How is skill acquired?

The Oldest Skilled Trade Jobs

- **Electrical and Electronic Repairers**
- **Extruding and Drawing Machine Setters**
- **Electrical and Electronics Engineering Technicians**
- **Stationary Engineers and Boiler Operators**
- **Maintenance Workers, Machinery**
- **Electricians**
- **Computer-Controlled Machine Tool Operators**

Share of 45+ Workers

Share of 55+ Workers
Skill Acquisition: Apprenticeship

William S. Halsted, JHU 1889
“See one, do one, teach one.”

Training and Skill Impacts Patient Outcomes

- **Readmission**
 - Score Bottom Quartile: 6.30%
 - Score Top Quartile: 2.70%

- **Reoperation**
 - Score Bottom Quartile: 3.40%
 - Score Top Quartile: 1.60%

- **Complication**
 - Score Bottom Quartile: 14.50%
 - Score Top Quartile: 5.20%

- **Mortality**
 - Score Bottom Quartile: 0.26%
 - Score Top Quartile: 0.05%
 - 3x Mortality Rate!

Michigan Bariatric Surgery Collaborative

Samples:
20 bariatric “expert” surgeons ranked by at least 10 reviewers.

10,343 patients admitted 2006-2012

What Could You Do With a Million Surgeries?

Annual Worldwide Procedures (Figure 1)

- Company Estimates
- 2015 Guidance: 7-10% Growth
- 2014: 9% Growth

- Urology
- Gynecology
- General Surgery
- Other

SOURCE: Intuitive Surgical 2014 Annual Report
Can Machines Help Train Surgeons?

- **Demonstrate**: Expert behavior
- **Test**: Trainee performance
- **Evaluate**: Task score, Segment scores
- **Monitor**: Skill progress
- **Recommend**: Deliberate practice
- **Critique**: Errors, Deficits

- **How do I do it correctly?**
- **When do I become proficient?**
- **How did I do?**
- **What do I do to improve?**
- **Where and why was I wrong?**
Can Machines Help Train Surgeons?

how do I do it correctly?

how did I do?

what do I do to improve?

where and why was I wrong?

MONITOR
Skill progress

EVALUATE
Task score
Segment scores

CRITIQUE
Errors
Deficits

RECOMMEND
Deliberate
practice

TEST
Trainee
Performance

DEMONSTRATE
Expert behavior

when do I become proficient?

when do I become proficient?
Translate movement to a string

An Example: Sinus Surgery

Start of Surgery

End of Surgery

NOVICE

EXPERT
Classifying Attending vs. Resident: Results

Ahmidi et al. Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty. IJCARS (2015)

Monitoring Skill Progress

Providing On-Site Feedback

Collecting another 500+ trials (R01-DE025265 01)
- 2 academic medical centers
- 6 operating room suites
- 29 surgeons: 7 faculty; 22 trainees
- 181 procedures
Automated Feedback for Training

how do I do it correctly?

how did I do?

when do I become proficient?

what do I do to improve?

where and why was I wrong?

DEMONSTRATE
Expert behavior

TEST
Trainee Performance

EVALUATE
Task score
Segment scores

RECOMMEND
Deliberate practice

CRITIQUE
Errors
Deficits

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
Where Did I Under-Perform?

Lea et al. Segmental spatiotemporal CNNs for fine-grained action segmentation. ECCV 2016
Lea et al. Surgical phase recognition: From instrumented ORs to hospitals around the world.” M2CAI 2016.
Phases, Maneuvers, Gestures

Data source(s)	Spatial CNN		ST-CNN		[3]	[15]		
Video	LM 57.6	SMM 78.8	DTW 81.2	LM 69.0	SMM 77.8	DTW 84.6	68.1	79.7*
Tools	LM 58.5	SMM 76.5	DTW 85.7	LM 56.4	SMM 78.3	DTW 91.2	78.9	73.0
Video + Tools	LM 73.7	SMM 87.3	DTW 92.3	LM 81.8	SMM 88.5	DTW 92.8	88.9	-

* = 86.0% if trained using outside surgical data + tools

Table 1: Quantitative results and comparisons to prior work.

