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Abstract— With introduction of new technologies in the
operating room like the da Vinci R⃝ Surgical System, training
surgeons to use them effectively and efficiently is crucial in
the delivery of better patient care. Coaching by an expert
surgeon is effective in teaching relevant technical skills, but
current methods to deliver effective coaching are limited and
not scalable. We present a virtual reality simulation-based
framework for automated virtual coaching in surgical edu-
cation. We implement our framework within the da Vinci R⃝

Skills SimulatorTM. We provide three coaching modes ranging
from a hands-on teacher (continuous guidance) to a hands-
off guide (assistance upon request). We present six teaching
cues targeted at critical learning elements of a needle passing
task, which are shown to the user based on the coaching
mode. These cues are graphical overlays which guide the
user, inform them about sub-par performance, and show
relevant video demonstrations. We evaluated our framework
in a pilot randomized controlled trial with 16 subjects in
each arm. In a post-study questionnaire, participants reported
high comprehension of feedback, and perceived improvement
in performance. After three practice repetitions of the task,
the control arm (independent learning) showed better motion
efficiency whereas the experimental arm (received real-time
coaching) had better performance of learning elements (as per
the ACS Resident Skills Curriculum). We observed statistically
higher improvement in the experimental group based on one of
the metrics (related to needle grasp orientation). In conclusion,
we developed an automated coach that provides real-time cues
for surgical training and demonstrated its feasibility.

I. INTRODUCTION

Since its introduction, robot-assisted minimally invasive
surgery (RAMIS) has continuously revolutionized surgical
procedures across disciplines – urologic, gynecologic, head
and neck, and more recently, general surgery. The da Vinci R⃝

Surgical System is the predominant robotic platform to
perform RAMIS procedures. Like any other skilled activ-
ity, there is a learning curve associated with RAMIS [1].
However, there is no standardized curriculum for training
surgeons in RAMIS nor a board certification along the lines
of Fundamentals of Laparoscopic Surgery [2]. Depending on
resources available at a hospital to train surgeons, there may
be wide variety in technical proficiency achieved by their
surgeons in RAMIS.

Outside of robot-assisted surgery, where board certifica-
tions have been established, there has been an advocacy
for simulation training and competency testing by surgical
educators [3]. Even then, majority of training and learning
occurs in the operating room (OR) which may not be in the
best interest of the patient. Previous studies have shown that
poor technical skill is associated with an increased risk of
adverse patient outcomes [4], [5]. This motivates moving as
much learning out of the OR as possible.

Advancements in technology have led to new venues
for surgical training, e.g. virtual reality (VR) simulation in
laboratories. VR simulation is available round the clock and
thus enables self learning among trainees. However, adoption
and usage of this technology within surgical skills training
curricula has been poor [6], since current VR platforms are
passive and do not actively assist trainees with their learning.
We strongly believe that providing effective coaching i.e. rel-
evant, targeted, critical and individualized, in a VR training
setting can address current shortcomings of surgical training
and efficiently make surgeons “OR-ready”.

Recent studies have shown expert-based surgical coaching
to be effective in skill development [7], [8], [9], [10]. In these
interventions, an experienced surgeon coach engages with the
trainee in an hour long session to review their performance
using a video recording. In addition to expert availability
and loss of revenue to the hospital, such expert coaching is
culturally limited by concerns that surgeons being coached
may be perceived as incompetent or may lack autonomy
[11]. We believe that automating such expert coaching can
be achieved in VR simulation resolving the limitations of
manual coaching.

To the best of our knowledge, there are no existing
automated methods that deliver expert-like feedback for
surgical training. Previous works have explored mechanisms
to provide indirect feedback. Reiley et al. [12] displayed
a visual scale to indicate excessive force application by
surgeon’s instrument on objects. They showed that such
feedback resulted in reduced suture breakage, lower forces,
and decreased force inconsistencies among novice surgeons.
Chen et al. [13] demonstrated the use of virtual fixtures for
development of surgical skills in a robot-assisted suturing and
knot tying simulation task. They showed that users assisted
by such virtual fixtures had higher targeting accuracy and
motion efficiency, and lower tearing force and number of
slips. However, these mechanisms lacked feedback gener-
ation to explain mistakes and deficits in surgeon’s skills.
Teaching common errors in performance, identifying them,
and providing feedback on them has proven significance
and value in skill learning [14], [15], [16]. We believe that
teaching and feedback are important components of effective
coaching.

