterizes their domain and still employ the methods we describe to consider 

the costs and benefits of transferring control to human operators.   

To assess the overall performance of the system, we obtained over 250 megabytes of data logs covering a 

period of roughly one year.  The log contained approximately 60,000 transcriptions of individual sessions 

with VoiceDialer, capturing key system and caller actions for each call.  We have performed machine 

learning on the logs of sessions to build models that can predict outcomes and durations of interactions.  

The distinct outcomes and respective prevalencies are as follows:  
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• Success. The system eventually recognizes the name spoken by the caller as a name in the directory 

and transfers the call to that person (45%). 

• Operator transfer-name unavailable: The system infers that the person requested is not in the 

directory, and routes the call to an operator (6%). 

• Operator transfer-maximum mistakes: The system reaches the maximum number of allowed 

mistakes, and routes the call to an operator (12%). 

• Operator request: The user requests assistance by pressing ‘0, #, or *’ (25%). 

• Hang up: The user simply hangs up during the session (13%). 

 

For the legacy policy in force in the VoiceDialer system, sessions with the automated dialog system are 

allowed to progress for at most four steps or until a maximum tolerated number of mistakes is reached. If 

we examine the cases where callers engage the system to completion, removing from consideration the 

38% of cases where a user either hangs up or requests an operator, we find that the VoiceDialer system 

has a success rate of only 66%.  

We shall focus on the use of probabilistic machine learning and decision analysis to identify ideal actions 

with regard to the best time to transfer a call to a human operator. As we shall see, the policy takes into 

consideration the real-time stream of evidence, gathered by the automated dialog system over the course 

of a call session, and the current load on a team of human operators.  The analysis highlights the promise 

of integrating, in a graceful manner, human and computational intelligence in the form of dynamic 

decision policies that take into consideration the changing evidence about the progression of interactions 

with an automated dialog system, and potentially fast-paced changes in load on human operators. Over 

longer periods of time in the course of the evolution of technology, the approach provides a means for 

ideally harnessing automated dialog systems as their competency grows with improvements in the 

underlying recognition technologies—or diminishes with the increasing size or scope of the problems 

faced. 

3.  Policies for Transfer from Machine to Human Operators 

To highlight key concepts, we shall focus on a time-centric utility model for guiding the construction of 

policies for transferring a caller from the automated dialog system to a human operator.  With this 

preference model, we consider time as a measure of cost, and examine methods for minimizing the time 

required for the appropriate routing of a call.   That is, we assume that the utility of a call-handling action 

is captured by the total time required for a caller to be routed to a target telephone number, and we 
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consider situations where callers attempt to work with the automated dialog system or request routing to 

an operator, rather than hanging up. We will explore a more detailed utility model in Section 6, and 

introduce there a consideration of such real-world issues as frustration with dialog errors, with the time 

spent in a quiet queue waiting for human attention, and the cost to a business of losing customers via 

people hanging up in frustration [12]. 

In our approach to complementary computing for a system composed of an automated dialog system and 

human operators, we employ machine learning to build models that predict the ultimate outcomes of a 

session. We consider inferences about the outcomes and durations of interactions over sessions as key 

building blocks of decision-theoretic call-transfer policies.  We seek to develop predictive models that 

can be applied anytime in a call session, and report, based on observations seen so far, the probability 

distribution over the outcomes and overall durations of the interaction.   Such models could provide 

predictions at each step of a dialog, via an analysis of observations gathered up to the current time during 

the interaction.   

We use p(H|E,ξ) as the probability distribution over the ultimate outcomes H of an interaction with an 

automated dialog system for call handling, given observational evidence E and background information, 

ξ.  We wish to learn models that can be used to infer the likelihoods of different outcomes and the 

expected duration of the interactions, conditioned on the outcomes at hand. The expected duration of a 

caller’s interaction with the automated portion of the call handling, ta, based on an observed stream of 

evidence is, 

                                               tdtEHtpEHpt
t

ii i
a ),,|(),|( ξξ ∫∑=                                               (1) 

That is, to compute the expected time of a caller’s session with the automated dialog system at any point 

in a dialog with the automated system, we consider the expected duration of the session conditioned on 

each ultimate outcome Hi of the session and weight these times by the likelihood of each outcome.  We 

integrate over time to compute the mean time expected for the interaction with the automated dialog 

system until an outcome is reached, conditioned on the occurrence of each outcome, Hi.  For simplicity, 

we shall rewrite this mean time as <t| Hi.>, which we refer to as the mean conditional time for each 

outcome state.  Rewriting Equation 1 with mean conditional times <t| Hi>, we have  

                                                  ><=∑ ii i
a HtEHpt |),|( ξ                                                   (2) 
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We now focus on learning predictive models that provide the probabilities of different outcomes, as well 

as the expected durations of the remaining times of interaction, conditioned on observations gleaned from 

the history of the dialog session at hand and the wait time for an operator. We will apply these 

probabilistic models to generate policies that drive real-time decisions about transferring the user from 

the automated spoken dialog system to a human operator.   

Let us consider the experience with continuing to engage the status-quo automated dialog system. Callers 

who choose to work with the automated dialog system, versus hanging up in frustration, will eventually 

either be provided with the information they need from the automated system, take the initiative to 

transfer themselves to an operator manually (if they understand how to engage the system with touchtone 

commands), or be transferred automatically to an operator.  

We will consider the total expected time required to receive routing assistance as including both the time 

required for the automated component and the wait for an operator, should a transfer to an operator 

occur.  We can decompose outcomes into situations that lead eventually to a transfer to an operator, Ho, 

and those that are eventually successful via automation without any operator attention, Ha. Beyond the 

time ta working with the automated dialog system, we also consider the expected duration of time to that a 

caller will spend in a queue waiting for a human operator and then being assisted by an operator, should 

the caller be transferred to a human operator for assistance.  The mean wait time for an operator can be 

sensed directly at any moment by monitoring queues in a call center.  We will assume that an operator 

can relay immediate, accurate assistance to the user.  

