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How is skill acquired?
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Apprenticeship Training is Valuable
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Skill Acquisition: Apprenticeship

William S. Halsted, JHU 1889
“See one, do one, teach one.” 

C. Franzese and S. Stringer. The Evolution of Surgical Training: Perspectives on Educational Models 
from the Past to the Future. Otolaryngologic Clinics of North America, 40(6):1227–1235, 2007.
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Birkmeyer J.D, et al. Surgical Skill and Complication Rates after Bariatric Surgery. NEJM, 2013.
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What Could You Do With a Million Surgeries?
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Can Machines Help Train Surgeons?

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
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Translate movement to a string
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Build category-specific dictionaries

Ahmidi, et al. "String Motif-Based Description of Tool Motion for Detecting Skill and Gestures in Robotic Surgery.” MICCAI, 2013. 

Evaluate: How Am I Doing?

Ahmidi et al. Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty." IJCARS (2015)
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EXPERTNOVICE
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[DCC] Ahmidi N, et al.: String Motif-Based Description of Tool Motion for Detecting Skill and Gestures in Robotic Surgery. MICCAI (2013)
[HMM] Varadarajan B, et al.: Data-derived models for segmentation with application to surgical assessment and training. MICCAI (2009)
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Ahmidi et al. Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty." IJCARS (2015)
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Providing On-Site Feedback Following Trainees’ Progress

Collecting another 500+ trials (R01-DE025265 01)
• 2 academic medical centers
• 6 operating room suites
• 29 surgeons: 7 faculty; 22 trainees
• 181 procedures

Monitoring Skill Progress
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Automated Feedback for Training

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
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Where Did I Under-Perform?

Lea, Colin, et al. Temporal Convolutional Networks for Action Segmentation and Detection  CVPR 2017. 
Lea et al. Learning Convolutional Action Primitives for Fine-grained Action Recognition ICRA 2016
Lea et al. Segmental spatiotemporal CNNs for fine-grained action segmentation. ECCV 2016
Lea et al. Surgical phase recognition: From instrumented ORs to hospitals around the world." M2CAI 2016.

Fig. 2. Action primitives for the class cutting in the 50 Salads dataset.
Each row corresponds to weights for the X, Y, or Z axis of an accelerometer
over time. Red is high, green is neutral, and blue is low. (left) traditional
weight vector applied to a single frame (middle) our convolutional action
primitives (right) and our latent action primitives.

action using convolutional filters. These filters nonlinearly
model how features change over the course of a specific
action. We define a weight matrix (“filter”) w that represents
a given action.2 For each action we learn a single filter of size
F ⇥ d where F is the fixed number of features and d is the
primitive’s duration. The column of each filter corresponds
to the features at each timestep within an action. Ideally this
length would be the exact duration of each action, however,
because durations vary widely between actions we choose it
to be roughly the average length of all actions. The score
of our classifier is given by the following where ? is the
convolution operator:

�(X, y, t) = wy ?Xt:t+d (2)

This results in a scalar score for time t. Note for later that
this convolution can be rewritten as a dot product of the
vectorized filter w and data Xt:t+d.

Latent Action Primitive: In practice each action instance
can last a different amount of time. For example, in a cutting

action, one person may pause between picking up a knife
and cutting a vegetable. In addition, users may perform
actions in different styles or orderings. Thus, it may be
advantageous to learn a separate model for different parts of
an action such as the start, middle, and end. We use latent
variables to learn a set of subactions for each action class.
Note that these subactions are learned in an unsupervised
manner based on the higher-level action labels. They are
initialized by splitting actions into different partitions but
may take on other latent meanings.

Let ht be the latent state at time t. We define a new set of
filters wh

y for h = 1 . . . H and each class y. We assume that
each action has the same number of subactions. The score at
each timestep will correspond to the best scoring subaction
at that time. The score for any hidden state is:

�(X, y, h, t) = wh
y ?Xt:t+d (3)

Our energy function will maximize over the best scoring
filters ht. In our applications we find the optimal number of
hidden states H is fewer than 5 per action class.

2Here we define the weights and data in terms of matrices to help build
intuition for the reader. For learning these terms are vectorized.

Fig. 3. Our Latent Convolutional Skip Chain CRF. We depict an example
action primitive overlaid from t to t + d. Note for clarity we only depict
nodes for intervals 0, d, and 2d. Additional chains are used to cover all
frames.