<table>
<thead>
<tr>
<th>JIGSAWS</th>
<th>Accuracy (%)</th>
<th>Edit Dist. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-SC-CRF [10]</td>
<td>82.5 ± 5.4</td>
<td>14.8 ± 9.4</td>
</tr>
<tr>
<td>Forward LSTM</td>
<td>80.5 ± 6.2</td>
<td>19.8 ± 8.7</td>
</tr>
<tr>
<td>Bidir. LSTM</td>
<td>83.3 ± 5.7</td>
<td>14.6 ± 9.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISTIC-SL</th>
<th>Accuracy (%)</th>
<th>Edit Dist. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-SC-CRF [10]</td>
<td>81.7 ± 6.2</td>
<td>29.7 ± 6.8</td>
</tr>
<tr>
<td>Forward LSTM</td>
<td>87.8 ± 3.7</td>
<td>33.9 ± 13.3</td>
</tr>
<tr>
<td>Bidir. LSTM</td>
<td>89.5 ± 4.0</td>
<td>19.5 ± 5.2</td>
</tr>
</tbody>
</table>

Ahmidi et al. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. *TBME, 2017*
What Did I Do Wrong?

Use video as an index into feedback for a trainee based on most similar known performance
What Did I Do Wrong?

Query Video (Phase #2) Closest Matching Clip
Automated Feedback for Training

Demonstrate: Expert behavior

Test: Trainee performance

Evaluate: Task score, Segment scores

Monitor: Skill progress

Recommend: Deliberate practice

Critique: Errors, Deficits

How do I do it correctly?

How did I do?

When do I become proficient?

What do I do to improve?

Where and why was I wrong?

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
What Can I Do To Improve?

Grasp Needle

Insert Needle in Tissue

Drive Needle through Tissue

Pull out Needle

Malpani et al. Real-time Teaching Cues for Automated Surgical Coaching.
https://arxiv.org/abs/1704.07436

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
Improvement over baseline performance between groups

\[\Delta M_{\text{expt}} - \Delta M_{\text{ctrl}} \]

(*) indicate P-values < 0.05 using a Mann-Whitney U-test

Motion metrics

Error metrics

Deficit metrics

Larger Experimental group learning

Larger Control group learning

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
A Final Thought: Public Health Implications

- **Number of Surgeries**
 - US: 50M
 - Worldwide: 312M

- **The Cost of Surgery**
 - US: 180B

- **Limitations**
 - 5B people lack access to high quality surgical care
 - 5.6M deaths due to lack of access to quality surgical care
 - 9M procedures (3%) encounter major complications; 0.5% deaths

Table: First-listed OR procedures

<table>
<thead>
<tr>
<th>Rank</th>
<th>First-listed OR procedure*</th>
<th>Aggregate costs for hospital stays, $ in millions</th>
<th>Percent of aggregate costs for stays with OR procedures, %</th>
<th>Mean cost per hospital stay, $</th>
<th>Number of stays, in thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spinal fusion</td>
<td>12,837</td>
<td>7.1</td>
<td>27,800</td>
<td>465</td>
</tr>
<tr>
<td>2</td>
<td>Arthroplasty of knee</td>
<td>11,317</td>
<td>6.3</td>
<td>15,900</td>
<td>711</td>
</tr>
<tr>
<td>3</td>
<td>Percutaneous coronary angioplasty (PTCA)</td>
<td>9,730</td>
<td>5.4</td>
<td>18,800</td>
<td>517</td>
</tr>
<tr>
<td>4</td>
<td>Hip replacement, total and partial</td>
<td>7,962</td>
<td>4.4</td>
<td>17,200</td>
<td>464</td>
</tr>
<tr>
<td>5</td>
<td>Cesarean section</td>
<td>7,481</td>
<td>4.1</td>
<td>5,900</td>
<td>1,269</td>
</tr>
<tr>
<td>6</td>
<td>Colorectal resection</td>
<td>6,747</td>
<td>3.7</td>
<td>23,400</td>
<td>289</td>
</tr>
<tr>
<td>7</td>
<td>Coronary artery bypass graft (CABG)</td>
<td>6,411</td>
<td>3.6</td>
<td>38,700</td>
<td>166</td>
</tr>
<tr>
<td>8</td>
<td>Heart valve procedures</td>
<td>6,070</td>
<td>3.4</td>
<td>53,400</td>
<td>114</td>
</tr>
<tr>
<td>9</td>
<td>Cholecystectomy and common duct exploration</td>
<td>5,048</td>
<td>2.8</td>
<td>12,600</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>Treatment, fracture or dislocation of hip and femur</td>
<td>4,275</td>
<td>2.4</td>
<td>18,800</td>
<td>255</td>
</tr>
</tbody>
</table>