Putting everything together, the total expected time associated with engaging the legacy system call 

routing system, ta,o, is 

                       ><++><= ∑∑ a
ii

a
i

oo
ii

o
i

oa HtEHptHtEHpt |),|()|)(,|(, ξξ                     (3) 

That is, the total time for the interaction with the status-quo system is the expected time required by the 

automated and potential human-assisted aspects of the call-handling session, in cases where people are 

routed to human operators with the legacy system.  

Let us now dive deeper into the machine learning and reasoning to infer ideal call-handling policies for 

minimizing the expected time for the interaction with the combined human—computer call-handling 

system. Rather than rely on the legacy fixed transfer policy, predictive models can provide a continuing 

stream of forecasts about the total time that is expected to be required with the use of the default policy 

encoded in a status quo call-handling system. We use such estimates in an ongoing comparison of the 
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expected time until reaching a goal, provided by Equation 3, with the expected time after making an 

immediate, courteous automated transfer into the queue for an operator.  

At the crux of computing the expected time for the overall process of call routing is the construction of 

models that can provide the probabilities of successful call handling by the automated system and of 

transfers to human operators, and the conditional expected durations for the different outcomes. Given 

the availability of inferences about these probabilities, and observations about the current load of 

operators, we can make decisions about if and when to execute an automated transfer to a human 

operator.   

In operation, we continue to check the load on operators and test to see if the expected time for 

continuing the automated dialog with the user is greater than the time spent waiting in the queue and then 

being serviced by a human operator, testing if ta,o – t > to. where t is the amount of time already invested 

in interacting with the system.  If the expected wait time at any point in the automated dialog becomes 

greater than continuing to engage the user with the automated system, we immediately transfer the user to 

the queue for a human operator.  As we are doing point-wise checking, the approach can be viewed as a 

greedy approximation to a solution invoking a more complex look-ahead strategy.   

We note that the transfer policy employed at an organization can change the numbers of people being 

transferred into a queue, thus influencing the wait times. We have assumed in this section that any single 

transfer does not influence the wait time significantly in a large-scale system; we simply continue to 

measure the overall result of a transfer policy across the organization directly via direct inspection of the 

wait time. We could extend this model by including a term that increments the wait time with each 

transfer.  In Section 7, we will discuss the opportunity for modeling the influence of a transfer policy 

being executed across a large organization on the overall wait times experienced by people being 

transferred to operators at different times of day.  Such analyses, employing queuing theory for modeling 

loads on the overall system, promise to be useful for guiding offline decisions about the ideal number of 

human operators to employ, given the competency of an automated dialog system. 

4.  Constructing Probabilistic Models to Predict Dialog Outcomes 

With the goal of developing dynamic ideal transfer policies, we seek to construct probabilistic models 

from a database of session logs. We wish to harness sets of observations drawn from traces encoding the 

timing of actions and recognitions associated with a user’s interaction with VoiceDialer’s spoken dialog 

system. At the core of this challenge is gaining an understanding of the discriminatory power of 
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observations for making inferences about different outcomes, and of session durations for different 

outcomes.   

Let us first consider the observations available for building case libraries for machine learning. Rather 

than applying special feature-selection methodologies for choosing specific features a priori, we  

compiled a set of features that we could engineer from the available log data with relative ease, and then 

sought to identify the most discriminatory features through Bayesian structure learning, as we describe 

below.  The log data includes n-best list hypotheses, a list of top candidates identified by the speech 

recognizer after every caller utterance.  A number of the features that we provided to the learning 

algorithm were derived from these recognition distinctions.  The features we used to learn predictive 

models can be generally classified into four broad categories (see Appendix I for a complete list of all of 

the features we used to build predictive models): 

• System and user actions: System and user observations represent all prior actions taken by the 

system or the user. Such evidence includes the observation that the dialog system asked the user to 

confirm between its top two guesses of names based on the user’s utterance, or to spell the last name 

of the intended person, and the observation that the user has pressed a touchtone key rather than 

providing an utterance. 

 

• Session summary evidence: Session summary observations summarize the overall statistics of 

events within the session once it has finished. Such observations include the number of attempts by 

the user to specify the name of the person being sought, the number of n-best lists that were 

generated by the logging system, and the overall duration of session. 
 

• N-best list evidence: N-best list observations refer to features output by the speech recognition 

system including the range of confidence scores assigned by the speech recognition subsystem, the 

mode of the scores, the maximum consecutive score difference, and the count of the most frequent 

first/last/full names that appears among the hypotheses.  We sought to derive as many speech-related 

features as possible from the n-best list and to conduct feature selection later using our learning 

procedure for model selection. 
 

• Generalized temporal evidence: Generalized temporal features capture trends across the multiple 

n-best lists generated during a dialog, such as whether the top name hypothesis is the same between 

two n-best lists or the maximum number of times any name occurs in multiple lists. 
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We pursued the construction of models that could be used to infer the likelihood that a session with the 

VoiceDialer system would ultimately handle the whole session successfully, ending in a successful 

transfer to the right person, or fail to autonomously address the caller’s goal. Failures for automated 

handling includes sessions where 1) the caller is ultimately transferred to an operator by the legacy 

policy, given a failure to match the name it recognizes; 2) the caller is transferred to the operator after the 

maximum number of mistakes tolerated by the system has been reached; 3) the user hangs up 

prematurely, and 4) the user requests an operator via a touchtone command.   

We constructed two models for predicting outcome.  The first considers all outcomes, including cases 

where callers disengage via a hang up.  A second model, which focused on predictions for engaged 

callers who stick with the system, was developed for use in studies of the behavior of call-transfer 

policies based on time-minimization for callers.  The engaged model removes consideration of the 

situation and cases where callers hang up.   

We now turn to the learning procedure, the models constructed, and the evaluation methods used to test 

predictive accuracy.  Given the enumerated features, we employed Bayesian structure learning to build 

Bayesian networks for predicting session outcomes.  We used methods developed by Chickering, et al. 

    

                 
 

Figure 1. Graphical model learned from logged training data for predicting duration of interaction with 

a dialog system, conditioned on the ultimate outcome being a successful transfer. Variables directly 

influencing the duration variable are highlighted with shaded fill. 