In Section IV we compare the traditional, action primitive,
and latent action primitive models.

B. Temporal Model

We generalize the Skip-Chain CRF [7] by adding latent
action primitives and a new temporal prior. This is a struc-
tured model that captures three characteristics of our data:
� models each action primitive,  models the likelihood of
transitioning between two sequential actions, and ⇡ models
a prior over when certain actions may occur. See Figure 3
for a depiction of our model.

Given data sequence X and labels Y we define the Latent
Convolutional Skip Chain CRF (LC-SC-CRF) with energy:

E(X,Y ) = max
h

>X

t=1

�(X,Y, h, t) +  (Y, h, t) + ⇡(Y, h, t)

(4)

Note, in a probabilistic setting this model can be viewed
as a Latent Conditional Random Field using the Gibbs
distribution P (Y |X) = 1

Z exp(�E(X,Y )) with partition
function Z. When it is trained discriminately it is sometimes
referred to as a Latent Structural Support Vector Machine.

Skip-frame Model: The pairwise skip-frame term is
a generalization of the Markov class transition model
commonly used in HMMs. While Markov models are very
effective for capturing class transitions when each action is
very short (i.e. a few frames), they are not well suited for
long-range transitions like ours where each action is on the
order of 100 frames long.

This skip frame term models class transitions from time
t�d to t. The probability of an action changing from class a
to class b between these timesteps is much higher than from
t�1 to t. Parameter d is called the skip length and is chosen
via cross validation. Empirically this has a substantial effect
on accuracy and better models higher-order class transitions.

We model the skip frame term using a pairwise transition
matrix indexed by (yt�d, yt). For previous class y0 and new
class y the score is

 (y0, y) = wy0,y (5)

In the latent action primitive model these pairwise transitions
are a function of the latent variables h0 and h at each time

Learning Convolutional Action Primitives
for Fine-grained Action Recognition

Colin Lea1, René Vidal2, and Gregory D. Hager1

Abstract— Fine-grained action recognition is important for
many applications of human-robot interaction, automated skill
assessment, and surveillance. The goal is to segment and
classify all actions occurring in a time series sequence. While
recent recognition methods have shown strong performance in
robotics applications, they often require hand-crafted features,
use large amounts of domain knowledge, or employ overly
simplistic representations of how objects change throughout
an action. In this paper we present the Latent Convolutional
Skip Chain Conditional Random Field (LC-SC-CRF). This time
series model learns a set of interpretable and composable action
primitives from sensor data. We apply our model to cooking
tasks using accelerometer data from the University of Dundee
50 Salads dataset and to robotic surgery training tasks using
robot kinematic data from the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS). Our performance on 50
Salads and JIGSAWS are 18.0% and 5.3% higher than the
state of the art, respectively. This model performs well without
requiring hand-crafted features or intricate domain knowledge.
The code and features have been made public.

I. INTRODUCTION

Fine-grained action recognition is important for many
applications of human-robot interaction, automated skill
assessment, and surveillance. These systems have the
potential to change the way people interact with the
world and with each other by automatically recogniz-
ing and evaluating human actions. The focus of this
work is to predict a sequence of actions given sen-
sor data such as robot kinematics or accelerometer val-
ues. In a cooking task an example action sequence
for make sandwich might be put bread on plate,
add mustard to bread, place meat on bread, and
place bread on sandwich.

There are many subtleties to fine-grained action recog-
nition that make it a difficult problem. Actions are often
performed in different styles, over variable amounts of time,
and in unique sequential orderings. In the cooking example
each user may select a different set of ingredients to add
on their sandwich. Some action sequences require a specific
order while others have several common variations.

We introduce a notion of an action primitive composed of
convolutional filters. These non-linearly model how features
like robot position and object state transition throughout
an action. For example a primitive may capture the act of
picking up a spoon followed by a salad bowl. These are

*This work was supported in part by grants NRI-1227277, NSF-1218709,
NSF-1335035 and ONR-N00014131011*

1CL and GDH are with the Department of Computer Science and 2 RV is
with the Department of Biomedical Engineering, Johns Hopkins University,
3400 N. Charles, Baltimore, MD, USA. Emails: clea1@jhu.edu,
hager@cs.jhu.edu, rvidal@cis.jhu.edu

Fig. 1. Sample data from University of Dundee 50 Salads and the JHU-ISI
Gesture and Skill Assessment Working Set (JIGSAWS). The middle shows
a corresponding action sequence where each color denotes an action label.
The bottom depicts sensor signals where each row is an accelerometer or
robot pose value over time.

motivated by recent work in deep learning where hierarchies
of convolutional filters are learned for tasks like object
classification. While deep networks are notorious for being
black boxes, we show that by modeling each action as a
sequence of class-specific temporal filters we can visualize
our model in a way that is much more interpretable.