Agency for Healthcare Research and Quality (AHRQ), Center for Delivery, Organization, and Markets, Healthcare Cost and Utilization Project (HCUP), Nationwide Inpatient Sample (NIS), 2011

Surgical data science for next-generation interventions. Maier-Hein, Vedula, ... Hager. Nature Biomedical Engineering, 2017

Machines can learn from people, not to replace them, but to help make people better at what they do!
Clinical Collaborators

Masaru Ishii
Otolaryngology –
Head & Neck Surgery

Lisa Ishii
Otolaryngology –
Head & Neck Surgery

Mohamad Allaf
Urology

Shameema Sikder
Ophthalmology

Susan Gearhart
General Surgery

Gina Adrales
Minimally Invasive Surgery

Grace Chen
Obstetrics & Gynecology
Engineering Collaborators

Rene Vidal
BME

Sanjeev Khudanpur
ECE

Russ Taylor
CS

Austin Reiter
CS

Narges Ahmidi
Malone Center

Swaroop Vedula
Malone Center

Anand Malpani
Malone Center
The Motion Modeling and HMCS Mafia

Faculty:
- Gregory Hager, PhD
- René Vidal, PhD
- Sanjeev Khudanpur, PhD
- Grace Chen, MD
- Gyusung Lee, PhD
- Lisa Ishii, MD
- Masaru Ishii, MD, PhD
- Michael Marohn, DO

Students and Staff:
- Anand Malpani
- Christopher Paxton
- Colin Lea
- George Chen
- Lingling Tao
- Mija Lee, PhD
- Narges Ahmidi
- Swaroop Vedula, MD

Alumni:
- David Yuh, MD
- Sebastian Reidel, MS
- Hanyue Llang
- Amod Jog
- Balakrishnan Varadarajan, PhD
- Balazs Vagvolgyi
- Benjamín Béjar, PhD
- Piyush Poddar, MS

Publications:

https://publications.lcsr.jhu.edu/groups/HMM

NSF NRI 1227277, NSF CPS 0931805, NSF CDI-II 0941362, NIH 1R21EB009143, NIH 5R21DE022656-02, NIH R01DE025265

Intuitive Surgical, Inc., Science of Learning Institute (JHU)
QUESTIONS?
Learned Cooperative Execution

![Diagram](image_url)

Suturing Task

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grasp needle (RT) from pod, move to 1st suture point (RT), Insert needle (RT), grasp it (LT)</td>
</tr>
<tr>
<td>2*</td>
<td>Pull thread out (LT), move back to 2nd suture point (LT)</td>
</tr>
<tr>
<td>3</td>
<td>Grasp needle (RT) from (LT), Insert needle (RT), grasp it (LT)</td>
</tr>
<tr>
<td>4*</td>
<td>Pull thread out (LT), move back to 3rd suture point (LT)</td>
</tr>
<tr>
<td>5</td>
<td>Grasp needle (RT) from (LT) Insert needle (RT), grasp it (LT)</td>
</tr>
<tr>
<td>6*</td>
<td>Pull thread out (LT), move back to pod end point (LT)</td>
</tr>
</tbody>
</table>

Padoy and Hager, Human-Machine Collaborative surgery using learned models, ICRA 2011
From Data to Collaboration

Padoy and Hager. "Human-machine collaborative surgery using learned models." ICRA 2011