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ABSTRACT

At the 22nd ACM SIGKDD conference on Knowledge and
Data Discovery, a workshop on Data Science for Food, En-
ergy and Water (DSFEW) was held to foster an interdisci-
plinary community intersecting data science and societally
important domains of food, energy and water. The work-
shop included keynotes, panel discussion, presentations and
posters, and introduced the emerging area of DSFEW to
ACM SIGKDD audience, and triggered interdisciplinary idea-
sharing in DSFEW research. The workshop website is
https://sites.google.com /site/2016dsfew.
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1. BACKGROUND

In the coming decades, the world population is projected
to grow significantly (Fig. 1). Thus, securing the essen-
tial resources of food, energy and water, is one of the most
pressing challenges the world faces today. The challenge is
made harder due to climate change, rising economies and
interactions among food, water and energy systems.
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Figure 1: Projected world population growth [8].

It is difficult to consider food, water or energy security
in isolation due to their complex interactions. For exam-
ple, energy production needs water for cooling and may use
bio-fuels. Conversely, food production requires energy and
water as shown in Fig. 2. Trying to achieve energy security
in isolation may lead to unanticipated surprises for food and
water security [13]. For example, food prices rose in many
parts of the world in 2008 coincident with increased subsidies
for biofuels. Similarly, incentives for growing crops have de-
pleted water resources (e.g., Aral Sea, Ogallala aquifer) and
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Figure 2: Interactions among Food, Energy, Water Systems
(best in color) [3]. For example, food production not only
needs water for irrigation and energy for fertilizer but also
may degrade water quality due to run-offs.

affected water quality (e.g., dead zone in Gulf of Mexico).
To reduce such unanticipated consequences, the nexus ap-
proach jointly considers the interactions among food, energy
and water systems [11].

Understanding the FEW nexus is among the highest pri-
orities at the United Nations [9] as well as many countries.
In 2011, Stockholm Environment Institute initiated a con-
ference on ”"The Water, Energy and Food Security Nexus,
Solutions for the Green Economy” to better understand the
nexus [1]. In 2014, U.K. funded a set of research proposals
on FEW (e.g., WEFWEBSs at University of Glasgow) [2]. In
U.S., a recent National Intelligence Council report identi-
fied it among the greatest challenges facing our world in the
coming decades [12]. The US National Science Foundation
has also started a multi-year cross-directorate initiative ti-
tled Innovations at the Nexus of Food, Energy and Water
Systems (INFEWS) [5]. More international research efforts
are in need to address global FEW challenges (e.g., global
FEW choke point in China, US and India [4]).

In 2015, US NSF sponsored a set of workshops to engage a
diverse set of research communities to identify research chal-
lenges and opportunities. This ACM SIGKDD workshop
on DSFEW is motivated by the NSF workshop, ” A Work-
shop to Identify Interdisciplinary Data Science Approaches
and Challenges to Enhance Understanding of Interactions



of Food Systems with Energy and Water Systems” [3].

The US NSF INFEWS data science workshop [3] identi-
fied research needs in five key areas: 1) Integration of data
sets and data-driven models of multiple types at many spa-
tial and temporal scales, 2) Predictive and causal modeling
of spatial and temporal data, with particular attention to
auto-correlation, non-stationarity, and scale of FEW data,
3) Multi-stakeholder decision support, including methods for
eliciting and sharing preferences, supporting negotiation and
consensus building, 4) FEW nexus life cycle thinking, and
5) FEW data uncertainty, incompleteness, and bias. The
workshop also underscored the need for community infras-
tructure, such as shared data sets, evaluation metrics, mod-
els, and tools, and the training of a new generation of scien-
tists with the requisite training in the data sciences and the
FEW sciences to facilitate progress at their interface.

The goals of this workshop were: (1) To introduce the
emerging area of DSFEW to the KDD community; (2) To
invite scientists and practitioners in FEW domains to the
KDD community, and interest them in leveraging our tech-
nology and expertise; and (3) To innovate new technology,
leveraging existing KDD technology where appropriate, to
address the challenges in FEW, by bringing together a multi-
disciplinary audience and enticing them to synergize.