We introduce the Latent Convolutional Skip-Chain Con-
ditional Random Field (LC-SC-CRF) for joint temporal
segmentation and action classification. This is a general-
ization of the Skip Chain Conditional Random Field (SC-
CRF) of Lea et al. [7] which achieves high performance
on surgical action recognition. The latent convolutional
component models multiple variations of each action. For
example the action peeling may now consist of three
action primitives: pick up peeler, peel cucumber,
and put down peeler. The skip-chain component models
the ordering of sequential actions by learning how frequently
actions transition from one to another.

Lastly, we find that commons metrics for action recogni-
tion, like frame-wise accuracy, are insufficient for evaluating
practical aspects of these systems. It is possible to achieve
high frame-wise accuracy but severely over-segment the
sequence by producing many false positives. We suggest
two complementary metrics: a modified overlap score which
evaluates temporal segmentation and a segmental edit score
which evaluates the classification accuracy of each segment.

We apply our model to applications in cooking and robotic
surgery. We use the University of Dundee 50 Salads dataset
to recognize cooking actions, such as cutting, mixing,



M A L O N E C E N T E R . J H U . E D U

Phases, Maneuvers, Gestures

[3] Dergachyova IPCAI 2016     [15] Twinanda TMI 2016
*=86.0% if trained using outside surgical data + tools

Ahmidi et al. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. TBME, 2017
DiPietro et al. "Recognizing surgical activities with recurrent neural networks." MICCAI, 2016

Table 1: Quantitative results and comparisons to prior work.

JIGSAWS MISTIC-SL

Accuracy (%) Edit Dist. (%) Accuracy (%) Edit Dist. (%)

MsM-CRF [15] 72.6 — — —

SDSDL [13] 78.7 — — —

SC-CRF [9] 80.3 — — —

LC-SC-CRF [10] 82.5 ± 5.4 14.8 ± 9.4 81.7 ± 6.2 29.7 ± 6.8

Forward LSTM 80.5 ± 6.2 19.8 ± 8.7 87.8 ± 3.7 33.9 ± 13.3

Bidir. LSTM 83.3 ± 5.7 14.6 ± 9.6 89.5 ± 4.0 19.5 ± 5.2

hyperparameters for both JIGSAWS experiments and MISTIC-SL experiments.
We performed a grid search over the number of RNN hidden layers (1 or 2),
the number of hidden units per layer (64, 128, 256, 512, or 1024), and whether
dropout [16] is used (with p = 0.5). 1 hidden layer of 1024 units, with dropout,
resulted in the lowest edit distance and simultaneously yielded high accuracy.
These hyperparameters were used for all experiments.

Using a modern GPU, training takes about 1 hour for any particular JIG-
SAWS run and about 10 hours for any particular MISTIC-SL run (MISTIC-SL
sequences are approximately 10x longer than JIGSAWS sequences). We note,
however, that RNN inference is fast, with a running time that scales linearly
with sequence length. At test time, it took the bidirectional RNN approximately
1 second of compute time per minute of sequence (300 time steps).

3.4 Results

Table 1 shows results for both JIGSAWS (gesture recognition) and MISTIC-
SL (maneuver recognition). A forward LSTM and a bidirectional LSTM are
compared to the Markov/semi-Markov conditional random field (MsM-CRF),
Shared Discriminative Sparse Dictionary Learning (SDSDL), Skip-Chain CRF
(SC-CRF), and Latent-Convolutional Skip-Chain CRF (LC-SC-CRF). We note
that the LC-SC-CRF results were computed by the original author, using the
same MISTIC-SL validation set for hyperparameter selection.

We include standard deviations where possible, though we note that they
largely describe the user-to-user variations in the datasets. (Some users are ex-
ceptionally challenging, regardless of the method.) We also carried out statistical-
significance testing using a paired-sample permutation test (p-value of 0.05). This
test suggests that the accuracy and edit-distance di↵erences between the bidi-
rectional LSTM and LC-SC-CRF are insignificant in the case of JIGSAWS but
are significant in the case of MISTIC-SL. We also remark that even the forward
LSTM is competitive here, despite being the only algorithm that can run online.