In this paper, we present a virtual coaching (VC) frame-
work that delivers real-time teaching and feedback for effi-
cient surgical skill learning in a VR setting. We introduce the
concepts of teaching cues and deficit metrics to deliver such
teaching and feedback. We present three different modes of
coaching that vary in level of interventions to suit the trainee
proficiency. We describe a pilot study to test the effectiveness
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Fig. 1: Task progression graph for needle passing task. The
nodes represent needle passing through: none of the targets
(State 0), the entry target (State 1), both of the targets
(State 2), and only the exit target (State 3). The top dashed
arrows indicate retraction of needle in response to errors
in execution. The bottom dashed arrows indicate actions
resulting in deviations from the task protocol.

of our proposed VC framework in imparting surgical skills
learning. We discuss the study outcomes and potential future
steps to address current limitations of the framework.

II. FRAMEWORK

Our VC framework comprises a task progress manager,
three coaching modes, context-relevant teaching cues, and
a module for data logging and analytics. We implemented
the proposed automated surgical coach using a simulation
sandbox, that is based on the open source library H3DAPI1.

A. Task Progress Manager (TPM)

Context-relevant teaching, feedback and assessment rely
on extraction of contextual information about the task flow.
We model the task flow as a directed graph. The nodes rep-
resent task state that includes information about instruments,
objects and targets. While, the edges represent a sequence of
interactions that result in state transitions. For example, in
a needle passing task, current state comprises information
about needle driver, needle and tissue. Interactions occur
between needle driver and needle, and between needle and
tissue. This sequence of interactions may result in a transition
in the task flow from idle state to needle driving state.
In addition, structured surgical tasks are associated with a
protocol that defines a set of rules for the user to follow
for successful task execution. For example, a needle passing
task is executed through a specific order of actions such
as grasping the needle, positioning it at the insertion point,
driving the needle through the tissue, grasping the needle at
the exit point, and rotating it out of the tissue. TPM relies on
current task state, interactions and the task-specific protocol
to monitor task progress; an illustration for the needle passing
task is shown in Fig. 1.

A VR environment provides ready and accurate access to
information on task state and interactions, thereby allowing
efficient monitoring of task progress. Our VC framework
determines the correct set of parameters for the coaching

1http://h3dapi.org/

modes and teaching cues, and presents them to the trainees
at the right moment based on the state information obtained
from the TPM.

B. Coaching Modes

We implemented three coaching modes:
• TEACH – a complete hands-on teacher:

The coach begins by demonstrating the different steps
of the task, and presenting tips on them that lead to
expert performance. Each of the teaching cues appear
as the task progresses.

• METRICS – a mentor to intervene as-needed:
The coach monitors performance and intervenes only
when performance falls below par based on metrics
like instrument motion path length, task time, etc.
Relevant teaching cues and text prompts explaining
the reason for intervention appear for that particular
segment only.

• USER – a hands-off guide:
The coach provides guidance and mentoring only when
the trainee requests for it using a ‘help (bulb)’ icon as
shown in Fig. 2d. Teaching cues specific to the current
task segment appear.

C. Teaching Cues

We believe that surgical skills constitute learning elements
that are critical and consequential in determining outcome
of the executed skill. Our VC framework demonstrates
ideal/expert behavior at such learning elements using teach-
ing cues (Fig. 2). In this work, we focus on the skill of
robot-assisted needle passing (NP). The following are based
on guidelines from the ACS/APDS Surgery Resident Skills
Curriculum2 (SRSC) - modules 3, 13 and 14.