The workshop included two keynote presentations on pre-
dictive phenomics of plants and remote sensing in agricul-
tural applications, followed by a set of presentations and
posters on phenotyping, object recognition, change detec-
tion, prediction, regression and optimization. A panel dis-
cussion was held with leading experts in DSFEW on the mo-
tivation, problems, current stage, challenges and next steps
in DSFEW research.

2. KEYNOTE PRESENTATIONS

Prof. Patrick Schnable, Director of Plant Sciences In-
stitute and Center for Plant Genomics at lowa State Uni-
versity, highlighted how field sensors and data science ap-
proaches are helping to build automated phenotyping sys-
tems and predict crop performance. Crop phenotypes (e.g.,
yield and drought tolerance) are determined by genotype,
environment and their interaction (GxE). Genotyping data
have been made accessible for all major crops. However,
phenotypic data, a powerful source to statistically model
GxE, remains with a limiting volume. Prof. Schnable de-
scribed a framework to collect phenotypic data using high-
throughput and high-resolution field sensors and robots. The
dataset is analyzed using data science techniques (e.g., ma-
chine learning, correlation analysis) that help model rela-
tionships between phenotype properties and performance of
the plants. Prof. Schnable has also explored interactions be-
tween neighboring plants. This analysis revealed that seed
orientation influenced performance of adjacent plants.

The second keynote, Prof. Melba Crawford, associate
dean for research in the College of Engineering at Purdue
University, summarized the types of data collected through
remote sensing and how they are applied to agriculture.
With recent developments in remote sensing, data are gener-
ated via a variety of platforms (e.g., space-based, airborne,
proximal sensing platforms). For space-based platforms,
sensors are evolving from complex, multi-purpose to lower
cost and measurement specific constellations of small satel-
lites. Hyperspectral satellite images contain rich informa-

tion for detailed spectral analysis of crops. Advanced data
science techniques are necessary to explore the increased vol-
ume of data introduced by hyperspectrum, high resolution
and high time frequency. For airborne and proximal sens-
ing platforms (e.g., UAV, autonomous vehicles), new data
sources, such as LiDAR point cloud, are becoming increas-
ingly popular in agricultural applications. Topographical
dataset (e.g., digital elevation models) can be derived from
LiDAR point cloud and provide additional height informa-
tion in analysis. These massive, multi-modality datasets
from new sensors offer opportunities in agriculture applica-
tions from plant-level phenotyping to larger scale crop map-
ping and plantation monitoring. New algorithms in data
science are needed to address challenges of multi-temporal,
multi-scale and multi-sensor analysis.

3. PANEL DISCUSSION

Four major questions were posed in the panel discussion:
(1) Context: How are food, energy and water communities
exploiting data and data-science? (2) Gap Analysis: What
are the key pain-points in leveraging data and data-science
for food, energy and water? What are the data and data-
science knowledge gaps in context of food, energy and wa-
ter? (3) Nexus: Past approaches to solving Food problems
(e.g., via fertilizers) had unanticipated negative impacts to
water (e.g., water quality degradation). How may data and
data-science help improve understanding of the interactions
among food, energy, and water systems? How may they
reduce unintended consequences ? (4) Engagement, Com-
munity Building: Why should data scientists engage with
food, energy and water? How may we build and sustain a
community of food, energy and water data science?

Dr. Sivan Aldor-Noiman, director of data science at
The Climate Corporation, discussed the complex decision-
making challenge faced by food growers and pointed out a
major flaw in general machine learning methods when ap-
plied to FEW. Machine learning methods broadly have a
well-known assumption on their variables that they are inde-
pendent and identically distributed (i.i.d.). I.i.d assumption
does not well-fit FEW datasets since the variables (e.g., soil
property, water quality) are spatially autocorrelated under
the first law of geography. Considering autocorrelation and
brining it into machine learning models poses a great chal-
lenge in DSFEW research. Prof. Ronald Turco, the director
of the Indiana Water Resources Research Center at Purdue
University, discussed the importance of visiting farms to un-
derstand farmers’ vocabularies and concerns. For example,
farmers care about heavy rainfalls and droughts which are
worse due to climate change. Dr. David Lapen, research
scientist at Agriculture and Agri-Food Canana, shared his
experience on water management in agricultural fields. Dr.
Charlie Messina, senior scientist at Dupont Pioneer, de-
scribed his perspectives on DSFEW-related research from
his domain expertise. He emphasized the importance of in-
corporating expert knowledge and on-site experience into
data science instead of finding solutions by modeling web-
page click-statistics as is often done by some industry com-
panies. Prof. Shashi Shekhar, McKnight Distinguished Pro-
fessor of Computer Science at University of Minnesota, re-
viewed how food-water-energy relate to the United Nations’
2030 goals for sustainable development. He then outlined
the importance of spatial computing in these endeavors [10]
and noted research challenges that lie ahead. He concluded