 

 11 

[3] and by Friedman and Goldszmidt [5] to construct the models. These methods employ heuristic search 

over feasible probabilistic dependency models guided by a Bayesian score to rank the candidate models, 

each represented as a candidate Bayesian network of the set of random variables under consideration, and 

proposed structure of directed arcs between the nodes.  In constructing a Bayesian network, the system 

builds and explores a search tree where each node represents a Bayesian network with a different 

dependency structure.  Each node generated during the search procedure is assigned a Bayesian score, 

which is an estimation of the likelihood of the data given the proposed dependency structure. 

The Bayesian structure search method we use employs both global and local search. For each variable, 

the method creates a tree containing a multinomial distribution at each leaf, exploiting the local structure-

search methods described in Friedman and Goldszmidt [5]. The method provides a graphical view of the 

constructed model, enabling us to inspect multiple variables and influences. 

We constructed two classes of models from the training data.  One class of models predicts the ultimate 

outcome of a session. The other class predicts the expected duration of an interaction for each ultimate 

outcome. We constructed a set of distinct Bayesian network models for each class for each step of a 

dialog with the legacy system, where steps refer to places in the dialog where processing of callers’ 

utterances took place.  These are points in the dialog associated with the generation of an n-best list by 

    

                 
 

Figure 2. Graphical model learned from logged training data for predicting the ultimate out of an 

interaction with a dialog system. Variables directly influencing the outcome variable are highlighted 

with shaded fill. 
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the speech recognizer.  Based on the configuration of the legacy system, dialog sessions did not last more 

than four steps.   

We employed a ten-fold cross-validation methodology for constructing and evaluating the models from a 

library of cases, where each case includes the outcome, duration, and step-by-step observations made 

during engagements by a caller with the legacy dialog system.  The ten-fold cross validation is executed 

as follows: For each dialog step, we select a set of ten different folds of training and test data from the 

total number of cases for that step. The folds are selected by randomly segmenting case libraries into ten 

equal-sized sets of cases.  Ten predictive models are constructed for each prediction of interest.  The 

training data for each model is composed of nine of the ten folds.  The performance of each learned 

model is then tested with cases contained in the tenth fold, which had been held out from the training.  

For predictions of the dialog outcomes, classification accuracies are computed for each of the folds and a 

mean and standard deviation of the accuracies for the ten folds are reported.  We also performed ten-fold 

cross validation for building and testing models of duration at each step, conditioned on different 

ultimate outcomes. We made sure to manage the folds downstream such that training cases used to build 

the outcome classification models were not used to test outcomes of the duration models. For predictions 

of durations, we report results as means and standard deviations in errors in time predicted for the 

durations of calls versus the actual durations across the ten folds, for each outcome and step.   

Table 1. 

Classification accuracies and lifts of predictive models for ultimate outcomes by dialog step. 

  Step 1 Step 2 Step 3 Step 4 

 All     

     Call outcome  0.86 (0.01) 0.77 (0.01) 0.69 (0.02) 0.81 (0.02) 

     Lift  0.17 (0.01) 0.15 (0.02) 0.19 (0.01) 0.23 (0.04) 

 Engaged     

     Call outcome  0.90 (0.01) 0.80 (0.01) 0.75 (0.02) 0.82 (0.02) 

     Lift 0.17 (0.01) 0.13 (0.01) 0.21 (0.03) 0.23 (0.04) 
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Table 2. 

Mean duration errors and lifts of predictive models by dialog step. 

  Step 1 Step 2 Step 3 Step 4 

 Duration | Automation success     

          Mean error 4.30 (0.21) 5.17 (0.21) 6.13 (0.30) 6.39 (0.88) 

           Lift 9.79 (0.32) 10.18 (0.25) 9.76 (0.44) 9.95 (1.25) 

 Duration | Name unrecognized     

          Mean error 9.78 (0.59) 9.24 (0.41) 8.79 (0.65) 6.40 (0.72) 

           Lift 10.63 (0.43) 10.98 (0.61) 11.40 (0.75) 13.01 (0.66) 

 Duration | Max errors     

           Mean error 10.39 (0.80) 12.24 (0.97) 14.54 (2.69) 14.58 (5.51) 

           Lift 11.31 (0.61) 12.64 (1.01) 13.28 (1.55) 12.91 (2.54) 

 Duration | Hang up     

           Mean error 7.37 (1.55) 8.41 (1.88) 10.00 (5.07) 10.381 

            Lift 8.26 (0.89) 8.17 (0.87) 11.06 (3.24) 0.00 

 Duration | Operator requested     

           Mean error 5.63 (0.84) 7.043 (1.52) 9.19 (3.03 5.971 

           Lift 10.55 (0.64) 7.19 (1.18) 7.80 (2.78) 0.00 

 

In summary, we learned predictive models for outcomes and expected durations for each outcome for 

each of the four maximum tolerated steps of the dialog.  We constructed, for each step of the dialog, 

Bayesian networks that predict the likelihood of each of the ultimate outcomes under consideration. The 

full outcome model considers five ultimate outcomes and the engaged model considers four outcomes, 

bypassing consideration of the hang-up cases. We additionally constructed Bayesian networks for 

predicting the durations conditioned on each of the five ultimate outcome states for each of the four 

 
 
1 These outcomes are based on a 70/30 split given a sparcity of cases for the outcomes; see discussion in paper for details. 
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dialog steps. At each step, the probabilistic models perform inference from observations gathered in 

previous steps of a session, including features seen in the current and all earlier steps. 