1) Ideal Instrument Indicator: What: indicates the ideal
instrument (left v/s right) for performing current NP. Cue:
red colored spheres at instrument tool-tip (Fig. 2a). How:
instruments initial setup pose, current entry-exit targets pose
and joint limits on the robotic arms holding the instrument
are used to determine the ideal instrument. In case of am-
bidextrous drives (either instrument is ideal), the user’s hand-
edness is used to determine the ideal instrument. Why: non-
ideal instrument leads to constrained ergonomics, awkward
needle insertion angles and unnecessary stress on tissue.

2) Grasp Position Guide: What: indicates the suitable
range of grasping regions on the needle. Cue: flashing yellow
spherical overlays along needle curvature (Fig. 2a). How:
spheres at 135◦ and 165◦ respectively, if tip of the needle
is considered as 0◦ location. Ideally, this range may be
computed using distance between entry and exit targets and
needle curvature radius. Why: grasping farther along the
needle’s body allows one smooth drive motion (bite), else
leads to excessive motion as well as force exertion on the
tissue.

2https://www.facs.org/education/program/resident-skills
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Fig. 2: Teaching cues shown to the user in our VC framework.

3) Grasp Orientation Guide: What: guides the user to-
wards an ideal grasp angle of needle with respect to instru-
ment. Cue: a light green semi-transparent copy of instru-
ment’s grippers (Fig. 2a) attached to the needle body. Guide’s
transparency increases as instrument approaches ideal pose,
eventually disappearing. How: positioned at center (150◦) of
grasp position range. It is dependent on current needle drive
direction and the ideal instrument suggested by the first cue.
Why: other grasp orientations result in excessive lateral force
on tissue at insertion point, since articulation of instrument
wrist gets constrained.

4) Ideal Drive Path Overlay: What: displays the ideal
path for driving needle through tissue for current targets and
NP. Cue: cyan arc passing through current targets and point-
ing in the drive direction (Fig. 2a). How: the ideal path has
same radius as needle and height of path’s center is calculated
using distance between current targets and needle’s radius.
Why: rotating the needle while driving through the tissue
results in minimal lateral forces at insertion and exit targets
as well as within the tissue compared to a straight motion
drive.

5) Trajectory Playback Overlay: What: displays trainees
needle tip trajectory from the previous NP attempt, Cue: red
curve shows needle tip trajectory along with the ideal path
overlay as a cyan arc (Fig. 2b). A green sphere traces the
motion at real-time speed. This is projected above the task
surface for better viewing. How: trajectory of previous NP
is logged along with timestamps. The orientation of cue is
determined using current endoscope view direction. Why:
immediate visual feedback about deviation from ideal path

and quality of the NP attempt may help self-reflect.
6) Video Demonstration Overlay: What: shows a video

playback of an expert/ideal performance of current NP seg-
ment. Cue: rectangular frame with the demonstration movie
texture on an infinite playback loop (Fig. 2c, 2d). The overlay
toggles between focal plane and in-situ location, if user
activates the ‘video’ icon (Fig. 2d) by bring either instrument
close to it. How: recorded expert (ideal) performances are
used as per current NP segment being attempted. Why: such
demonstration enables real-time learning and shows trainees
how to complete the NP attempt with success.

The initial four cues appear in the scene before the user
starts driving the needle through the tissue. These cues guide
the user to set up their instruments and needle in the ideal
position for the current NP attempt. Once the needle pierces
the tissue, the ideal tool, grasp position and grasp orientation
overlays disappear. The ideal path overlay remains in view
to guide the needle driving and it disappears once the user
pulls the needle out of the exit target. Following which, the
trajectory playback overlay appears with a preset timer (10
seconds). The user is provided a ‘dismiss’ icon (red cross) to
make the playback cue disappear and continue with the task
execution (Fig. 2b). The video demonstration cue is visible
throughout the task execution in the side-view location (Fig.
2c).