by sharing successful stories in DSFEW (e.g., GeoGlam [6]).

In audience question section, Dr. Ramasamy Uthurusamy,
a founder of ACM SIGKDD, challenged the audience to
identify the moonshots of DSFEW if extensive funding (e.g.,
one US billion dollars) is available. Examples given by panel
speakers include solving world hunger and clear drinking wa-
ter to everyone. One interesting industry perspective is to
crowd-source ideas and solutions from a series of hackathons
without huge investment.

Dr. Ramasamy Uthurusamy also encouraged holistic think-

ing on the life cycle of DSFEW. The workshop focuses mostly
on model selection in DSFEW. However, model selection ac-
counts for only a limited portion (e.g., 10%) of the DSFEW
life cycle. Data collection, data cleaning, business modeling,
policy making, etc., all play critical roles in DSFEW life cy-
cle. Research efforts on all stages of the life cycle require
a commitment to community building and interdisciplinary
collaboration.

Dr. Nikunj Oza, group lead of Data Sciences in Intelligent
Systems Division at NASA, raised discussion on DSFEW
research by secondary information analysis (e.g., tweets).

Other discussions include applying advances in precision
agriculture to small-farm owners, privacy and security pro-
tection with data sharing which are of farmers’ concerns,
and solutions to climate change under political challenges.

4. PRESENTATIONS AND POSTERS

The presentations and posters are grouped into three
tiers: (1) Domain application: food, energy and water,
as well as their nexus; (2) Data analytics: machine learn-
ing, data mining, regression and remote sensing techniques;
and (3) Infrastructure: computation platform and system
build. Majority of the work presented in the workshop be-
long to domain application. A summary of publications is
shown in Table 1. In the table, data collection and data
management belong to the category ”infrastructure”.

4.1 Food, energy and water

In food-related applications, interet was shown in auto-
mated phenotyping of crop plants and pest monitoring. Phe-
notyping, the process of characterizing properties and traits
of plants, can be used to predict the status and performance
of plants. Different types of image data are used to compute
the phenotypes, including aerial imagery/LiDAR collected
by UAV, ground images captured by field cameras and high
contrast plant images taken in the lab. Unlike images cap-
tured in the field and labs, aerial imagery collected by wide-
angle lens cameras on UAVs needs to be preprocessed into
ortophotos before phenotyping. In the phenotyping phase,
LiDAR point cloud can be used to generate digital eleva-
tion models to further incorporate height property of plants.
Computer vision techniques (e.g., feature point extraction,
pattern recognition) are applied to identify plant structures
(e.g., leaves, stems, tassels), measure geometric properties
and compute phenotypes. 3D images taken at different an-
gles are also used to generate new phenotype characteristics
by comparing morphological metrics among multiple angles.
For pest monitoring, a convolution neural network approach
is used to find soybean Cyst Nematode eggs with different
rotations, shapes and scales. A network-based approach is
applied to model the dynamics of invasive plant pests.

In water and energy, applications presented focus on wa-

ter conservation and hydro-based power generation model-
ing. For water conservation, an estimation model was cre-
ated to predict how much water can be saved through turf
removal in California urban landscape to deal with the ongo-
ing severe drought. Hydro-based power generation was mod-
eled based on hydro-lake river inflows. A regularized linear
regression Lasso method is applied on large scale oceanic-
climatic predictors with high-dimensional data but small
sample sizes. The forecasted stream flow information is used
to estimate electricity production of hydro power stations in
Waitaki catchment in New Zealand, which yields about 40%
electricity of the country.

