THE FUTURE OF MOBILITY THROUGH INNOVATIONS IN INTELLIGENT TRANSPORTATION INFRASTRUCTURE

George J. Pappas University of Pennsylvania

AAAS 2018: Advancing Science Discovery to Application February 16, 2018

CCC INFRASTRUCTURE WHITEPAPERS

Computing Community Consortium Catalyst

MOBILITY21: Strategic Investments for Transportation Infrastructure & Technology

Rahul Mangharam University of Pennsylvania Megan S. Ryerson University of Pennsylvania

Steve Viscelli University of Pennsylvania

Hamsa Balakrishanan MIT

> Leslie Richards PennDOT

Alexandre Bayen UC Berkeley, ITS

> Leo Bagley PennDOT

Surabh Amin MIT

George Pappas University of Pennsylvania

FUTURE MOBILITY WILL IMPACT SAFETY, EFFICIENCY QUALITY OF LIFE

94 PERCENT of U.S. crashes involve human error. 11 deaths worldwide due to vehicle crashes in 2013. [2] 37,461 ROAD DEATHS in the U.S. in 2016 and 2.4 million injuries in 2015. 13 2 out of 3 people will be involved in a drunk driving crash in their lifetime. 14

SOCIETY

SAFETY

BILLION in harm from loss of life and injury each year. 19 \$277 BILLION in annual economic costs, 16 \$160 BILLION in gas burned and time lost each year. 17

MOBILITY AND QUALITY OF LIFE

Americans age 40 and older are blind or have low vision. (8) 79 PERCENT of seniors age 65 and older living in car-dependent communities. 19 <mark>ноикs</mark> wasted in traffic each year per person. 17

iunity Consortium

On the road to fully self-driving, Waymo Safety Report, October 2017

FUTURE MOBILITY WILL IMPACT ECONOMY

STRATEGYANALYTICS Research, Experts, and Analytics

Automotive

Autonomous Vehicle Service

Autonomous Veh

Accelerating the Future: The Economic Impact of the Emerging Passenger Economy

Report Snapshot Intel has engaged Strategy Analytics as a partner in the preparation report to validate the hypothesis that a "Passenger Economy" base pilotless vehicles is on the horizon and that it holds massive econo potential. In assessing this opportunity, Strategy Analytics and Inte start a conversation that explores the catalysts for change, frames or economic opportunity, and begins to build use cases that can en business decision makers to explore and develop actionable change strategies.

STRATEGYANALYTICS Research, Experts, and Analytics

Au Au

Autonomous Vehicle Service

2. Key Findings

The Passenger Economy represents a US\$7 trillion global opportunity in 2050.

The Passenger Economy will stimulate value creation from the adoption of Mobility-as-a-Service and other new mobility services as well as emerging new applications and services as well as from savings in time and money associated with vehicle use and from the resulting freedom of movement.

Our research finds that autonomous driving technology will enable a new Passenger Economy worth US\$7 trillion in 2050. It will drive change across a range of industries, displacing vehicle ownership with Mobility-as-a-Service, and defining a new landscape of concierge and ride-hailing services, as well as pilotless vehicle options for businesses in industries like package delivery and long-haul transportation.

Passenger Economy: Global Revenue from Services 2050 (US\$, Millions)

US\$7 Trillion Opportunity

Autonomous driving technology will enable a new "Passenger Economy" worth US\$7 trillion – more than the projected 2017 GDPs of Japan and Brazil combined.

Tel: +

FUTURE TRENDS

1. AUTONOMOUS PLATFORMS

2. CONNECTIVITY

3. CITY-SCALE DATA

4. USER-AUTONOMY INTERACTION

1. AUTONOMOUS PLATFORMS

CHALLENGE-SAFE AUTONOMY

2 Feb 2018 | 14:24 GMT

Have Self-Driving Cars Stopped Getting Better

New reports from California suggest limits to autonomous vehicle performance

RESERCH CHALLENGE : SAFE AUTONOMY

For vehicle model, & safety requirements specified over time

Lane merge

Roundabout

Stop signs

Pedestrians

Provide safety guarantees for integration of controller, sensor, computing, learning

Who is responsible when autonomous cars crash with human-driven cars?

THE NATIONAL USDOT UNIVERSITY TRANSPORTATION CENTER FOR SAFETY UNIVERSITY of PENNSYLVANIA Carnegie Mellon University

A Driver's License Test for Autonomous Vehicles

Prof. Rahul Mangharam

Penn Director, Mobility21 DoT UTC University of Pennsylvania rahulm@seas.upenn.edu

RESERCH CHALLENGE : AUTOMOTIVE SECURITY

tacks greenhouse twice the data but the tech is obsession - in 152 grees P. 09 P. 34 getting befor P. 40 P. 46
--

HACKING

SPECTRUM

2. CONNECTIVITY

V2V

V2I

BIG MOBILE DATA

Massive data rates from sensors

Vehicles connected to the cloud generate 1.5GB monthly data Autonomous vehicles can generate up to a 1TB real-time data per trip! There are one billion cars in the world that are increasingly sensor-rich Internet of mobile autonomous platforms Instrumented cars serve as infrastructure sensors