D. Error and Deficit Metrics

The teaching cues presented by our VC framework are
targeted at learning elements of the needle passing task.
They demonstrate ideal behavior at such elements for an



overall proficient performance. In order to assess learning,
we define error and deficit metrics that measure mistakes
and deviations in performance at the learning elements from
such ideal behavior. We computed errors in performance
using number of needle pierces in tissue, force exerted by
instruments on other objects, and force exerted by needle
on the tissue. An empirical force threshold was set to
measure duration and count of excessive force application
by instruments or needle. The following deficit metrics were
computed:

• Grasp Position Deviation: average deviation in grasp
location from the ideal location recommended by the
Grasp Position Guide cue (150◦),

• Grasp Orientation Deviation: average deviation in
grasp direction from the normal direction to the needle
plane (indicated by Grasp Orientation Guide cue),

• Ideal Drive Path Deviation: average deviation of needle
tip position from the ideal path indicated by the Ideal
Drive Path Overlay cue. There are two deviations: one
along the depth direction (in plane) and the other in
lateral direction (out of plane).

These metrics are used for evaluation of skill, as well to
trigger coaching using teaching cues in the METRICS mode.

III. USER STUDY

We implemented our VC framework on the da Vinci R⃝

Skills SimulatorTM (dVSim3), which is a portable computer
that connects to the da Vinci R⃝ surgeon console.

A. Needle Passing Task

We modified an existing NP task in the dVSim for this
study. NP is a basic skill and core component of all surgical
skill training curricula. In this study, the user is required
to pass the given needle across a deformable tissue at eight
locations around a circle in clockwise sequence (see Fig. 2a).
The needle is to be passed from inside to the outside; the
insertion targets are on the inner circle and the exit targets
are on the outer circle.

B. Study Design

We conducted a randomized controlled trial (RCT) to de-
termine the effectiveness of our VC framework on technical
skill acquisition. The study was approved by Western IRB
(protocol #20121049) and conducted at Intuitive Surgical
Inc. (Sunnyvale, California). We recruited study participants
from among clinical trainers and other engineers at Intuitive
Surgical, Inc. We randomly assigned study participants to
either learning with our VC framework (experimental) or
through independent, self-driven, repetitive practice (con-
trol). All participants performed a baseline trial of the
NP task. Following this, the experimental group practiced
the task under each of the three coaching modes in our
VC framework – TEACH, METRICS and USER (in order).
The control group independently repeated the task three
times with no coaching. Then, all participants performed

3https://www.intuitivesurgical.com/products/skills simulator/

a final test trial. Following this, they responded to a post-
study questionnaire on the clarity and quality of feedback,
perceived effectiveness of our VC framework, and a self-
assessment of their performance. We computed performance
metrics focused on time, motion efficiency, errors and deficits
(Section II-D). Motion efficiency features were based on
previous works in literature [17], [18]. We compared the
change in metric from baseline between the groups using
a Mann-Whitney U test for the final repetition as well as
for each of the three practice repetitions. For illustration
purposes, effect size values were calculated for each metric
as per the Cohen’s d statistic [19].

IV. RESULTS

We assigned 16 participants to each arm; two participants
in the experimental arm did not complete the study. Six
participants had incomplete data due to technical reasons
(two in experimental and four in control). We performed
simple imputation for these incomplete data using mean
for continuous measures and median for count-based ones.
Finally, we analyzed data from 30 participants (experimental:
14, control: 16).

In the post-study survey, most participants (93.3%) per-
ceived an improvement in their final performance relative
to the baseline. The experimental group (≥ 85%) rated all
but one of the teaching cues as “intuitive”, “clear to under-
stand” and “effective for learning”. They found the trajectory
playback cue to be not intuitive, not easy to understand and
not effective for learning (22% negative rating, 22% neutral
rating). Ninety-two percent of the experimental group felt
that such feedback is essential for effective learning both in
the presence and absence of a surgical educator or mentor.
The control group (68%) felt that real-time feedback would
have helped them in improving their performance. While the
control group was equivocal about the effectiveness of real-
time feedback (in general), 93% of them preferred to have
such feedback for themselves.