Table 1 displays the classification accuracies of predictions by the models that predict the ultimate 

outcomes of dialog sessions, for both the complete and the engaged models, for each of the four dialog 

steps.   Table 2 displays the errors in predicted durations for each of the ultimate outcomes, based on 

observations made in each dialog step.  The tables report the means and standard deviations of the 

accuracies over each of the ten test sets held out during the cross validation.  In addition, means and 

standard deviations are reported on the lift  associated with each of the predictive models over the 

respective marginal model.  The lift captures the difference in the predictive power of the learned models 

and the marginal models—classifiers that employ the background statistics for predictions, and select the 

most likely outcome based on these statistics.  For two of the conditional duration outcomes, both 

occurring in the fourth dialog step, a low number of cases for the hang-up and operator-request cases (37 

hang-up cases and 12 user operator request cases respectively) made performing a tenfold cross 

validation inappropriate.  For these two outcomes, we performed a single 70/30 split; that is, we trained 

predictive models for these cases on 70% of the data and tested on the remaining 30%.  As we have a 

single fold and test analysis for each, we do not report a standard deviation on these results.  Overall, we 

saw significant lifts over marginal models in all cases except for the two data-sparse outcomes.  We 

believe that additional data would lead to enhanced predictive power for the two latter outcomes. 

Beyond predictions, learning graphical probabilistic models can be used to gain insights into the 

influences among variables, and the overall sensitivities of predictions to observations.  We inspected the 

Bayesian networks to seek a deeper understanding of the domain.  Figures 1 and 2 display two of the 

learned graphical models.  Nodes are random variables and arcs represent learned probabilistic 

dependencies among the variables. Definitions of the model variables are contained in Appendix I.   

Figure 1 shows the Bayesian network learned for predicting the duration of the interaction with 

VoiceDialer given an ultimate outcome of successful transfer, when evaluated at the first step of dialog.  

We show the model with best performance on test data, drawn from the ten models constructed during 

the cross-validation procedure for this dialog step.  Variables showing significant influence for this 

model include the greatest difference in confidence scores between any two name hypotheses 

(greatestConsecDi), the duration of the interaction so far (latency), number of name attempts detected so 

far (numOfNameAttempt), the time of day that the log was recorded (reco_date), and various statistics 

generated from the n-best list generated by the speech recognition system. The latter include such 
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statistics as the arithmetic mean of all the confidence scores in the first recognition (arith_mean_1) and 

the kurtosis of the score distribution (kurtosis_1).  Figure 2 displays the graphical structure of the best 

performing model at the first step of a dialog for predicting the ultimate outcome of the dialog session. 

This model was selected from the ten models learned for this dialog step as part of cross validation 

process.  As highlighted in the figure, similar features have influence in the prediction of the long-term 

outcomes of dialog sessions. 

As for some general reflections about the learned Bayesian networks, we found that the graphical models 

showed that inferences about the durations and the ultimate outcomes of sessions are influenced by 

observations drawn from multiple classes of evidence.  We found that generalized temporal features, 

such as the maximum number of times a first or last name identified during the first dialog turn appears 

in successive turns, tend to have discriminatory power.  Other influential observations include subtle 

characteristics of the distribution of confidence scores reported by the VoiceDialer’s speech recognition 

system such as the skewness and kurtosis of the distributions of these scores.  We also found that the 

number and nature of relevant features for predicting outcomes and durations differed depending on the 

dialog step.   

5.  Exploration with Simulations using Real-World Cases 

In use, we substitute inferences about the probability distributions over outcomes and durations generated 

by the learned Bayesian networks into Equation 3 and transfer engaged callers to human operators when 

that transfer is associated with a lower expected time than continuing on with the automated dialog with 

the legacy system.  To test the value of overlaying the decision-theoretic call-transfer policy on the 

legacy system, we constructed a simulation system.  The simulator steps through traces of real-world 

calls drawn from the test case library, and allows us to explore the influence of using the decision-

theoretic policies at different steps. For explorations, we apply models to cases held out from the training 

of models for each fold of the cross validation.   
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Figure 3. Total numbers of callers staying in legacy system (black bars) versus requesting a transfer to an 

operator (gray bars) at each step in the dialog, from case library of logged data. 

 
For each call, we have access to a log that contains timing information as well as the series of 

recognitions and related statistics of the interaction.  We also have the ultimate outcome and duration of 

the interaction.  When exploring the influence of the policies that minimize expected total time, the 

simulator examines the log of test calls and executes at each step, the appropriate model for ultimate 

outcome of the interaction, and the set of models for duration conditioned on each outcome—considering 

the observations available at the dialog step under consideration. That is, at each step, the outcome model 

is used to compute the probability distribution over the ultimate outcomes of the interaction with the 

automated dialog system. The four models for duration provide inferences about the durations of the 

interaction with the system, conditioned on each ultimate outcome.  Decisions about the automated 

transfer are made in accordance with the policy described in Section 3 and can be compared with the 

legacy outcomes. 

As background, Figure 3 shows, for the calls in the case library, the portion of callers remaining in the 

system at each of four steps in the dialog. The figure also shows, at each step, the quantity of callers that 

manually request operator assistance.   Figure 4 through 6 display the results of several analyses with the 

simulator.   
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Figure 4 summarizes the results of a study exploring the percentage of sessions that would have been 

shunted to a human operator by the decision-theoretic policy in advance of callers manually requesting 

an operator.  We consider test cases where callers in reality took a manual action to request a transfer to a 

human operator somewhere in their call session, and note cases, within and across dialog steps, where the 

callers would have been routed by the decision-theoretic policy to the operator in advance of their 

manual action.  At each step of call sessions, the simulation computes the expected duration of sessions, 

by calling predictive models with available evidence to infer probability distributions over outcomes and 

call durations conditioned on the outcomes.  The simulation recommends making a transfer to the 

operator when this action is associated with a lower overall expected duration. We considered the 

behavior of the system on the test cases for different assumed waiting times in the queue for operator 

assistance.  Specifically, we note the percentage of callers who would have been transferred proactively 
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Figure 4. Simulation examining the percentage of callers in the case library who would have been 

transferred proactively by the decision-theoretic policy as a function of varying the assumed wait time 

for operator attention.  The two curves result from the use of models and corresponding test sets 

associated with the best and worst folds for predicting ultimate outcome.  Means and standard 

deviations of the savings per call are displayed for different wait times for each fold under 
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for waiting times starting at zero and successively growing by 10 seconds up to 120 seconds.  For each 

wait time, we compute the mean decrease in the amount of time per session required to be routed 

successfully.   