Table 1: Quantitative results and comparisons to prior work.

JIGSAWS MISTIC-SL

Accuracy (%) Edit Dist. (%) Accuracy (%) Edit Dist. (%)

MsM-CRF [15] 72.6 — — —

SDSDL [13] 78.7 — — —

SC-CRF [9] 80.3 — — —

LC-SC-CRF [10] 82.5 ± 5.4 14.8 ± 9.4 81.7 ± 6.2 29.7 ± 6.8

Forward LSTM 80.5 ± 6.2 19.8 ± 8.7 87.8 ± 3.7 33.9 ± 13.3

Bidir. LSTM 83.3 ± 5.7 14.6 ± 9.6 89.5 ± 4.0 19.5 ± 5.2
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We performed a grid search over the number of RNN hidden layers (1 or 2),
the number of hidden units per layer (64, 128, 256, 512, or 1024), and whether
dropout [16] is used (with p = 0.5). 1 hidden layer of 1024 units, with dropout,
resulted in the lowest edit distance and simultaneously yielded high accuracy.
These hyperparameters were used for all experiments.

Using a modern GPU, training takes about 1 hour for any particular JIG-
SAWS run and about 10 hours for any particular MISTIC-SL run (MISTIC-SL
sequences are approximately 10x longer than JIGSAWS sequences). We note,
however, that RNN inference is fast, with a running time that scales linearly
with sequence length. At test time, it took the bidirectional RNN approximately
1 second of compute time per minute of sequence (300 time steps).

3.4 Results

Table 1 shows results for both JIGSAWS (gesture recognition) and MISTIC-
SL (maneuver recognition). A forward LSTM and a bidirectional LSTM are
compared to the Markov/semi-Markov conditional random field (MsM-CRF),
Shared Discriminative Sparse Dictionary Learning (SDSDL), Skip-Chain CRF
(SC-CRF), and Latent-Convolutional Skip-Chain CRF (LC-SC-CRF). We note
that the LC-SC-CRF results were computed by the original author, using the
same MISTIC-SL validation set for hyperparameter selection.

We include standard deviations where possible, though we note that they
largely describe the user-to-user variations in the datasets. (Some users are ex-
ceptionally challenging, regardless of the method.) We also carried out statistical-
significance testing using a paired-sample permutation test (p-value of 0.05). This
test suggests that the accuracy and edit-distance di↵erences between the bidi-
rectional LSTM and LC-SC-CRF are insignificant in the case of JIGSAWS but
are significant in the case of MISTIC-SL. We also remark that even the forward
LSTM is competitive here, despite being the only algorithm that can run online.
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What Did I Do Wrong?

VIDEO IDT,	C3D,	CNN

Local	Spatio-Temporal	Encodings

KINEMATICS
QBE

+ TCN

Global	Spatio-Temporal	Encodings

Database

Nearest-Neighbor	Query

Narration

Use video as an index into feedback for a trainee based on most similar 
known performance
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What Did I Do Wrong?

Query Video (Phase #2) Closest Matching Clip
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Automated Feedback for Training

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
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What Can I Do To Improve?

Grasp Needle

Insert Needle in Tissue

Drive Needle through Tissue

Pull out Needle

Malpani et	al.	Real-time	Teaching	Cues	for	Automated	Surgical	Coaching.
https://arxiv.org/abs/1704.07436

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
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Improvement over baseline performance 
between groups

Motion	metrics

Error	metrics

Deficit	metrics

(*)	indicate	P-values	< 0.05 using	a	Mann-Whitney	U-test

Larger	
Experimental	

group	
learning

Larger	
Control	
group	
learning

Δ𝑀'()* − Δ𝑀,*-.

© Anand Malpani, 2016. Automated Virtual Coach for Surgical Training
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A Final Thought: Public Health Implications

o Number of Surgeries
o US: 50M
o Worldwide: 312M

o The Cost of Surgery
o US: 180B

o Limitations
o 5B people lack access to high quality surgical care
o 5.6M deaths due to lack of access to quality surgical care
o 9M procedures (3%) encounter major complications; 0.5% deaths

Surgical data science for next-generation interventions. Maier-Hein, Vedula,… Hager. Nature Biomedical Engineering, 2017
Surgical data science: the new knowledge domain. Vedula, Hager. Innovative Surgical Sciences, 2017.