We observed statistically significant difference in the im-
provement of performance between experimental and con-
trol groups on one metric – Grasp Orientation Deviation
(Table I; larger negative values indicate greater learning).
Fig. 3 shows the difference (effect size values) in task-
level performance improvement over the baseline between
experimental and control groups. Time and motion efficiency
metrics uniformly show a higher learning in control group
(warm colors), while deficit metrics show higher learning
in experimental group (cool colors). Error metrics stay very
close to zero indicating no difference between the two
groups. We observe that Movements (repetitions 2, 3 and
4), Grasp Orientation Deviation (repetitions 2,4 and 5) and
Ideal Drive Path Deviation (In Plane) (repetition 2) show
statistically significantly higher performance improvement
in the experimental group. Also, the statistically higher
improvement in Movements for the exerimental group in the
TEACH mode repetition becomes smaller, and eventually, the
control group improvement in Movements is higher in the
FINAL repetition. Deficit metrics (lower four rows in Fig. 3)



indicate higher learning in experimental group in the TEACH
mode. This learning reduces compared to the control group
by the FINAL repetition.

V. DISCUSSION AND CONCLUSION

Our VC framework demonstrates the feasibility of an
automated surgical coach that delivers relevant, targeted,
critical and individualized learning. We implemented the VC
in a VR simulation sandbox in context of robot-assisted
needle passing. Our pilot study forms the basis for research
and development of future automated coaching platforms in
surgical skills training curricula.

Our observation of higher learning in deficit metrics and
lower improvement of motion efficiency among the exper-
imental group compared to the control group is coherent
with previous findings [20], [21], [22]. For example, Singh
et al. [8] observed enhanced quality in performance at the
expense of time and motion efficiency metrics. Additionally,
this is expected since the teaching cues are targeted at the
learning elements in needle passing to improve the product
quality (deficit metrics) of the task. At the same time, motion
efficiency metrics are meaningful only once the task is
completed with competent outcomes.

Our study was limited by the length of our VC interven-
tion. We exposed the experimental group to a single TEACH
mode training session. As a result, the initial improvement
over learning elements (reflected by the statistically sig-
nificant improvement in deficit metrics in Fig. 3) became
less significant by the FINAL session. A future study should
include more number of task repetitions to effectively enable
improvement in performance of trainees receiving the VC
intervention. We explored visual teaching cues in the current
work. In future, haptics-based cues that use virtual fixtures
[13] can be added to provide a hand-over-hand guidance to
demonstrate the critical points in task as well as to enable
deliberate practice [21] at segments of sub par performance.

In summary, we addressed the current limitation of VR
simulation-based training i.e. lack of expert coaching. We
also addressed previous recommendations on development of
automated tools to deliver expert surgeon-like feedback and
coaching, since current approaches are limited due to scala-
bility issues [8]. We chose to demonstrate our VC framework
in VR simulation using a robot-assisted task because it
affords the best opportunity to provide surgeons with context-
relevant feedback with minimal overhead. Technical skill
acquired in VR simulation has been shown to subsequently
transfer to bench-top simulation and the operating room [23].

Teaching and feedback are important components of effec-
tive surgical coaching [24], [25], [26]. Our VC framework
realizes these components, using teaching cues and deficit
metrics to identify and offer immediate guidance for the
trainee to understand, how to correct errors and reduce them
by improving their technique. Future research should address
the question of whether and to what extent, improvements
in performance with automated surgical coaching transfer
without attrition to the operating room, and eventually affect
safety and quality of patient care.
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Fig. 3: Comparison of performance improvement over baseline between the experimental and control groups. Each cell
indicates the effect size value for the metric using Cohen’s d. Negative values (warm colors) indicate larger improvement in
control group and positive values (cool colors) indicate larger improvement in experimental group. Red asterisks represent
that the P-value from the Mann Whitney U test was less than 0.05 for the particular metric and task repetition.
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