 

To explore the sensitivity of the results to varying the quality of models, we explored the behavior of the 

decision-theoretic policies within the simulation for the folds associated with the best and worst outcome 

classification models.  Manual transfers were seen in the legacy dialog system for 257 sessions within the 

test library associated with the best model and for 303 sessions of the test libraries associated with the 

worst model.  Figure 4 includes, for each set of test cases, the mean and standard deviation of the savings 

per session for the different waiting times.  We found that the percentage of proactive transfers to be 
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Figure 5. Callers who ultimately received operator assistance in the legacy system who would have 

been transferred proactively by the expected-time minimization policy as a function of assumed wait 

time for human assistance.  The curves indicate the percentage of callers who would have been 

transferred to operators in advance of being transferred via a manual request or via automation within 

the legacy system. The bars show the mean savings in time per session.  
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similar for the best and worst models and their associated libraries of test cases.  For both models, all 

calls are transferred proactively when waiting time is zero.  With increasing wait times for an operator, 

the percentage of proactive transfers falls in a sigmoid manner.  The mean savings for the transferred 

calls is similar for the worst and best modes, but we note that the variance around the savings becomes 

larger with increasing wait times for the less accurate model. 

Figure 5 displays the results of another simulation, exploring proactive transfers coming in advance of all 

transfers to operators within the legacy system.  In this simulation, we move beyond consideration of 

manual requests for operators to consider all transfers to the human operator seen in the legacy system.   

Paths to the ultimate receipt of operator assistance include (1) manual transfers to a human operator, as 

covered above, and automated transfers by the legacy dialog system that occur when (2) the legacy 

system decides that it has heard correctly and that the requested name is not contained in its lexicon, and 

(3) when the system has reached its maximum tolerated errors.   An ultimate routing to an operator was 

seen in the legacy dialog system for 2,115 sessions within the library for the best model and for 2,217 

sessions of the case library for the worst performing model.   Figure 5 shows the changing percentages of 

proactive transfers to an operator for all of these operator-assistance outcomes. The mean reductions in 

session times and associated standard deviations achieved for these proactive transfers are also displayed.  

We note that the fall off in the percentage of callers proactively transferred with increasing waiting times 

is still sigmoid but is significantly less steep over the range of waiting times plotted.  Mean savings in 

time per session are greater but have higher variance than in the case considering only proactive transfers 

occurring before manual requests for an operator.   
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Figure 6. Mean session durations associated with interventions at each step of the dialog system for 

different assumed waiting times for human assistance.   Clusters at each dialog step show mean session 

durations for the legacy system (dark bars) and decision-theoretic policies (white bars) for 20, 40, and 60 

second waiting times (left to right in each cluster). 

 

To further probe the behavior of the decision-theoretic policy relative to the legacy system we explored 

the value of making interventions with the time-minimization policy at each of the dialog steps for 

different assumed waiting times.  The results of these simulations for wait times of 20, 40, and 60 

seconds are displayed in Figure 6.  We note that the interventions are associated with a reduction of the 

call durations and a tightening of the standard deviations around the mean durations. 

The simulations demonstrate the potential value of modifying the legacy system with a utility-directed 

coupling of the system with human operators.  The methods can endow automated dialog systems with 

the ability to shift more calls to people as human resources become available, and, conversely, of relying 

more on automation as human resources become scarce—where it becomes increasingly valuable to 

gamble on the prospect that users might have a successful outcome with the automated system. Such 

resource-sensitive decision policies, guided by the predictive models and a measure of the monitored 

current wait time for human assistance, allow for systems of people and automated dialog systems to 

evolve effectively in light of changing levels of human resources and automated dialog competencies. 
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6.   Toward More Expressive Utility Models 
 

For clarity, we have so far investigated concepts in complementary computing with the use of a 

straightforward time-minimizing model.  A richer preference model takes into consideration a more 

comprehensive measure of utility.  We shall now review a more general handling of utility for guiding 

the transfer of callers from automated systems to human assistance.  The model highlights the potential 

richness of preference considerations, and can guide future data collection and preference assessment.   

In a more general consideration of preferences, we move beyond a consideration of the total time 

required for achieving a goal, to consider the nature of the interaction steps.  In one generalization, we 

would like to consider the differences in the cost of time associated with engaging with an automated 

system versus that of waiting in a queue.  The cost of engaging with a dialog system can be influenced 

greatly by details of the experience. For example, it may be dominated by the number or density of errors 

over the course of a dialog rather than just the clock time associated with interaction with the automated 

system.  Such factors can be folded into a cost-benefit analysis of routing actions under uncertainty, 

considering the number and nature of each step in a dialog.  Beyond the number of turns and wait times, 

the utility of an interaction for a caller may be influenced by other subtle factors.  For example, callers 

may simply have a negative emotional reaction to working with an automated system versus a human 

operator.  Also, a more general preference model considers the nature and preferences of the owner or 

principal agent of the decision making of the overall complementary computing solution.  For example, 

we can consider decision makers at the organizations hosting the automated dialog systems—and 

employing human receptionists—as the principal agents of the actions, and consider the utilities of the 

host decision makers, and consider multiple additional economic factors within the overall solution. 

In a richer utility model, we move from a general notion of time as a cost function into finer distinctions 

about a caller’s effort and frustration.  We distinguish the time that a user engages with an automated 

dialog system, tE, and the time that the user waits in a queue for a human operator, tW.  We introduce cost 

functions, CE and CW, that map the times of engagement and waiting to dollar values, where CE(tE) 

describes the dollar value cost with interacting with the automated dialog system and CW(tW) maps the 

time waiting in a queue for a human operator to a dollar value. Such functions are monotonically 

increasing and potentially non-linear functions. There is opportunity for working with callers to assess 

such cost functions.  Such assessment might be simplified by the assumption of simple parametric 

models like linear or sigmoid models.  For example, for simplicity, one might attempt to map assessments 

of the functions into constant rates, CW and CE, of accruing cost, as dollars per minute.  Beyond simple 
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considerations of the cost of time with engaging in a system, CE(tE) can be formulated to capture the 

frustration experienced by callers with errors of recognition and intention.  In such a formulation, the 

function is designed to map a dollar-value cost to the number and nature of errors, and of such statistics 

as the density of errors over a set of steps.  Creating such a function would rely on careful studies of 

callers’ frustration with errors experienced in working with an automated dialog system, including 

decision-analytic assessments of “willingness to pay” to avoid such experiences. 