RESEARCH CHALLENGE – VERY HIGH DATA RATES

Networking with very high data rates for see-through buildings intersection (mm-wave)

Computing Community Consortium Catalyst

RESEARCH CHALLENGE – LOW-LATENCY WIRELESS

V2V communications require low-latency, high-reliability wireless at high speeds

Computing Community Consortium Catalyst

RESEARCH CHALLENGE – V2I INTEROPERABILITY

3. CITY-SCALE DATA

Mobile Millenium, ITS, UC Berkeley

RESERCH CHALLENGE : DATA ANALYTICS

Fast machine learning with real-time, streaming physical data Privacy-aware algorithms and computation over user/car data Access and sharing of SmartCity and transportation data Data ownership models (economy?) for transportation data

SmartBay Project, ITS, UC Berkeley

RESERCH CHALLENGE : DATA PRIVACY

April 2015 Report by

Sen. Deb Fischer (Nebraska) Sen. Cory Booker (New Jersey) Sen. Kelly Ayotte (New Hamphsire) Sen. Brian Schatz (Hawaii)

Tracking & Hacking: Security & Privacy Gaps Put American Drivers at Risk

4. USER-AUTONOMY INTERACTION

Users exploit richness of real-time data for safe and efficient routing Mobility-as-a-service provides new ownership models, new incentives, new economics Variable autonomy levels from human driver to fully autonomous Distracted driving results in 9 deaths and 1,000 injuries every day in the U.S.

RESEARCH CHALLENGE – IMPACT OF USERS HAVING ACCESS TO NEW DATA SOURCES

Computing Community Consortium Catalyst

RESEARCH CHALLENGE – IMPACT OF USERS HAVING ACCESS TO NEW DATA SOURCES

Driving apps like Waze are creating new traffic problems

By ELI WIRTSCHAFTER • MAR 23, 2017

The app Waze suggests a circuitous route around traffic in Fremont. (Screenshot)

RESEARCH CHALLENGE – IMPACT OF USERS HAVING ACCESS TO NEW DATA SOURCES

Driving apps like Waze are creating new traffic problems

News > Transportation

Roadshow: Stay off my street! Waze woes spreading to more cities

f 🛛 🖷 🕈

Best unlimited. Best network.

FINAL THOUGHTS

Opportunities across heterogeneous transportation/SmartCity modalities Data integration and optimization across biking, cars, subway, energy grid, etc

Research will require collaboration across many disciplines Computing, transportation, social scientists, economics, law, etc

Very limited research initiatives that holistically address these challenges DoT centers, NSF CPS, NSF S&AS, NSF Smart & Connected Communities

Transportation planning institutions are more reactive than proactive in planning for new technology and regulating/accommodating as necessary.

Partnerships between academic, government, city planners, and industry are critical Interoperability, standards, urban data access, data ownership, safety regulation, privacy norms, autonomy liability etc

Analyze skills and education requirements to facilitate new technical jobs for shared, autonomous and data-driven transportation. Rethink education across boundaries to prepare the workforce

omputing Community Consortium atalyst

RESEARCH CHALLENGE – WHO IS RESPONSIBLE FOR SAFETY WHEN TRAFFIC IS MIXED BETWEEN LEVEL 3 & CONVENTIONAL VEHICLES

	Driver:		Vehicle:		Physical Environment		Social Environment	
	Conventional:	Autonomous:	Conventional:	Autonomous:	Conventional:	Autonomous:	Conventional:	Autonomous:
Pre-Event (→ primary prevention)	Driving skill, experience, attention and physical/ mental state	Driver attention and re- engagement	Vehicle design & handling; anti-lock brakes; electronic stability control; vehicle condition	HAV computer and sensor capability; Sensors detecting ODD	Road design; road signs; speed limits; weather conditions	Presence and security of connected vehicle infrastructure	Existence and enforcement of traffic safety laws; traffic flow and congestion.	Market penetration of HAVs
During the event (→ secondary prevention)	Seatbelt use and occupant position	Brace position of driver	Advanced restraint systems; size of vehicle & its crash- worthiness.	Vehicle alert systems; Presence of "minimal risk condition" to reach safety after failure	Presence of trees, guardrails, etc.; Separated traffic	Speed of communications network to transmit messages	n/a	Mix of HAVs and conventional vehicles immediately proximate
Post-event								

 $(\rightarrow \text{tertiary})$

prevention)

- Haddon Matrix is for understanding responsibilities pre, during and post car crash
- Penn Researchers envisioned how the Haddon Matrix will have to change with mixed HAV and conventional vehicle traffic

Computing Community Consortium Catalyst

RESEARCH CHALLENGE - USER-ATONOMY INTERACTION People Want to Interact -- Even with an Autonomous Car

Semcon's smiling car experiment shows pedestrians' fear of self-driving cars

By Kristen Hall-Geisler September 21, 2016