Agency for Healthcare Research and Quality (AHRQ), Center for Delivery, 
Organization, and Markets, Healthcare Cost and Utilization Project (HCUP), 

Nationwide Inpatient Sample (NIS), 2011
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Machines can learn from people, not to replace them,
but to help make people better at what they do!
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Clinical Collaborators

Masaru	Ishii
Otolaryngology	–

Head	&	Neck	Surgery

Lisa	Ishii
Otolaryngology	–

Head	&	Neck	Surgery

Mohamad	Allaf
Urology

Shameema	Sikder
Ophthalmology

Grace	Chen
Obstetrics	&	Gynecology

Gina	Adrales
Minimally	Invasive	Surgery

Susan	Gearhart
General	Surgery
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Engineering Collaborators

Rene	Vidal
BME

Sanjeev	Khudanpur
ECE

Russ	Taylor
CS

Austin	Reiter
CS

Anand Malpani
Malone	Center

Swaroop Vedula
Malone	Center

Narges Ahmidi
Malone	Center
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QUESTIONS?
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Learned Cooperative Execution

(a) Start & end state of the pod. (b) Exemplary trajectory of the instrument. The
red (dark) parts indicate the segments annotated
for automation.

Fig. 3. Pin Task, performed with a single instrument.

(a) Start & end state of the pod. (b) Exemplary trajectory of the two instruments.
They normally intersect, but have been isolated
for better visualization. The red (dark) parts
indicate the segments annotated for automation.

Fig. 4. Suturing Task, performed with two instruments.

# Name
1 Grasp needle (RT) from pod,

move to 1st suture point (RT),
Insert needle (RT), grasp it (LT)

2* Pull thread out (LT), move back to 2nd suture point (LT)
3 Grasp needle (RT) from (LT),

Insert needle (RT), grasp it (LT)
4* Pull thread out (LT), move back to 3rd suture point (LT)
5 Grasp needle (RT) from (LT)

Insert needle (RT), grasp it (LT)
6* Pull thread out (LT), move back to pod end point (LT)

TABLE II
SUTURING TASK DESCRIPTION. (*) INDICATES AUTOMATED SUBTASKS.

(RT) STANDS FOR ”RIGHT TOOL” AND (LT) FOR ”LEFT TOOL”.

controls a surgical instrument. In our case the PSMs have
the same instruments during the task, namely two large
needle drivers. The 7th degree of freedom corresponds to
the opening of the instrument grasper. We also assume for
simplification that the left (resp. right) master manipulator
controls the left (resp. right) PSM, even though more general
tele-operation configurations are possible using the da Vinci
robot [5]. During tele-operation, the instruments and the pod
are observed by a stereo endoscopic camera, which can be
moved using a specific 6 DOF manipulator.

Four main coordinate systems (or frames) are of im-
portance in this setup (see Fig. 5). The task coordinate

Ccam

Cworld

Ctask

Cinst

[Tin , R
in ]

[T ca, R ca]

[T
ta , R

ta ]

Fig. 5. Coordinate systems illustration.

system Ctask is specific to the task and independent of the
robot initial kinematics. The camera coordinate system Ccam

indicates the position of the stereo endoscopic camera and
the instrument coordinate systems Cj

inst indicates the position
of instrument j, with j ⇥ {0, 1} denoting the left or right
instrument. Finally, the origin of the world, for instance
representing the base of the robot, is denoted by Cworld.

We denote by [T,R] ⇥ R3 � SO3 3D transformations
composed of a translation T and a rotation R. In the
following, we assume that we know the transformations
[T inj

t , R
inj

t ] from Ccam to Cj
inst and [T ca

t , Rca
t ] from Cworld

to Ccam at each time t. They are collected using the da
Vinci research interface [18]. Additionally, we need the
transformation [T ta

t , Rta
t ] from Ccam to Ctask. We obtain this

***Limited circulation. For review only.***

T1 T2 T3 T4
manual auto manual auto 

completion 
recognition 

execution 
termination 

completion 
recognition 

Suturing Task

Padoy and Hager, Human-Machine Collaborative surgery using learned models, ICRA 2011 
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From Data to Collaboration

Padoy and Hager. "Human-machine collaborative surgery using learned models." ICRA 2011