Moving to other economic considerations, the decision makers hosting an automated dialog system at an 

organization may have concerns that extend beyond the costs of the interaction to callers.  Let us assume 

that, from the perspective of a decision maker at an organization, the cost of handling a caller with an 

automated dialog system is the cost of maintaining the automated dialog system, amortized per call, CS, 

and that a transfer to a human operator costs Co for each call.  Also, as the decision maker has some 

economic goal in having calls handled appropriately, we assess and represent the cost of losing callers 

via early disconnections via a hang up. We shall refer to this as the cost of disconnection, CD.   

Considering these factors, we start with a basic expression of utility represented as the expected cost of 

the complementary computing solution as follows: 

                                               )(),|( iii i HCEHpCostExpected ξ∑=                                           (4) 

That is, the expected cost with using the legacy system is computed as the probability distribution over 

the ultimate results of sessions, where situations H include the ultimate outcomes and durations, and the 

costs C associated with each. Let us further expand this utility model for the spoken dialog problem, by 

enumerating the outcomes and associated durations, and the costs associated with each of the situations.  

We consider the following outcomes as separate contributions to the overall cost of a session: 

• HA: Caller has success working with the automated dialog system. 

• HAO: Caller is transferred from spoken dialog system to human operator and waits until operator 

is available. 

• HAOD: Caller is transferred from spoken dialog system to human operator but disconnects before 

the operator is available. 

• HD: Caller hangs up while working with the automated dialog system. 



 

 23 

Summarizing the cost considerations, we consider the following terms, accessible as assessments from 

the principal agent of the decision making of the complementary computing system, yielding dollar value 

costs: 

• CS: Cost of maintaining the spoken-dialog system (all costs are dollar values) 

• CO: Cost of human operator handling a call. 

• CD: Cost of losing a caller to a premature disconnection via hang up.   

• CE(tE): Cost function that maps time engaging with spoken dialog system to a dollar value cost.   

• CW(tW): Cost function that maps time waiting in a queue for a human operator to a dollar value 

cost.   

• W: The current sensed length of wait in the queue for a human operator. 

We generalize mean conditional time to the mean conditional cost of time and use <C(t)|H> to refer to 

the expected cost associated with an outcome.  The mean conditional costs are computed by summing the 

cost over the time, weighting the costs by the probability of each of the times.    

Putting all of these terms together, we have as the expected utility of the legacy system for handling each 

call as 
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Assessments of functions for the costs and the probabilistic models we described in Section 4 can be 

plugged into this richer equation.  The remaining missing predictive models required in the richer utility 

model (required for the two inner terms of Equation 5) are inferences about the probabilities that callers 

will hang up as they wait in a queue for an operator, and the probability distribution over the time they 

will spend waiting in a queue before disconnecting.  As indicated in Equation 5, these are likely to be 

functions of the history, and the length of time that they must wait in a queue for the operator.  

In decision making, we compare the expected cost associated with the use of the legacy system as 

computed with Equation 5 and the expected cost of making an immediate transfer to an operator or the 
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queue for the operator if the queue is non-zero.  The cost of the session, following such an immediate 

transfer during the engagement of the user by the automated system is, 
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As with the use of the simpler time-minimization policy described in Section 3, we compare the cost of 

these two policies, and execute a transfer when the expected cost of the immediate transfer is smaller 

than the expected cost of sticking with the legacy system.  This policy is myopic, and thus, may be made 

more accurately with additional lookahead. 

Our discussion of the richer utility model is intended to demonstrate how the basic decision-theoretic 

policy that we introduced in Section 3 can be expanded to consider additional costs and uncertainties.  

The particular costs and uncertainties will differ for different applications depending on characteristics of 

the domain and dialog system, but the principled approach to transferring control from one computational 

or human resource to another based on the consideration of evidence and expected-value decision making 

about the best interleaving of resources remains the same. 

7. Discussion 
 

We have explored a methodology of collecting evidence from an automated dialog system about 

competency and progress, learning predictive models, and then using the models, within an expected 

utility framework, to guide the transfer of control from the automated system to more competent human 

operators.  Key contributions of the methodology include the abstraction of a dialog system into a set of 

stages and the construction and use of predictive models that leverage observations about progress to 

infer, at any of the stages, the overall long-term outcomes of the situation, based on evidence that is 

currently available.  

The approach relies on the reduction of complexity via abstraction of a dialog into a representation of the 

ultimate outcomes and effort required by the user, and the construction of models that predict the 

outcomes and effort.  Complexity is managed by abstracting detailed interactions into stages or key 

branches of a dialog that capture progress, and the leveraging of sets of features at the stages that provide 

updates about ultimate outcomes.  Such evidence includes indications of successes (e.g., confirmations) 

versus failures (e.g., repeats, other signs of frustration) to proceed successfully.   

We decomposed the dialog of the VoiceDialer system into four stages, representing successive depths in 

the dialog tree.  Each step is associated with a caller’s utterance and the associated analysis of the 
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attempted recognition.  We found this to be an efficient and useful decomposition of the dialog and 

logged data for constructing and reasoning with probabilistic models.  For our domain, it was 

straightforward to build models for each depth of the tree, as the maximum depth was four.   