4.2 Data Analytics

Data analytics approaches were proposed to analyze re-
mote sensing datasets to monitor land cover, identify land
cover changes and optimize future spatial allocations of land
covers. As a social concern, ethical issues in data science
were also discussed.

To assist land cover monitoring, an automatic planta-
tion mapping approach with ensemble learning and hidden
Markov model was proposed to estimate palm oil cultivation
in southeast Asia and enforce sustainability standard.

For land cover change detection, a support vector ma-
chine and convolutional neural network based method was
constructed to classify land covers and locate urbanization
(e.g., agriculture to residential) in West Bengal, India. Addi-
tionally, a multi-instance and multi-view learning framework
was proposed to identify spatiotemporal change footprints
where lake and river shrinkage happens.

Planning ahead with land cover allocation, a geodesign
optimization tool was introduced to facilitate redesign of
landscape in agricultural watersheds in the mid-western US.
The nexus goal of geodesign is to improve water quality
while still providing enough food under economic budget.

4.3 Infrastructure

Two infrastructure building efforts on data collection and
management were presented. The first introduced an inte-
grated knowledge graph for FEW, built on semantic web
technologies and statistical relational learning. The goal is
to harmonize diverse FEW data sources to perform ontology
analysis. The second system, SmartFarm, combines sensor
technologies and cloud computing platform to assist grow-
ers making decisions in precision farming with local farm
statistics and a variety of external data inputs (e.g., weather
predictions, satellite imagery).

5. CONCLUSION & NEXT STEPS

The ACM SIGKDD workshop on Data Science for Food,
Energy and Water (DSFEW) introduced the emerging area
of DSFEW to KDD data science community and inspired
interdisciplinary idea-sharing [7]. Recent research results in
FEW domain applications, data science approaches and sys-
tem infrastructures were presented through keynotes, pre-
sentations and posters. Critical research questions in DS-
FEW were discussed in the panel discussion. The workshop
participants are looking forward to growing the DSFEW
community through publications (e.g., conference with spe-
cial interest group, journal special issue) and competitions
(e.g., KDD DSFEW challenge).



Table 1: Summary of workshop publications [7]

Title Food| Energy] Water| Data Data Data
collection| management | Analytics

A Knowledge Ecosystem for the Food, Energy, and Water Sys- | v/ v v v
tem
An end-to-end convolutional selective autoencoder approach to | v/ v
Soybean Cyst Nematode eggs detection
Automated Sorghum Phenotyping and Trait Development | v/ v v
Platform
Automated Vegetative Stage Phenotyping Analysis of Maize | v/ v v
Plants using Visible Light Images
Predictive Modeling of Sorghum Phenotypes with Airborne | v v
Image Features
Fast, automated identification of tassels: Bag-of-features, | v/ v v
graph algorithms and high throughput computing
Estimating Phenotypic Traits From UAV Based RGB Imagery | v/ v v
What spins the turbine? Finding spatial climate precursors of v v v
hydro-lake inflows: Waitaki catchment, New Zealand
How Much Water Does Turf Removal Save?  Applying v v v
Bayesian Structural Time-Series to California Residential Wa-
ter Demand
Satellite Image Analytics, Land Change and Food Security v
A Bayesian Network approach to County-Level Corn Yield Pre- | v/ v
diction using historical data and expert-knowledge
Modeling the Food-Energy-Water Nexus in Critical Biodiverse | v/ v v v
Landscapes: A Case Study of Tonle Sap, Cambodia and Tu-
lalip Tribe, USA
Plantation Mapping in Southeast Asia v v
SmartFarm: Improving Agriculture Sustainability Using Mod- | v/ v v
ern Information Technology

6. ADDITIONAL AUTHORS [5] NSF, Innovations at the nexus of food, energy and

Additional authors: Chid Apte (IBM Research, email:
apteQ@us. ibm.com) and Vipin Kumar (U of Minnesota, email:
kumar001@umn.edu) and Mitch Tuinstra (Purdue U, email:
mtuinstr@purdue.edu) and Ranga Raju Vatsavai (NCSU,
email: rrvatsav@ncsu.edu).
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