We believe that the methodology is applicable to systems that perform more complex dialogs, including 

dialog systems that seek to fill multiple slots, such as systems designed to book travel plans [17].  We are 

optimistic that similar decompositions can be identified and applied with success in performing 

predictive modeling in more complex dialog systems.  For any dialog system, it is possible to generate a 

tree of outcomes and durations, where the leaves and nodes of the tree represent system actions.  For 

every node and leaf, statistics can be maintained on how often paths are visited, capturing outcomes 

where the system reached particular nodes from the root.  For more complicated domains, it may be 

useful to build predictive models in a selective manner, focusing on modeling progress at major branches 

of the tree—and to access predictions for the models when the system reaches these landmark locations 

during real-time dialog.  The discriminatory power of predicting outcomes and durations of a dialog 

session with models constructed from data gathered at key branches or stages, will likely depend on the 

details of the system, domain, and the particular formulation of abstractions of the dialog into landmarks 

or phases that capture notions of progress through the dialog.  

In the work we described, we collected data and constructed predictive models for the ultimate outcomes 

and durations at successive major steps in the dialog, and also increased the size of the feature space to 

include distinctions observed in prior steps.  The construction of models that predict the ultimate 

outcome at each step may be unnecessary.  We believe that useful predictors about outcome may be 

constructed by limiting the analysis to the last n steps of a dialog at each point in a dialog, or within the 

set of steps within a well-defined subdialog.  Such moving windows of analysis may be combined with 

more global models that look at densities and burstiness of failures to make progress.  We look forward 

to additional research on the feasibility of using such limited moving windows of analysis. 

Our goals were to explore the use in dialog systems of models that can predict the ultimate outcomes of 

sessions as well as the durations expected before the outcomes are reached and, to investigate how such 

predictive modeling could be used to guide decisions about transferring calls from automated dialog 

systems to human operators.  We employed a particular form of learning, Bayesian structure search, that 

centers on the construction of probabilistic graphical models.  The method allows us to visually inspect 

inferred probabilistic relationships among variables. We found that the learning methodology provided 

useful predictive accuracies in our studies.  Other learning methodologies, as well as marginal statistics, 
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could be used in place of the Bayesian structure search in the complementary-computing approach 

presented here. 

We note that we have assumed a challenge from a specific family of complementary computing 

challenges—the class of problems where we seek to introduce automation to reduce the cost of expert 

human assistance, in a context where humans are considered to have the ability to solve challenges 

accurately and efficiently and where preliminary automation may be prone to errors.  History is rife with 

examples of the maturation of automation, where early, preliminary solutions that do not perform as well 

as human experts, evolve into approaches that provide equivalent or even better performance than that 

associated with human intelligence.  Thus, more general approaches to solving complementary-

computing problems involve considering the set of resources, including computational agents and groups 

of experts, and reasoning about the ideal of flow of analysis to solve a challenge. 

We note that complementary-computing methods extend beyond real-time decision making about the 

flow of control in solving problems.  We conditioned the analysis of call-transfer policies on a fixed staff 

of operators and fixed technology, and take as inputs the current wait time for gaining access to human 

assistance. Moving beyond such a fixed-staff assumption, the policies can be used offline in a design 

setting to inform decisions about ideal expenditures for personnel and technology.  As an example, it is 

feasible to couple expected-value analyses of ideal couplings of people and computing systems with 

queue-theoretic simulations that provide estimates of the potential waits for callers to receive assistance 

from operators [12].  Simulations with queuing models can elucidate such factors as the influence of a 

transfer policy and number of operators on the length of queues at peak call times.  These simulations can 

allow decision makers to examine how changing the number of operators on staff or shifting or updating 

the dialog technology would influence the expected cost of handling calls.   

Although simpler, heuristic strategies for joining human and computing resources into effective services 

might work well in particular cases, we believe that the principled methodology that we have discussed 

has broad applicability to a spectrum of complementary computing challenges.  We found that the 

principled approach does not impose a great deal of overhead to implement and execute, and that it can 

provide insights into the relationships and tradeoffs among key control variables.  The decision-theoretic 

models allow for optimizations that would likely be difficult to discover through experimentation with a 

few approximate designs. 
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8.  Related Research 

Other research teams have explored the use of statistical methods to enhance various aspects of spoken 

dialog systems.  The closest related research centers on studies of methods for predicting potential 

problems with a user’s interactions with a spoken-dialog system.  Most efforts in this realm have focused 

on identifying when users are experiencing poor speech recognition behavior [10].  In the TOOT system, 

decisions to employ alternate dialog strategies, such as whether to tightly direct users versus allowing 

users to have input or initiative in the flow of a dialog, are based on a user’s responses.  These policies 

are represented as rules generated from a classification analysis of “good” and “bad” dialogs trained over 

dialog sessions [11].  Unlike the decision-theoretic approach that we have presented, the investigators 

employed deterministic policies as a function of the output of classifiers. 

Models that move beyond identification and predict where problematic situations are likely to occur in a 

call-handling context have been previously explored within the AT&T How May I Help You (HMIHY) 

system [9,15,16].  The HMIHY system considered sets of evidence from a speech recognition system, a 

natural language understanding component, a dialog manager, and sets of hand-labeled features. 

Classifiers were trained to predict failures before they might occur based on observations available to the 

system after different steps of a dialog.  Our work extends prior efforts in several ways. We also learn 

and reason explicitly about both outcomes and durations to generate the decision-theoretic call-transfer 

policies, and we employ statistical modeling and prediction within an expected-value decision making 

framework that seeks to ideally use the changing availability of human resources to work with people.  

Finally, the approach that we take is similar to decision-theoretic planning using fully-observable or 

partially-observed Markov decision processes (MDP) [8].  In recent work, an application that makes use 

of MDP models for providing care to patients with dementia explored the inclusion of a fall-back option 

to a person in its action set [2].  It is feasible to represent the decision-making task of transferring to an 

operator as an MDP.  However, using an MDP would require the overhead of formulating a stochastic 

transition model, assuming a Markov assumption on the state space, and decomposing the objective 

function into local rewards, mapped to each state.  In contrast to the MDP approach, we have learned rich 

models at several successive stages of a dialog, where the models predict the ultimate long-term outcome 

and expected durations of the session.  
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9.  Summary and Conclusion 

We focused on the use of the predictive models in an expected-time analysis to identify the best time to 

transfer a caller automatically to a human operator at different points in callers’ interactions with a 

legacy automated call-handling system.  We presented the case study as an example of a larger space of 

opportunities in the realm of complementary computing, pursuing the development of ideal 

configurations, patterns of initiative, and workflows within systems composed of people and 

computational components.  

We discussed the abstraction of the flow of interaction of an automated dialog system into a set of 

conversational steps, the collection of competency and progress-related data as callers progressed 

through the dialog steps, and the construction of predictive models via machine learning from data that 

had been logged by a voice routing system in use for several years at our organization.  We demonstrated 

the construction of models that can predict, at each step within a dialog, the ultimate outcomes of 

interactions with an automated dialog system, and the expected durations of time of the session, 

conditioned on each outcome.  Then, we presented policies that transfer calls away from a legacy system, 

based on an objective function that seeks to minimize the overall interaction times for callers.  We 

discussed how the policies can be executed, relying on the inferences from the learned models about the 

ultimate outcomes and durations under uncertainty.  We tested the behavior of the policies within a 

simulation environment that uses as test cases real-world calls that had been logged by the legacy 

automated dialog system.  We examined recommended transfer actions, conditioned on different 

assumed wait times for accessing a human operator.  The studies with the time minimization policy 

showed that the decision-theoretic policies, driven by the learned models, can save callers time.  After 

investigating the time-minimization policies, we reviewed a more detailed preference model that 

represents multiple dimensions of cost and value in a complementary-computing solution.  The extended 

model highlights directions in utility assessment, data collection and modeling for complementary 

computing solutions. 

The methods and studies demonstrate specifically the value of employing the decision-theoretic policies 

for transferring callers to human operators.  More generally, the methodology demonstrates how we can 

use machine learning to characterize an automated service, and then apply inference with learned models 

to build a more reflective service that can reflect about the best times to engage human resources to assist 

with solving problems. 
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We hope that the methods and case study we presented will stimulate additional interest in opportunities 

for employing machine learning and expected-value decision making to weave computational and human 

resources together into effective composite systems.  We believe that there is a large space of 

opportunities with employing analogous learning and reasoning in other realms to guide the design, 

fielding, and testing of complementary-computing solutions that optimize the way people and  machines 

work together to deliver solutions and services.  
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Appendix I. 

Observational evidence used in models 

 

Dialog status log  

• numSteps: The number of steps as defined by the logging system; the number does not 

necessarily match the number of utterances. 

• systPrompts:  The prompt type sequences such as 'Greeting with Operator Option' followed by 

'Confirm Top Choice,' followed by 'Spell First Name,' etc. 

• userAnswerTypes: User answer sequences such as 'Name' followed by 'Spelling'. 

• numOfTurns:  The number of turns, defined as the number of user utterances. 

• numOfNameAttemptsDetected: The number of name attempts detected by the recognizer.  At 

times, for a single utterance, there may be two name attempts detected, depending on whether the 

recognizer goes through a second pass. 

• numNBestList: The number of the n-best lists generated by the recognizer.  This number does 

not necessarily match numOfNameAttemptsDetected. 

• reco_date: The date of the interaction.  As employees leave and new employees are hired, the 

efficacy of the language model for different requests may change over time. 

 

Speech recognition features-base level 

For any observed feature_i, the index i represents the ith utterance. 

• maxRedundFirstNames: Maximum number of times a first name is repeated in the n-best list; 

i.e., the cardinality of the most frequently occurring first name.  

• maxRedundFirstNames: Maximum number of times a first name is repeated in the n-best list. 

• maxRedundLastNames: Maximum number of times a last name is repeated in the n-best list. 

• maxRedundFullNames: Maximum number of times a full name is repeated in the n-best list. 
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• freqRedundFirstNames: Number of distinct first names that have one or more repetitions in the 

list; i.e., the cardinality of distinct names that are found to be repeated 

• freqRedundLastNames: Number of distinct last names that have one or more repetitions in the 

list 

• freqRedundFullNames: Number of distinct full names that have one or more repetitions in the 

list 

• count: The number of items in the current n-best list. 

• sum: The sum of all the confidence scores. 

• maximum: The maximum confidence score. 

• minimum: The minimum confidence score. 

• range:  The difference between the maximum and minimum confidence scores. 

• median: The median confidence score if any. 

• arith_mean: The arithmetic mean of the confidence scores. 

• geo_mean: The geometric mean of the confidence scores.  

• greatestConsecDiff: The greatest difference between any two consecutive confidence scores, if 

there are two or more confidence scores. 

• variance: The variance of the confidence scores. 

• standard_dev: The standard deviation of the confidence scores. 

• standard_error: The standard error of the confidence scores. 

• mode: The mode of the confidence scores. 

• modeFreq:  The frequency of the mode. 

• skewness:  The skewness of the distribution of confidence scores. 

• kurtosis: Kurtosis of the distribution of confidence scores. 

Speech recognition feature-combinations 

• For any observed feature_i_j, the index i and j represent the ith and jth utterance respectively. 
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• maxRedundFirstNamesBtw_i_j: The maximum number of times any first name is repeated 

between the ith and the jth n-best lists; i.e., the cardinality of the most frequently occurring first 

name between lists. 

• maxRedundLastNamesBtw_i_j: The maximum number of times any last name is repeated 

between the ith and the jth n-best lists. 

• maxRedundFullNamesBtw_i_j: The maximum number of times any full name is repeated 

between the ith and the jth n-best lists. 

• freqRedundFirstNamesBtw_i_j: The number of distinct first names that have one or more 

repetitions in both the ith and jth n-best lists; i.e., the cardinality of distinct first names that 

repeat between lists. 

• freqRedundLastNamesBtw_i_j: The number of distinct last names that have one or more 

repetitions in both the ith and jth n-best lists. 

• freqRedundFullNamesBtw_i_j: The number of distinct full names that have one or more 

repetitions in both the ith and jth n-best lists. 

• getsBetterBtw_i_j: Whether the average confidence score is higher in the jth utterance than in 

the ith utterance 

• topScoreDiffBtw_i_j: Difference between the ith and jth top confidence scores 
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